
 1

SOME ALGORITHMS FOR STRINGS WITH
APPLICATIONS TO PROGRAM VERIFICATION

by
Harvey M. Friedman*
September 7, 2009

ABSTRACT. We present an algorithm for deciding the validity
of certain universal sentences in a three sorted language
involving integral linear arithmetic, a linearly ordered
set of objects, and finite strings of objects. The language
supports a number of basic operations, including string
concatenation and string length. We analyze the complexity
of the algorithm. We explore the boundary between
decidability and undecidability by establishing the
undecidability of certain expansions of this language.

1. THE THREE SORTED LANGUAGE L1.

L1 has three sorts: integers, objects, and (finite) strings
(of objects).

The integer sort will always be interpreted as Z, equipped
with linear arithmetic. The objects can be any nonempty
linearly ordered set. The strings will always be
interpreted as the finite strings of these objects,
including the empty string. Thus the interpretations of L1
involve only the choice of the nonempty linearly ordered
set of objects.

We develop algorithm for determining whether certain
universal sentences in this language are valid; i.e., are
true in all interpretations of L1.

We now present the syntax of the three sorted language L1.

INT variables n1,n2,... .
OBJ variables x1,x2,... .
STR variables are α1,α2,... .

We divide the symbols into five groups.

1. Integral Linear Arithmetic.

a. Binary relation symbols <,≤,=,≠ of type INT × INT.
b. Binary function symbols +,- of type INT × INT → INT.

 2

c. Unary function symbols | |,- of type INT → INT.
d. Constant symbols 0,c of type INT, where c is a nonempty
string of base ten digits, not beginning with 0. (Integer
constants).
e. For each n ≥ 2, divn,modn of type INT → INT.
(Division/remainder for each specific modulus).

2. Linearly Ordered Objects. Binary relation symbols <,≤,=,≠
of type OBJ × OBJ.

3. String Construction and Comparison.

a. Constant symbol Λ of type STR. (Empty string).
b. Unary function symbol | | of type STR → INT. (Length of
a string).
c. Unary function symbol < > of type OBJ → STR. (Length 1
string construction).
d. Binary relation symbols =,≠ of type STR × STR.
e. Concatenation from STR × STR to STR. We will take
advantage of the associativity to avoid parentheses.

4. Attributes.

a. Unary relation symbol WINC of type STR. (The successive
terms in the string are weakly increasing (≤)).
b. Ternary relation symbol VAL of type STR × INT × OBJ. (The
i-th term of a given string is a given object, where we
count positions in strings from 1 through their length).

Note that we have overloaded <,≤,=,≠,| |. This is harmless
because of the strong typing.

The INT terms, OBJ terms, and STR terms of L1 are defined
simultaneously as follows. (We will ignore parsing issues).

A. OBJ Terms. The OBJ Terms are exactly the OBJ variables.

B. INT Terms.

1. Every INT variable and INT constant is an INT term.
2. Let s',t' be INT terms and n ≥ 2. Then s'+t', s'-t',
|s'|, -s', DIVn(t'), MODn(t') are INT terms.
3. Let t' be an INT term and t be a STR term. Then |t'| and
|t| are INT terms.

C. STR Terms.

 3

1. Every STR variable and Λ is a STR term.
2. Let x be an OBJ variable. Then <x> is an STR term.
3. Let s,t be STR terms. Then st is an STR term.

The atomic formulas of L1 are defined as follows.

1. Let x,y be OBJ variables. Then x < y, x ≤ y, x = y, x ≠ y
are atomic formulas of L1.
2. Let s,t be STR terms of L1. Then WINC(s), s = t, s ≠ t
are atomic formulas.
3. Let s be a STR term, s' an INT term, and x be an OBJ
variable. Then VAL(s,s',x) is an atomic formula.
4. Let s',t' be INT terms. Then s' < t', s' ≤ t', s' = t',
s' ≠ t' are atomic formulas.

The formulas of L1 are defined as follows.

1. Every atomic formula is a formula.
2. Let A,B be formulas. ¬A, A ∨ B, A ∧ B, A → B, A ↔ B are
formulas.

Note that we do not allow quantifiers in L1.

An interpretation of L1 is a pair (D,<), where D is a
nonempty set and < is a strict linear ordering on D. A D-
assignment is a function f whose domain is the set of
variables of L1. INT variables must be assigned integers,
OBJ variables must be assigned elements of D, and STR
variables must be assigned finite strings from D.

We define

Val((D,<),T,f)

where T is a term of L1 and f is a D-assignment, by
induction on T in the obvious way, according to the
descriptions of the symbols given above.

We also define

Sat((D,<),ϕ,f)

where ϕ is a formula of L1 and f is a D-assignment, by
induction on ϕ, again according to the descriptions of the
symbols given above.

 4

We write Sat((D,<),ϕ) if and only if Sat((D,<),ϕ,f) holds
for all D-assignments f.

We say that ϕ is valid if and only if for all
interpretations (D,<) of L1, Sat((D,<),ϕ).

We say that ϕ is satisfiable if and only if for some
interpretation (D,<) of L1, Sat((D,<),ϕ).

We say that ϕ is realizable if and only if for some
interpretation (D,<) of L1 and some D-assignment f,
Sat((D,<),ϕ,f).

An INT equation is an equation between two INT terms. An
OBJ equation is an equation between two OBJ variables. A
STR equation is an equation between two STR terms.

2. STATEMENT OF DECIDABILITY RESULT.

As background information, the VCs (verification
conditions) that have been shown to us by the RSRG group at
the CSE Department, The Ohio State University (led by
Professor Bruce Weide), mostly take the following form.

1) Suppose A1,...,Ar holds. Then B1,...,Bs hold.

1') A1 ∧ ... ∧ Ar → B1 ∧ ... ∧ Bs.

Here A1,...,Ar,B1,...,Bs are atomic formulas of L1 without
VAL.

There are some exceptions, where some of the A's, for
example, have an ∨. Our algorithm handles such features,
and also handles VAL.

The crucial point is this. From what we have seen, there is
a strong but sensible and plausible restriction on the STR
equations s = t appearing among the hypothesized A's in 1).

OBSERVED RESTRICTION. Let s1 = t1, ..., si = ti be STR
equations among the A's. Then no STR variable appears more
than once in the totality of s1,...,si,t1,...,ti.

This restriction only applies to the A's, and not to the
B's. It also does not apply to any STR terms that may
appear inside | | or WINC or VAL.

 5

We will broaden 1) for our decidability result,
incorporating a corresponding restriction on the STR
equations.

For our formulation of these results, we use the notion
"positive and negative occurrences of letters in formulas
in propositional calculus". This definition immediately
extends to "positive and negative occurrences of atomic
formulas in quantifier free formulas in languages such as
L1".

i. p is a positive occurrence in p.
ii. The positive (negative) occurrences in A ∧ B, A ∨ B are
the positive (negative) occurrences in A,B.
iii. The positive occurrences in A → B are the negative
occurrences in A and the positive occurrences in B.
iv. The negative occurrences in A → B are the positive
occurrences in A and the negative occurrences in B.
v. The positive (negative) occurrences in ¬A are the
negative (positive) occurrences in A.

Let A be a formula of L1. We say that A has the positive
(negative) STR equation restriction if and only if the
following holds.

Let s1 = t1, ..., si = ti be a list of all STR
equations that have some positive (negative)

occurrence in A.
Then every STR variable appears at most once

in the totality of s1,...,si,t1,...,ti.

THEOREM 2.1. There is a decision procedure for determining
the validity of all formulas A of L1, obeying the negative
STR equation restriction. Moreover, the problem is co NP
complete, and conveniently reducible to the validity of
quantifier free formulas in linear integer arithmetic.

It is conceptually clearer to prove the following dual
result, which is obviously equivalent.

THEOREM 2.2. There is a decision procedure for determining
the satisfiability of all formulas A of L1, under some
assignment, obeying the positive SEQ equation restriction.
Moreover, the problem is NP complete, and conveniently
reducible to the satisfiability of quantifier free formulas
in linear integer arithmetic.

 6

We first show that we need only consider the one special
interpretation where the (D,<) is simply (Z,<).

LEMMA 2.3. A formula of L1 is valid in the (Z,<)
interpretation if and only if it is valid in all (D,<)
interpretations if and only if it is valid in all (D,<)
interpretations with D finite.

Proof: Suppose the formula A fails in some (D,<)
interpretation under some (D,<) assignment, f. Since there
are only finitely many variables in the formula, A fails in
some (D,<) interpretation under some (D,<) assignment, f,
where D is finite. We can assume that D is some {1,...,n},
n ≥ 1, and extend f in any way to be a (Z,<) assignment.
This establishes that A fails in the (Z,<) interpretation
under some (Z,<) assignment. QED

In light of Lemma 2.3, we only use the (Z,<)
interpretation. We thus speak of truth or falsity of
sentences, and truth or falsity of formulas under
assignments (which are understood to be (Z,<) assignments).

In fact, we will use the word "satisfiable" to mean true
under some (Z,<) assignment in the (Z,<) interpretation.

3. DISJUNCTIVE NORMAL FORM, AND T0(A).

Our goal is to give a decision procedure for the
satisfiability of formulas A of L1, under the (Z,<)
interpretation. This suffices to establish the decision
procedure called for in Theorem 2.2, via Lemma 2.3.

Let A be a formula of L1. We put A into disjunctive normal
form as usual. But we need to go further and drive many
negation signs in as follows. Replace

¬x = y by x ≠ y.
¬x ≤ y by y < x.
¬x < y by y ≤ x.
¬x ≠ y by x = y.
¬s' = t' by s' ≠ t'.
¬s' ≤ t' by t' < s'.
¬s' < t' by t' ≤ s'.
¬s' ≠ t' by s' = t'.
¬s = t by s ≠ t.
¬s ≠ t by s = t.

 7

Let the resulting formula be B. Of course, negation signs
will remain in front of WINC and VAL. Here x,y are OBJ
variables and s,t are STR terms.

T0(A) is a finite labeled tree constructed as follows. The
label of the root is A. For each disjunct ϕ of B, the root
has one son labeled with ϕ.

It is obvious that A is satisfiable if and only if some
leaf of T0(A) is satisfiable.

Furthermore, it is clear that each disjunct of B has the
positive STR equation restriction - henceforth called the
variable restriction.

3. TREE CONSTRUCTION AND OVERVIEW.

We start with a formula A with the positive STR equation
restriction, and the finite tree T0(A). We wish to test A
for satisfiability.

Each leaf of T0(A) is labeled with a conjunction of the form

D1 ∧ ... ∧ Dk, k ≥ 1

where the D's are of the forms

*)
x < y
x ≤ y
x = y
x ≠ y
s = t
s ≠ t
s' < t'
s' ≤ t'
s' = t'
s' ≠ t'
WINC(s)
¬WINC(s)
VAL(s,s',x)
¬VAL(s,s',x)

where x,y are OBJ variables, s',t' are INT terms, s,t are
STR terms, and no STR variable appears more than once in
the totality of STR equations s = t.

 8

In section 4, we build a tree T[A], which extends the tree
T0(A), although some vertices in T0(A) may have their labels
changed during the construction process.

We will show that, once again, the satisfiability of A is
equivalent to the existence of a satisfiable leaf of T(A).

It will be the case that the labels of the leaves of T(A)
are of the form

E1 ∧ ... ∧ Ep

where the E's are of the forms

µ)
x < y
x ≤ y
x = y
x ≠ y
s' < t'
s' ≤ t'
s' = t'
s' ≠ t'
WINC(α)
VAL(α,s',x)

where x,y are OBJ variables, s',t' are INT terms, and α is
an STR variable. There is no Λ, <x>, and no concatenation.

In section ?, we will show how to reduce the satisfiability
of any conjunction of the form µ) to an existential sentence
in Presburger arithmetic. This is a well known NP complete
problem that has many practical implementations in use and
in the literature.

Thus we have reduced the original problem of the
satisfiability of A, to the truth of an existential
sentence in Presburger arithmetic.

There are a number of implementation issues that arise.
From the theoretical standpoint, the focus is on

i. The size of the tree T(A).
ii. The size of the labels of the leaves of the tree T(A).

An implementation of this algorithm has been constructed at
the RSRG group of the CSE Department at The Ohio State

 9

University in collaboration with a group at Clemson
University. See ... This software has been applied to many
VC's (verification conditions) arising in connection with
programs for string processing. The implementation works
well in practice.

4. RULES AND T(A).

We now present our rules for the construction of the finite
tree T(A), in four natural groups. Each rule states the
form(s) to which it can be applied, followed by the action
to be taken. A particular instance of (one of the) form(s)
is located in a particular leaf of the current tree. The
remove or replace action takes place at that location.

The rules calling for splits are 1.11, 1.12, 3.3, 3.4, 4.3,
4.5, 4.6. Splits are implemented as follows. First sons are
created for each of the (at most 3) splits, with the label
of the located leaf copied. Then the chosen instance is
replaced accordingly in the copied leaves.

As the rules are implemented, in any manner whatsoever, the
tree is transformed, starting with T0(A). We prove that no
matter how the rules are implemented, the process
terminates - i.e., no rules can be applied. This
nondeterministic process results in a finite tree T(A) -
which may not be unique.

1.1. Λ as proper subterm of a string term. Remove Λ.

1.2. s = Λ or Λ = s, where s has an OBJ variable. Replace
conjunction by 1 = 0.

1.3. s = Λ or Λ = s, where s is a concatenation of one or
more STR variables. Remove, and replace all occurrences of
the variables in s by Λ.

1.4. Λ = Λ. Remove.

1.5. |Λ|. Replace by 0.

1.6. α = t or t = α. Remove, and replace every occurrence
of α by t.

1.7. α ≠ Λ or Λ ≠ α. Replace by |α| ≠ 0.

1.8. <x> ≠ Λ or Λ ≠ <x>. Remove.

 10

1.9. ¬WINC(s). Replace by VAL(s,n,x), VAL(s,m,y), n < m, y
< x, where n,m,x,y are new variables.

1.10. |t|, where t is not an STR variable. First replace by
|t1'| + ... + |tn'|, where t1',...,tn' are the components of
t, from left to right. Then replace each summand |<x>| by
1, |Λ| by 0.

1.11. ¬VAL(s,t',x). Split with {|s| < t'}, {t' < 1},
{VAL(s,t',y), x ≠ y}, where y is a new variable.

1.12. s ≠ t, where this inequation has at least one
variable. Split with {|s| ≠ |t|}, {VAL(s,n,x), VAL(t,n,y),
x ≠ y}, where n,x,y are new variables.

2.1. WINC(<x>), WINC(Λ). Remove.

2.2. WINC(u1u2...up), p ≥ 2, where the u's are either STR
variables or some <x>. For each 1 ≤ i < p, let Si =
{WINC(ui), VAL(ui,|ui|,vi), VAL(ui+1,1,wi+1), vi ≤ wi+1}. Here
v1,...,vp-1,w2,...,wp are new OBJ variables. Let Si' be the
result of removing WINC(ui) in case ui is some <x>. Replace
by S1' ∪ ... ∪ Sp-1'.

3.1. VAL(Λ,s',x). Replace the conjunction by 1 = 0.

3.2. VAL(<y>,s',x). Replace by s' = 1, y = x.

3.3. VAL(<y>t,s',x). Split with {s' = 1, x = y}, {s' > 1,
VAL(t,s'-1,x)}.

3.4. VAL(αt,s',x). Split with {s' = 1, VAL(α,s',x)}, {s' >
1, VAL(t,s'-|α|,x)}.

4.1. <x> = <y>. Replace by x = y.

4.2. <x> = <y>t or <y>t = <x>. Replace by x = y, t = Λ.

4.3. <x> = αt or αt = <x>. Split with {<x> = t, α = Λ},
{<x> = α, t = Λ}. Follow the first split by replacing all
occurrences of α by Λ. Follow the second split by replacing
all occurrences of α by <x>.

4.4. <x>s = <y>t. Replace by x = y, s = t.

 11

4.5. <x>s = αt or αt = <x>s. Split with {α = Λ, <x>s = t},
{s = βt, α = <x>β}, where β is a new STR variable. Follow
the first split by replacing all occurrences of α by Λ.
Follow the second split by replacing all occurrences of α
by <x>β.

4.6. αs = βt. Split with {|α| ≤ |β|, β = αγ, s = γt}, {|β| <
|α|, α = βγ, γs = t}, where γ is a new STR variable. Follow
the first split by replacing all occurrences of β by αγ.
Follow the second split by replacing all occurrences of α
by βγ.

LEMMA 4.1. During the successive application of these
rules, starting with T0(A), the variable restriction applies
to every leaf. I.e., no STR variable appears more than once
in the totality of STR equations on a leaf.

Proof: It suffices to show that the conjunction(s) created
by a single application of these rules to a conjunction
with the variable restriction, still has (have) the
variable restriction.

To verify this, we need only look at those rules which may
create new STR equations. These are 1.7, 4.2 - 4.6.

1.7. After removal, α does not occur in any STR equation,
and so no new STR equations are created.
4.2. Note that t is part of the equation being replaced.
4.3. In the first (second) son, the new STR equations
either have an STR variable removed, or is <x> = t or t =
Λ, where t is part of the STR equation being replaced.
4.4. The new equation is s = t, which is a part of the STR
equation being replaced.
4.5. In the first son, the new STR equations either have an
STR variable removed, or is part of the STR equation being
replaced. In the second son, the new variable β occurs just
once, and s,t are part of the STR equation being replaced.
Also α isn't replaced in any STR equations in the second
son.
4.6. In the first son, β is not replaced in any STR
equations, and s = γt is part of the STR equation being
replaced. The same is true in the second son.

QED

LEMMA 4.2. Suppose the successive application of these
rules, starting with the finite tree T0(A), results in a

 12

finite tree T(A), where no further applications of the
rules are possible. Let E1 ∧ ... ∧ Ek be the label of a leaf
of T(A). Then the E's are of the forms

µ)
x < y
x ≤ y
x = y
x ≠ y
s' < t'
s' ≤ t'
s' = t'
s' ≠ t'
WINC(α)
VAL(α,s',x)

where x,y are OBJ variables, α is a STR variable, and s',t'
are INT terms. Furthermore, the only STR terms that appear
are STR variables.

Proof: By 1.9, 1.11, and 1.12, there are no ¬WINC, ¬VAL, s
≠ t. Now let t be a maximal STR term that appears. We have
the following cases related to the occurrence of t.

case 1. |t|. By 1.10, t is an STR variable.

case 2. VAL(t,t',x). By 3.1 - 3.4, t is an STR variable.

case 3. WINC(t). By 2.1, 2.2, t is an STR variable.

case 4. s = t or t = s. If Λ appears in s or t, then by
1.1, s or t is Λ. By 1.2 - 1.4, this is impossible. By 4.1
- 4.3, s,t do not begin with any <x>. Hence s,t begin with
an STR variable. By 1.7, s,t are not STR variables. Now
apply 4.6 to arrive at a contradiction.

QED

LEMMA 4.3. Let T be a tree that arises during the
application of these rules, starting with T0(A). Then A is
satisfiable if and only if some leaf of T is satisfiable.

Proof: It suffices to show that the rules have the
following properties. If a rule does not involve splitting,
then the satisfiability of the relevant conjunction is
equivalent to the satisfiability of the resulting
conjunction. If a rule does involve splitting, then the

 13

satisfiability of the relevant conjunction is equivalent to
the satisfiability of at least one of the conjunctions that
arise. This is verified by inspection. QED

Let a conjunction of atomic formulas be given, satisfying
condition *) of section 3. We associate the following 5
nonnegative integers.

Q1 = total number of occurrences of variables in STR
equations, plus the total number of occurrences of
¬WINC,¬VAL, and ≠ between STR terms.

For Q2, first list the occurrences of |t|, WINC(t),
VAL(t,t',x), where t is not an STR variable.

Q2 = the total number of occurrences of variables in the STR
terms t above, plus the total number of occurrences of Λ
anywhere.

LEMMA 4.4. On any application of any of the non splitting
rules to a conjunction satisfying condition *), the pair
(Q1,Q2) is lowered lexicographically, or becomes all 0's. On
any application of any of the splitting rules, the pair
(Q1,Q2) is lower at each of the two sons.

Proof: We go through each rule.
1.1. Q2 lowered; rest unchanged.
1.2. Q's become all 0's.
1.3. Q1 lowered.
1.4. Q2 lowered; Q1 unchanged.
1.5. Q2 lowered; Q1 unchanged.
1.6. Q1 lowered.
1.7. Q1 lowered.
1.8. Q1 lowered.
1.9. Q1 lowered; Q2 unchanged.
1.10. Q2 lowered; Q1 unchanged.
1.11. In each son, Q1 lowered.
1.12. In each son, Q1 lowered.
2.1. Q2 lowered; Q1 unchanged.
2.2. Q2 lowered; Q1 unchanged.
3.1. Q's become all 0's.
3.2. Q2 lowered; Q1 unchanged.
3.3. In each son, Q2 lowered; Q1 unchanged.
3.4. In each son, Q1 lowered; Q2 unchanged.
4.1. Q1 lowered; Q2 unchanged.
4.2. Q1 lowered.
4.3. In each son, Q1 lowered.

 14

4.4. Q1 lowered; Q2 unchanged.
4.5. In each son, Q1 lowered.
4.6. In each son, Q1 lowered.

QED

LEMMA 4.5. The process of applying the rules in any way,
starting with T0(A), must terminate in a finite tree T(A).
We make no claims of uniqueness.

Proof: Suppose the process continues forever.

case 1. Only finitely many vertices are generated. Then
after some stage, the tree is fixed, and the labels only
are changing. Since there are only finitely many leaves,
some leaf has its label updated infinitely often. But each
time its label is updated, its (Q1,Q2) drops
lexicographically. This is impossible.

case 2. Infinitely many vertices are generated. Since the
splits are finite (at most 3), an infinite path of vertices
will be generated, by the Konig tree lemma. But by looking
at their (Q1,Q2), we get an infinite descending sequence
lexicographically, which is impossible.

QED

We need some further work to get a decent estimate on the
number of leaves of T(A) and the size of the labels of the
leaves of T(A). In particular, we need to have an estimate
as to how much Q2 may go up when Q1 goes down, as we
implement the rules. We do not expect any serious
difficulties in developing decent exponential, or double
exponential, estimates, but postpone this investigation.

5. SATIFIABILITY OF LEAVES OF T(A).

We have reduced the satisfiability of A to the existence of
a satisfiable leaf of T(A).

Let E1 ∧ ... ∧ Ek be a conjunction, where the E's are of the
forms

µ)
x < y
x ≤ y
x = y

 15

x ≠ y
s' < t'
s' ≤ t'
s' = t'
s' ≠ t'
WINC(α)
VAL(α,s',x)

where x,y are OBJ variables, α is a STR variable, and s',t'
are INT terms. Furthermore, the only STR terms that appear
are STR variables.

Let the variables appearing in the conjunction be

i. INT variables n1,...,np.
ii. OBJ variables x1,...,xq.
iii. STR variables α1,...,αr.

We wish to convert

1) (∃n1,...,np,x1,...,xq ∈ Z)(∃α1,...,αr ∈ Z*)(E1 ∧ ... ∧ Ek)

to an equivalent existential sentence in Presburger
arithmetic.

It is convenient to rewrite 1) in the form

2) (∃n1,...,np,x1,...,xq ∈ Z)(∃β1,...,βi,γ1,...,γj ∈
Z*)(WINC(β1) ∧ ... ∧ WINC(βr) ∧ VAL(δ1,s1,v1) ∧ ... ∧
VAL(δa,sa,va) ∧ VAL(ν1,t1,w1) ∧ ... ∧ VAL(νb,tb,wb) ∧
ϕ(n1,...,np,x1,...,xq))

where the δ's are among the β's, the ν's are among the γ's,
the s's are INT terms in n1,...,np, and the v's and w's are
among the x's. Also ϕ is the conjunction of the E's that do
not mention STR variables. Note that the conjuncts of ϕ are
either inequalities between x's or atomic formulas
involving only the n's.

Our task is to eliminate the existential quantifiers over
the β's and γ's. We first divide the displayed VAL clauses
into equivalence classes according to "having the same STR
variable". And these equivalence classes are divided into
two groups - those where the STR variable is among the β's,
and those where the STR variable is among the γ's.

 16

Each one of these equivalence classes gives rise to a set
of formulas not mentioning the STR variable. First consider
an equivalence class

VAL(γ,t1,w1),...,VAL(γ,tc,wc).

This equivalence class gives rise to the implications

td = te → wd = we

where 1 ≤ d ≤ e ≤ c.

Now consider an equivalence class

VAL(β,t1,w1),...,VAL(β,tc,wc).

This equivalence class gives rise to the implications

td < te ↔ wd < we

where 1 ≤ d,e ≤ c. Each equivalence class among the VAL
clauses are replaced in 2) by these associated formulas.
Then the existential STR quantifiers are dropped, leaving
an existential Presburger sentence equivalent to 1) above.

* This material is based upon work supported by the
National Science Foundation under Grants No. DMS-0701260
and CCF-0811737. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

