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ABSTRACT. We present an algorithm for deciding the validity 
of certain universal sentences in a three sorted language 
involving integral linear arithmetic, a linearly ordered 
set of objects, and finite strings of objects. The language 
supports a number of basic operations, including string 
concatenation and string length. We analyze the complexity 
of the algorithm. We explore the boundary between 
decidability and undecidability by establishing the 
undecidability of certain expansions of this language.  
 
1. THE THREE SORTED LANGUAGE L1.  
 
L1 has three sorts: integers, objects, and (finite) strings 
(of objects).  
 
The integer sort will always be interpreted as Z, equipped 
with linear arithmetic. The objects can be any nonempty 
linearly ordered set. The strings will always be 
interpreted as the finite strings of these objects, 
including the empty string. Thus the interpretations of L1 
involve only the choice of the nonempty linearly ordered 
set of objects. 
 
We develop algorithm for determining whether certain 
universal sentences in this language are valid; i.e., are 
true in all interpretations of L1.  
 
We now present the syntax of the three sorted language L1. 
 
INT variables n1,n2,... .  
OBJ variables x1,x2,... . 
STR variables are α1,α2,... . 
 
We divide the symbols into five groups. 
 
1. Integral Linear Arithmetic. 
 
a. Binary relation symbols <,≤,=,≠ of type INT × INT.  
b. Binary function symbols +,- of type INT × INT → INT. 
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c. Unary function symbols | |,- of type INT → INT. 
d. Constant symbols 0,c of type INT, where c is a nonempty 
string of base ten digits, not beginning with 0. (Integer 
constants). 
e. For each n ≥ 2, divn,modn of type INT → INT. 
(Division/remainder for each specific modulus). 
 
2. Linearly Ordered Objects. Binary relation symbols <,≤,=,≠ 
of type OBJ × OBJ. 
 
3. String Construction and Comparison.  
 
a. Constant symbol Λ of type STR. (Empty string). 
b. Unary function symbol | | of type STR → INT. (Length of 
a string). 
c. Unary function symbol < > of type OBJ → STR. (Length 1 
string construction). 
d. Binary relation symbols =,≠ of type STR × STR. 
e. Concatenation from STR × STR to STR. We will take 
advantage of the associativity to avoid parentheses. 
 
4. Attributes.  
 
a. Unary relation symbol WINC of type STR. (The successive 
terms in the string are weakly increasing (≤)). 
b. Ternary relation symbol VAL of type STR × INT × OBJ. (The 
i-th term of a given string is a given object, where we 
count positions in strings from 1 through their length).  
  
Note that we have overloaded <,≤,=,≠,| |. This is harmless 
because of the strong typing.  
 
The INT terms, OBJ terms, and STR terms of L1 are defined 
simultaneously as follows. (We will ignore parsing issues).  
 
A. OBJ Terms. The OBJ Terms are exactly the OBJ variables. 
 
B. INT Terms. 
 
1. Every INT variable and INT constant is an INT term. 
2. Let s',t' be INT terms and n ≥ 2. Then s'+t', s'-t', 
|s'|, -s', DIVn(t'), MODn(t') are INT terms.  
3. Let t' be an INT term and t be a STR term. Then |t'| and 
|t| are INT terms. 
 
C. STR Terms. 
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1. Every STR variable and Λ is a STR term.  
2. Let x be an OBJ variable. Then <x> is an STR term. 
3. Let s,t be STR terms. Then st is an STR term. 
 
The atomic formulas of L1 are defined as follows.  
 
1. Let x,y be OBJ variables. Then x < y, x ≤ y, x = y, x ≠ y 
are atomic formulas of L1. 
2. Let s,t be STR terms of L1. Then WINC(s), s = t, s ≠ t 
are atomic formulas. 
3. Let s be a STR term, s' an INT term, and x be an OBJ 
variable. Then VAL(s,s',x) is an atomic formula. 
4. Let s',t' be INT terms. Then s' < t', s' ≤ t', s' = t', 
s' ≠ t' are atomic formulas.  
 
The formulas of L1 are defined as follows.  
 
1. Every atomic formula is a formula. 
2. Let A,B be formulas. ¬A, A ∨ B, A ∧ B, A → B, A ↔ B are 
formulas.  
 
Note that we do not allow quantifiers in L1.  
 
An interpretation of L1 is a pair (D,<), where D is a 
nonempty set and < is a strict linear ordering on D. A D-
assignment is a function f whose domain is the set of 
variables of L1. INT variables must be assigned integers, 
OBJ variables must be assigned elements of D, and STR 
variables must be assigned finite strings from D.  
 
We define 
 
Val((D,<),T,f) 
 
where T is a term of L1 and f is a D-assignment, by 
induction on T in the obvious way, according to the 
descriptions of the symbols given above.  
 
We also define  
 
Sat((D,<),ϕ,f) 
 
where ϕ is a formula of L1 and f is a D-assignment, by 
induction on ϕ, again according to the descriptions of the 
symbols given above. 
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We write Sat((D,<),ϕ) if and only if Sat((D,<),ϕ,f) holds 
for all D-assignments f.  
 
We say that ϕ is valid if and only if for all 
interpretations (D,<) of L1, Sat((D,<),ϕ).  
 
We say that ϕ is satisfiable if and only if for some 
interpretation (D,<) of L1, Sat((D,<),ϕ). 
 
We say that ϕ is realizable if and only if for some 
interpretation (D,<) of L1 and some D-assignment f, 
Sat((D,<),ϕ,f). 
 
An INT equation is an equation between two INT terms. An 
OBJ equation is an equation between two OBJ variables. A 
STR equation is an equation between two STR terms.  
 
2. STATEMENT OF DECIDABILITY RESULT. 
 
As background information, the VCs (verification 
conditions) that have been shown to us by the RSRG group at 
the CSE Department, The Ohio State University (led by 
Professor Bruce Weide), mostly take the following form. 
 
1) Suppose A1,...,Ar holds. Then B1,...,Bs hold. 
 
1') A1 ∧ ... ∧ Ar → B1 ∧ ... ∧ Bs. 
 
Here A1,...,Ar,B1,...,Bs are atomic formulas of L1 without 
VAL. 
 
There are some exceptions, where some of the A's, for 
example, have an ∨. Our algorithm handles such features, 
and also handles VAL. 
 
The crucial point is this. From what we have seen, there is 
a strong but sensible and plausible restriction on the STR 
equations s = t appearing among the hypothesized A's in 1).  
 
OBSERVED RESTRICTION. Let s1 = t1, ..., si = ti be STR 
equations among the A's. Then no STR variable appears more 
than once in the totality of s1,...,si,t1,...,ti.  
 
This restriction only applies to the A's, and not to the 
B's. It also does not apply to any STR terms that may 
appear inside | | or WINC or VAL.  
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We will broaden 1) for our decidability result, 
incorporating a corresponding restriction on the STR 
equations.  
 
For our formulation of these results, we use the notion 
"positive and negative occurrences of letters in formulas 
in propositional calculus".  This definition immediately 
extends to "positive and negative occurrences of atomic 
formulas in quantifier free formulas in languages such as 
L1". 
 
i. p is a positive occurrence in p. 
ii. The positive (negative) occurrences in A ∧ B, A ∨ B are 
the positive (negative) occurrences in A,B. 
iii. The positive occurrences in A → B are the negative 
occurrences in A and the positive occurrences in B. 
iv. The negative occurrences in A → B are the positive 
occurrences in A and the negative occurrences in B.  
v. The positive (negative) occurrences in ¬A are the 
negative (positive) occurrences in A.  
 
Let A be a formula of L1. We say that A has the positive 
(negative) STR equation restriction if and only if the 
following holds.  
 

Let s1 = t1, ..., si = ti be a list of all STR  
equations that have some positive (negative)  

occurrence in A.  
Then every STR variable appears at most once  

in the totality of s1,...,si,t1,...,ti.  
 
THEOREM 2.1. There is a decision procedure for determining 
the validity of all formulas A of L1, obeying the negative 
STR equation restriction. Moreover, the problem is co NP 
complete, and conveniently reducible to the validity of 
quantifier free formulas in linear integer arithmetic. 
 
It is conceptually clearer to prove the following dual 
result, which is obviously equivalent. 
 
THEOREM 2.2. There is a decision procedure for determining 
the satisfiability of all formulas A of L1, under some 
assignment, obeying the positive SEQ equation restriction. 
Moreover, the problem is NP complete, and conveniently 
reducible to the satisfiability of quantifier free formulas 
in linear integer arithmetic. 
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We first show that we need only consider the one special 
interpretation where the (D,<) is simply (Z,<).  
 
LEMMA 2.3. A formula of L1 is valid in the (Z,<) 
interpretation if and only if it is valid in all (D,<) 
interpretations if and only if it is valid in all (D,<) 
interpretations with D finite. 
 
Proof: Suppose the formula A fails in some (D,<) 
interpretation under some (D,<) assignment, f. Since there 
are only finitely many variables in the formula, A fails in 
some (D,<) interpretation under some (D,<) assignment, f, 
where D is finite. We can assume that D is some {1,...,n}, 
n ≥ 1, and extend f in any way to be a (Z,<) assignment. 
This establishes that A fails in the (Z,<) interpretation 
under some (Z,<) assignment. QED 
 
In light of Lemma 2.3, we only use the (Z,<) 
interpretation. We thus speak of truth or falsity of 
sentences, and truth or falsity of formulas under 
assignments (which are understood to be (Z,<) assignments). 
 
In fact, we will use the word "satisfiable" to mean true 
under some (Z,<) assignment in the (Z,<) interpretation. 
 
3. DISJUNCTIVE NORMAL FORM, AND T0(A). 
 
Our goal is to give a decision procedure for the 
satisfiability of formulas A of L1, under the (Z,<) 
interpretation. This suffices to establish the decision 
procedure called for in Theorem 2.2, via Lemma 2.3.  
 
Let A be a formula of L1. We put A into disjunctive normal 
form as usual. But we need to go further and drive many 
negation signs in as follows. Replace 
 
¬x = y by x ≠ y. 
¬x ≤ y by y < x. 
¬x < y by y ≤ x. 
¬x ≠ y by x = y. 
¬s' = t' by s' ≠ t'. 
¬s' ≤ t' by t' < s'. 
¬s' < t' by t' ≤ s'. 
¬s' ≠ t' by s' = t'. 
¬s = t by s ≠ t. 
¬s ≠ t by s = t. 
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Let the resulting formula be B. Of course, negation signs 
will remain in front of WINC and VAL. Here x,y are OBJ 
variables and s,t are STR terms.  
 
T0(A) is a finite labeled tree constructed as follows. The 
label of the root is A. For each disjunct ϕ of B, the root 
has one son labeled with ϕ.  
 
It is obvious that A is satisfiable if and only if some 
leaf of T0(A) is satisfiable. 
 
Furthermore, it is clear that each disjunct of B has the 
positive STR equation restriction - henceforth called the 
variable restriction. 
 
3. TREE CONSTRUCTION AND OVERVIEW. 
 
We start with a formula A with the positive STR equation 
restriction, and the finite tree T0(A). We wish to test A 
for satisfiability.  
 
Each leaf of T0(A) is labeled with a conjunction of the form  
 

D1 ∧ ... ∧ Dk, k ≥ 1 
 
where the D's are of the forms  
 
*) 
x < y 
x ≤ y 
x = y 
x ≠ y 
s = t 
s ≠ t 
s' < t' 
s' ≤ t' 
s' = t' 
s' ≠ t' 
WINC(s) 
¬WINC(s) 
VAL(s,s',x) 
¬VAL(s,s',x) 
 
where x,y are OBJ variables, s',t' are INT terms, s,t are 
STR terms, and no STR variable appears more than once in 
the totality of STR equations s = t.  
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In section 4, we build a tree T[A], which extends the tree 
T0(A), although some vertices in T0(A) may have their labels 
changed during the construction process. 
 
We will show that, once again, the satisfiability of A is 
equivalent to the existence of a satisfiable leaf of T(A).  
 
It will be the case that the labels of the leaves of T(A) 
are of the form  

 
E1 ∧ ... ∧ Ep 

 
where the E's are of the forms  
 
µ) 
x < y 
x ≤ y 
x = y 
x ≠ y 
s' < t' 
s' ≤ t' 
s' = t' 
s' ≠ t' 
WINC(α) 
VAL(α,s',x) 
 
where x,y are OBJ variables, s',t' are INT terms, and α is 
an STR variable. There is no Λ, <x>, and no concatenation.  
 
In section ?, we will show how to reduce the satisfiability 
of any conjunction of the form µ) to an existential sentence 
in Presburger arithmetic. This is a well known NP complete 
problem that has many practical implementations in use and 
in the literature.   
 
Thus we have reduced the original problem of the 
satisfiability of A, to the truth of an existential 
sentence in Presburger arithmetic.  
 
There are a number of implementation issues that arise. 
From the theoretical standpoint, the focus is on  
 
i. The size of the tree T(A). 
ii. The size of the labels of the leaves of the tree T(A). 
 
An implementation of this algorithm has been constructed at 
the RSRG group of the CSE Department at The Ohio State 
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University in collaboration with a group at Clemson 
University. See ... This software has been applied to many 
VC's (verification conditions) arising in connection with 
programs for string processing. The implementation works 
well in practice.  
 
4. RULES AND T(A). 
 
We now present our rules for the construction of the finite 
tree T(A), in four natural groups. Each rule states the 
form(s) to which it can be applied, followed by the action 
to be taken. A particular instance of (one of the) form(s) 
is located in a particular leaf of the current tree. The 
remove or replace action takes place at that location.  
 
The rules calling for splits are 1.11, 1.12, 3.3, 3.4, 4.3, 
4.5, 4.6. Splits are implemented as follows. First sons are 
created for each of the (at most 3) splits, with the label 
of the located leaf copied. Then the chosen instance is 
replaced accordingly in the copied leaves.  
 
As the rules are implemented, in any manner whatsoever, the 
tree is transformed, starting with T0(A). We prove that no 
matter how the rules are implemented, the process 
terminates - i.e., no rules can be applied. This 
nondeterministic process results in a finite tree T(A) - 
which may not be unique.  
 
1.1. Λ as proper subterm of a string term. Remove Λ. 
 
1.2. s = Λ or Λ = s, where s has an OBJ variable. Replace 
conjunction by 1 = 0. 
 
1.3. s = Λ or Λ = s, where s is a concatenation of one or 
more STR variables. Remove, and replace all occurrences of 
the variables in s by Λ.  
 
1.4. Λ = Λ. Remove.  
 
1.5. |Λ|. Replace by 0. 
 
1.6. α = t or t = α. Remove, and replace every occurrence 
of α by t.  
 
1.7. α ≠ Λ or Λ ≠ α. Replace by |α| ≠ 0.  
 
1.8. <x> ≠ Λ or Λ ≠ <x>. Remove.  
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1.9. ¬WINC(s). Replace by VAL(s,n,x), VAL(s,m,y), n < m, y 
< x, where n,m,x,y are new variables.  
 
1.10. |t|, where t is not an STR variable. First replace by 
|t1'| + ... + |tn'|, where t1',...,tn' are the components of 
t, from left to right. Then replace each summand |<x>| by 
1, |Λ| by 0.  
 
1.11. ¬VAL(s,t',x). Split with {|s| < t'}, {t' < 1}, 
{VAL(s,t',y), x ≠ y}, where y is a new variable.    
 
1.12. s ≠ t, where this inequation has at least one 
variable. Split with {|s| ≠ |t|}, {VAL(s,n,x), VAL(t,n,y), 
x ≠ y}, where n,x,y are new variables. 
 
2.1. WINC(<x>), WINC(Λ). Remove.  
 
2.2. WINC(u1u2...up), p ≥ 2, where the u's are either STR 
variables or some <x>. For each 1 ≤ i < p, let Si = 
{WINC(ui), VAL(ui,|ui|,vi), VAL(ui+1,1,wi+1), vi ≤ wi+1}. Here 
v1,...,vp-1,w2,...,wp are new OBJ variables. Let Si' be the 
result of removing WINC(ui) in case ui is some <x>. Replace 
by S1' ∪ ... ∪ Sp-1'.   
 
3.1. VAL(Λ,s',x). Replace the conjunction by 1 = 0. 
 
3.2. VAL(<y>,s',x). Replace by s' = 1, y = x. 
 
3.3. VAL(<y>t,s',x). Split with {s' = 1, x = y}, {s' > 1, 
VAL(t,s'-1,x)}.  
 
3.4. VAL(αt,s',x). Split with {s' = 1, VAL(α,s',x)}, {s' > 
1, VAL(t,s'-|α|,x)}.  
 
4.1. <x> = <y>. Replace by x = y. 
 
4.2. <x> = <y>t or <y>t = <x>. Replace by x = y, t = Λ.  
 
4.3. <x> = αt or αt = <x>. Split with {<x> = t, α = Λ}, 
{<x> = α, t = Λ}. Follow the first split by replacing all 
occurrences of α by Λ. Follow the second split by replacing 
all occurrences of α by <x>. 
 
4.4. <x>s = <y>t. Replace by x = y, s = t. 
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4.5. <x>s = αt or αt = <x>s. Split with {α = Λ, <x>s = t}, 
{s = βt, α = <x>β}, where β is a new STR variable. Follow 
the first split by replacing all occurrences of α by Λ. 
Follow the second split by replacing all occurrences of α 
by <x>β.    
 
4.6. αs = βt. Split with {|α| ≤ |β|, β = αγ, s = γt}, {|β| < 
|α|, α = βγ, γs = t}, where γ is a new STR variable. Follow 
the first split by replacing all occurrences of β by αγ. 
Follow the second split by replacing all occurrences of α 
by βγ.  
 
LEMMA 4.1. During the successive application of these 
rules, starting with T0(A), the variable restriction applies 
to every leaf. I.e., no STR variable appears more than once 
in the totality of STR equations on a leaf.  
 
Proof: It suffices to show that the conjunction(s) created 
by a single application of these rules to a conjunction 
with the variable restriction, still has (have) the 
variable restriction.  
 
To verify this, we need only look at those rules which may 
create new STR equations. These are 1.7, 4.2 - 4.6.  
 
1.7. After removal, α does not occur in any STR equation, 
and so no new STR equations are created. 
4.2. Note that t is part of the equation being replaced. 
4.3. In the first (second) son, the new STR equations 
either have an STR variable removed, or is <x> = t or t = 
Λ, where t is part of the STR equation being replaced.  
4.4. The new equation is s = t, which is a part of the STR 
equation being replaced.  
4.5. In the first son, the new STR equations either have an 
STR variable removed, or is part of the STR equation being 
replaced. In the second son, the new variable β occurs just 
once, and s,t are part of the STR equation being replaced. 
Also α isn't replaced in any STR equations in the second 
son.  
4.6. In the first son, β is not replaced in any STR 
equations, and s = γt is part of the STR equation being 
replaced. The same is true in the second son.    
 
QED 
 
LEMMA 4.2. Suppose the successive application of these 
rules, starting with the finite tree T0(A), results in a 
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finite tree T(A), where no further applications of the 
rules are possible. Let E1 ∧ ... ∧ Ek be the label of a leaf 
of T(A). Then the E's are of the forms  
 
µ) 
x < y 
x ≤ y 
x = y 
x ≠ y 
s' < t' 
s' ≤ t' 
s' = t' 
s' ≠ t' 
WINC(α) 
VAL(α,s',x) 
 
where x,y are OBJ variables, α is a STR variable, and s',t' 
are INT terms. Furthermore, the only STR terms that appear 
are STR variables.  
 
Proof: By 1.9, 1.11, and 1.12, there are no ¬WINC, ¬VAL, s 
≠ t. Now let t be a maximal STR term that appears. We have 
the following cases related to the occurrence of t. 
 
case 1. |t|. By 1.10, t is an STR variable.  
 
case 2. VAL(t,t',x). By 3.1 - 3.4, t is an STR variable. 
 
case 3. WINC(t). By 2.1, 2.2, t is an STR variable. 
 
case 4. s = t or t = s. If Λ appears in s or t, then by 
1.1, s or t is Λ. By 1.2 - 1.4, this is impossible. By 4.1 
- 4.3, s,t do not begin with any <x>. Hence s,t begin with 
an STR variable. By 1.7, s,t are not STR variables. Now 
apply 4.6 to arrive at a contradiction.   
 
QED 
 
LEMMA 4.3. Let T be a tree that arises during the 
application of these rules, starting with T0(A). Then A is 
satisfiable if and only if some leaf of T is satisfiable.  
 
Proof: It suffices to show that the rules have the 
following properties. If a rule does not involve splitting, 
then the satisfiability of the relevant conjunction is 
equivalent to the satisfiability of the resulting 
conjunction. If a rule does involve splitting, then the 
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satisfiability of the relevant conjunction is equivalent to 
the satisfiability of at least one of the conjunctions that 
arise. This is verified by inspection. QED 
 
Let a conjunction of atomic formulas be given, satisfying 
condition *) of section 3. We associate the following 5 
nonnegative integers.  
 
Q1 = total number of occurrences of variables in STR 
equations, plus the total number of occurrences of 
¬WINC,¬VAL, and ≠ between STR terms. 
 
For Q2, first list the occurrences of |t|, WINC(t), 
VAL(t,t',x), where t is not an STR variable.  
 
Q2 = the total number of occurrences of variables in the STR 
terms t above, plus the total number of occurrences of Λ 
anywhere. 
 
LEMMA 4.4. On any application of any of the non splitting 
rules to a conjunction satisfying condition *), the pair 
(Q1,Q2) is lowered lexicographically, or becomes all 0's. On 
any application of any of the splitting rules, the pair 
(Q1,Q2) is lower at each of the two sons.  
 
Proof: We go through each rule. 
1.1. Q2 lowered; rest unchanged. 
1.2. Q's become all 0's.  
1.3. Q1 lowered. 
1.4. Q2 lowered; Q1 unchanged. 
1.5. Q2 lowered; Q1 unchanged. 
1.6. Q1 lowered. 
1.7. Q1 lowered. 
1.8. Q1 lowered. 
1.9. Q1 lowered; Q2 unchanged. 
1.10. Q2 lowered; Q1 unchanged. 
1.11. In each son, Q1 lowered.  
1.12. In each son, Q1 lowered. 
2.1. Q2 lowered; Q1 unchanged.  
2.2. Q2 lowered; Q1 unchanged. 
3.1. Q's become all 0's. 
3.2. Q2 lowered; Q1 unchanged. 
3.3. In each son, Q2 lowered; Q1 unchanged. 
3.4. In each son, Q1 lowered; Q2 unchanged. 
4.1. Q1 lowered; Q2 unchanged. 
4.2. Q1 lowered. 
4.3. In each son, Q1 lowered. 
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4.4. Q1 lowered; Q2 unchanged.  
4.5. In each son, Q1 lowered.  
4.6. In each son, Q1 lowered.  
 
QED 
 
LEMMA 4.5. The process of applying the rules in any way, 
starting with T0(A), must terminate in a finite tree T(A). 
We make no claims of uniqueness. 
 
Proof: Suppose the process continues forever.  
 
case 1. Only finitely many vertices are generated. Then 
after some stage, the tree is fixed, and the labels only 
are changing. Since there are only finitely many leaves, 
some leaf has its label updated infinitely often. But each 
time its label is updated, its (Q1,Q2) drops 
lexicographically. This is impossible.  
 
case 2. Infinitely many vertices are generated. Since the 
splits are finite (at most 3), an infinite path of vertices 
will be generated, by the Konig tree lemma. But by looking 
at their (Q1,Q2), we get an infinite descending sequence 
lexicographically, which is impossible.  
 
QED 
 
We need some further work to get a decent estimate on the 
number of leaves of T(A) and the size of the labels of the 
leaves of T(A). In particular, we need to have an estimate 
as to how much Q2 may go up when Q1 goes down, as we 
implement the rules. We do not expect any serious 
difficulties in developing decent exponential, or double 
exponential, estimates, but postpone this investigation.  
 
5. SATIFIABILITY OF LEAVES OF T(A). 
 
We have reduced the satisfiability of A to the existence of 
a satisfiable leaf of T(A).  
 
Let E1 ∧ ... ∧ Ek be a conjunction, where the E's are of the 
forms  
 
µ) 
x < y 
x ≤ y 
x = y 
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x ≠ y 
s' < t' 
s' ≤ t' 
s' = t' 
s' ≠ t' 
WINC(α) 
VAL(α,s',x) 
 
where x,y are OBJ variables, α is a STR variable, and s',t' 
are INT terms. Furthermore, the only STR terms that appear 
are STR variables.  
 
Let the variables appearing in the conjunction be  
 
i. INT variables n1,...,np. 
ii. OBJ variables x1,...,xq. 
iii. STR variables α1,...,αr.  
 
We wish to convert  
 
1) (∃n1,...,np,x1,...,xq ∈ Z)(∃α1,...,αr ∈ Z*)(E1 ∧ ... ∧ Ek)  
 
to an equivalent existential sentence in Presburger 
arithmetic.  
 
It is convenient to rewrite 1) in the form  
 
2) (∃n1,...,np,x1,...,xq ∈ Z)(∃β1,...,βi,γ1,...,γj ∈ 
Z*)(WINC(β1) ∧ ... ∧ WINC(βr) ∧ VAL(δ1,s1,v1) ∧ ... ∧ 
VAL(δa,sa,va) ∧ VAL(ν1,t1,w1) ∧ ... ∧ VAL(νb,tb,wb) ∧ 
ϕ(n1,...,np,x1,...,xq)) 
 
where the δ's are among the β's, the ν's are among the γ's, 
the s's are INT terms in n1,...,np, and the v's and w's are 
among the x's. Also ϕ is the conjunction of the E's that do 
not mention STR variables. Note that the conjuncts of ϕ are 
either inequalities between x's or atomic formulas 
involving only the n's.  
 
Our task is to eliminate the existential quantifiers over 
the β's and γ's. We first divide the displayed VAL clauses 
into equivalence classes according to "having the same STR 
variable". And these equivalence classes are divided into 
two groups - those where the STR variable is among the β's, 
and those where the STR variable is among the γ's.  
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Each one of these equivalence classes gives rise to a set 
of formulas not mentioning the STR variable. First consider 
an equivalence class 
 

VAL(γ,t1,w1),...,VAL(γ,tc,wc). 
 
This equivalence class gives rise to the implications 
 

td = te → wd = we 
 
where 1 ≤ d ≤ e ≤ c.  
 
Now consider an equivalence class 
 

VAL(β,t1,w1),...,VAL(β,tc,wc). 
 
This equivalence class gives rise to the implications 
 

td < te ↔ wd < we 
 
where 1 ≤ d,e ≤ c. Each equivalence class among the VAL 
clauses are replaced in 2) by these associated formulas. 
Then the existential STR quantifiers are dropped, leaving 
an existential Presburger sentence equivalent to 1) above.   
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