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Abstract

In medical imaging, the generation of surface representations of anatomical objects, obtained by

labeling images from various modalities, is a critical component for visualization. The interfaces be-

tween labeled regions can meet at arbitrary angles and with complex topologies, causing most meshing

algorithms to fail. We apply a recent Delaunay refinement algorithm to generate high quality triangular

meshes which approximate the interface surfaces. This algorithm has proven guarantees for meshing

piecewise-smooth shapes and its implementation overhead is low. We need only provide an oracle for

generating intersection points between the surfaces and line segments and a routine for generating the

curve network where the interface surfaces meet. Consequently, the approach is applicable to labeled

datasets generated from binary segmentations as well as from probabilistic segmentation algorithms. We

show the effectiveness of this technique on data from a variety of medical fields and discuss the its ability

to control the quality and size of the output meshes. With little additional effort, the same algorithm can

be used to generate tetrahedral meshes of the segmentation space.
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1 Introduction

A commonly used source of information for the medical fields is obtained in the form of 3D images scanned

from real-life entities. For example, microscopy, PET-CT, and MRI all produce volumetric images scanned

from anatomical objects; primarily for the purposes of aiding in the diagnosis and treatment by a skilled

professional. These devices capture data in the form of 3D grids where at each point in the grid a scalar

value is stored. To further understand the object, a classification algorithm is then applied to label each grid

point using the scalar data values and hints of its known structure. These labels subdivide the volume into

regions representing structural elements of the scanned object such as different materials (e.g. bone, muscle,

organs, etc.) or different components (e.g. spine, jaw bones, uncus, etc.).

Figure 1: MNI structural atlas of the brain, with seven anatomical regions shown. We generate consistent

meshes for the surfaces where these regions interface. The exploded view on the right shows the interior

surfaces.

Given a labeled volume dataset, there is a need for the reconstruction and visualization of the surfaces

where different labeled regions meet. We call such surfaces interface surfaces, as they lie precisely where

two or more labeled regions intersect. More formally, interface surfaces are a subclass of shapes known as

piecewise-smooth complexes or PSCs (see Section 2.2). The class of shapes that are PSCs is broad: any

collection of smooth surface patches meeting at curves non-smoothly or in non-manifold configurations

qualifies.

Interface surfaces are often a key component in the structure of the data. For example, in images obtained

for medical applications it is essential to extract and visualize the surfaces of the different anatomical features

for diagnosis, surgery simulation and planning, and therapy evaluation [17].

Standard labeling approaches use “hard” segmentations that produce a binary mask for each label. How-

ever, there is usually a substantial overlap between these segments, resulting in multiple labels at voxels in

the overlap region. Alternatively, in “soft” segmentation methods a real-valued probability for anatomical

feature is associated at each voxel of the image, resulting in a fuzzy boundary between the segments [38].

For a more in-depth review of medical image segmentation, the reader is referred to [20].

Similarly, multi-label data is generated in domains such as finite element simulations and multi-fluid

hydrodynamic calculations [33]. Storing per-voxel material labels eases the simulation of the fluid flows;

however, the reconstruction of material interface surfaces is essential for computing the advection of the

fluids [30]. In [15], the authors present an example of extracting the crystal grain boundaries of poly-
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crystalline materials, where they use a Potts model to identify the exact location of the boundary. Another

application is representation of the configuration space in motion planning problems by a regular grid, in

which the obstacles are partitioned into convex neighborhoods. Here, the boundary surface represents the

region that can be efficiently searched for reachability [26].

In general, the identification of the interface surface for multi-label data is not an easy task, confounded

by overlaps of the components, fuzzy boundaries, inherent non-manifold configurations, and arbitrarily

sharp angles at the intersections of surface patches. Thus there is need for robustly generating a mesh for

interface surfaces which preserves their non-manifold topology and captures their geometric features.

1.1 Contributions

Our primary contribution is the application of a recent Delaunay meshing algorithm for piecewise-smooth

complexes [14] to automatically generate meshes which approximate the interface surfaces defined by multi-

label datasets. This algorithm is an ideal choice for meshing this domain. Its theoretical pedigree [8]

guarantees the ability to generate meshes that are topologically equivalent to the non-manifold topology that

occurs frequently in interface surfaces. Its novel protection scheme allows it to generate meshes for interface

surfaces that meet at any angle.

A second major stength of the algorithm is its simplicity. It only requires two numeric primitives that

can be implemented robustly. The first computes intersection points between arbitary line segments and

the interface surface. Second, the algorithm needs a routine for computing the curve network where three

or more labeled regions meet. As a result, high quality meshes can be generated with less computational

overhead.

Moreover, the algorithm can be applied to datasets from a broad range of data sources. Our experiments

demonstrate the algorithm’s effectiveness at producing meshes of interface surfaces for datasets from a

variety domains and modalities. These meshes may be used for surface visualization and computation, and

the same algorithm can produce volume meshes which are suitable inputs for finite element simulations.

The quality of output meshes can be controlled by various user parameters, allowing the generation of both

low density meshes suitable for rapid prototyping needs or high density meshes when accuracy is a crucial

factor.

2 Background

2.1 Interface Surface Generation

The generation of interface surfaces for multi-label data has been studied in many communities, including

visualization, medical imaging, and computational fluid dynamics.

For dealing with multi-labeled data on regular rectilinear grids, the concept of marching cubes [23, 41]

has been extended to automatically create and apply lookup tables for interface surfaces between two or more

materials [3, 4, 40, 42]. These methods can suffer from problems of ambiguities in the interface surface,

topological defects, inconsistent meshes (where the boundaries of the triangle meshes do not consistently

fit together), and an algebraic increase in the number of cases with respect to the number of materials.

Solutions to these problems have been variously proposed, including repairing ambiguous voxels before

extracting the meshes [5], domain sub-division [32], assigning probabilities at the vertices and interpolating

them to extract topologically correct surface elements [18]. Algorithms based on marching tetrahedra [27]

are also commonly used [15, 26]. Dual contouring methods that preserve sharp edges [19] have also been

proposed for tetrahedral and hexahedral meshes [44].

In general though, grid based methods do not guarantee topological correctness, can generate poor

quality triangles, and the resolution of the output mesh depends upon the grid resolution itself. The resulting
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meshes often require additional post-processing to make them suitable for later applications.

Alternate approaches for extracting interface surfaces use methods from computational solid geome-

try [5, 22]. Level-set methods [21, 35] or particle-based methods [10, 25] are also commonly used for

determining interface surfaces and meshing them. While these methods produce high quality and topologi-

cally accurate meshes, they can also be computationally expensive.

In computational fluid dynamics, the extraction of the interface between multiple materials from volu-

metric simulations has been extensively studied. The simple line interface calculation (SLIC) algorithm [28]

partitions cells with axis-aligned planes, such that the total material volume in each cell is correct but results

in discontinuous interfaces and is only first-order accurate. Alternative methods including the piecewise

linear interface calculation (PLIC) algorithm [43] and its extensions [30, 34] provide second order accuracy

for these data. Other approaches involve iso-surfacing over the dual grid [7], grid sub-division [2], and

extensions to generalize polyhedral meshes [1]. A complete review of this literature of out the scope of the

current work. The main difference of these methods is that they make assumptions of continuity, low cur-

vature, and smoothness that are acceptable for fluid-flow data but not necessarily for the kinds of problems

addressed here.

2.2 Meshing PSCs with Delaunay Refinement

To handle the complex topology common to interface surfaces, we model the interface surface as a piecewise-

smooth complex (PSC). A PSC is a collection of k-dimensional faces called vertices (0-faces), curves (1-

faces), and patches (2-faces) (see Figure 2). Each k-face in the PSC is a subset of the volume where 4 − k

labeled regions intersect.

For a PSC D, we use Di to denote the set of i-faces in a PSC and D≤ i to represent the union D0 ∪
D1 ∪ . . . ∪ Di. If D is a PSC, it satisfies the usual conditions for being a complex: if any two (i + 1)-faces

σ, σ′ ∈ Di+1 intersect, their intersection is a union of (lower dimensional) faces in D≤ i on the boundary of

both σ and σ′.

Figure 2: A clover-shaped 1-dimensional PSC. There are five elements in D1 (middle), highlighted in red,

orange, yellow, green, and blue and two elements in D0 (right), highlighted in cyan and magenta. Note there

is no limitation on the number of elements which share adjacent boundaries.

The well known Delaunay triangulation has become a de facto standard for representing various do-

mains. One regularly used strategy for constructing a Delaunay triangulation uses an iterative refinement

approach. Delaunay refinement relies on the idea of Chew’s furthest point strategy [9] to incrementally build

a Delaunay mesh for an input domain. Points from the domain in question are repeatedly inserted until the

mesh satisfies a set of conditions. This set of conditions is chosen to trigger insertions that ensure desired

properties in the output mesh. The burden is then to show that the types of points inserted eventually satisfy

all conditions—implying the algorithm terminates. A packing argument is often applied by showing that
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these conditions are be satisfied when the point set reaches some density. A scheme to choose points that

are “furthest” (locally or globally) from the current point set completes the termination proof.

The applicability of Delaunay-based approaches for interface surfaces is slowly gaining momentum.

An early approach extends the labeling to the tetrahedra within Delaunay triangulation to construct the la-

beled regions [31]. Particle sampling can be combined with a Delaunay reconstruction to generate interface

surfaces as well [25].

However, a recent algorithm proposed a unique approach for meshing PSCs [8] based on Delaunay

refinement. One novelty of this technique is that all non-smooth and non-manifold features (the faces in

D≤ 1) are protected throughout the meshing algorithm by sampling them with balls. These protecting balls

are turned into weighted points and Delaunay refinement is performed using a weighted Delaunay triangu-

lation [16]. This algorithm was the first certified algorithm that could in theory successfully handle PSC

inputs; however, since it employs some expensive numeric computations, a more practical version of the al-

gorithm was necessary [14]. This version computes protecting balls in an “on-the-fly” manner and reduces

the refinement triggers to a single “topological disk” test that is combinatorial in nature.

3 Algorithm

Our experiments involve extending the algorithm in [14] to mesh the interface surfaces of multi-labeled

datasets using Delaunay refinement. We first give a brief review of the algorithm and discuss the components

implemented specifically for this type of data.

3.1 Input and Output

The input to our algorithm is a set of N smooth indicator functions [29], fi : R
3 → R, 1 ≤ i ≤ N . Each fi

corresponds to the presence of label i within our input dataset. For practical purposes, our datasets come in

the form of a 3D grid sampled over a space V ⊂ R
3 with a list of N scalar values at each grid point which

corresponding the values of each of the indicator functions at that point. We use trilinear interpolation to

compute the values of the indicator functions at any point within the grid.

For any x ∈ V , the indicator functions dictate the labeling at x. Since the values are scalar, if fi(x) ≥
fj(x),∀j 6= i, then x is given the label i. The set Ri = {x ∈ V | fi(x) ≥ fj(x) ∀j 6= i} is the region

in space given the label i. Note that this definition implies that a point x may have multiple labels, or

alternatively, the sets Ri are not disjoint. The set Ri ∩ Rj where i 6= j is the interface (surface) between

labels i and j, which is either empty or a set of smooth two-dimensional patches for every i, j pair. Similarly,

the set Ri ∩ Rj ∩ Rk, where i 6= j 6= k, is the interface (curve) between labels i, j, and k, which is either

empty or a set of smooth one-dimensional curves for every i, j, k triple.

We can define a piecewise-smooth complex D using the sets Ri. The set of 2-faces, D2, is defined by

the union of all pairwise interfaces between the labeled regions, that is D2 =
⋃

i6=j Ri ∩ Rj . Likewise, the

set of 1-faces is defined by every triple of labeled regions, D1 =
⋃

i6=j 6=k Ri ∩ Rj ∩ Rk. Similarly, D0 is

the set of intersections of four labeled regions. Together, these three sets completely define the PSC D. The

Delaunay refinement algorithm we use outputs a mesh that approximates this PSC.

3.1.1 Obtaining Indicator Functions

To generate indicator functions we took several segmented datasets and converted them to scalar fields. The

output of typical hard segmentation algorithms is a set of binary masks over the space V . Each binary

mask corresponds to one fi, but using the binary values directly is not feasible as an input form. We apply

imaging filters (see Section 4.1) that convert the representation of this data to a scalar field over V . Soft

segmentation algorithms output a probability that a grid point is of each label i, and hence those can be used
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more readily to represent indicator functions. Our strategy for generating interface surfaces leaves the input

form as flexible as possible to allow a domain expert control over labeling.

3.2 Structures

In this section we review some of the basic geometric structures which our algorithm uses. Refer to [13, 16]

for additional details.

Let S be a point set sampled from the underlying space of D. We associate each point p ∈ S with a real-

valued weight r ≥ 0; alternatively, the weighted point p can be represented as a ball centered at p of radius r.

The weight r skews the distance metric locally with respect to p. The squared weighted distance of any point

x ∈ R
3 from p is given by d(x, p) = ‖x− p‖2 − r2. Under this new distance metric, we define the Voronoi

diagram, Vor S, and Delaunay triangulation, DelS for weighted point sets. These structures follow a similar

rule as their unweighted counterparts with distance between points computed using weighted distance [16].

To generate a Delaunay mesh for D we take special subcomplexes of Vor S and DelS. In particular,

we are interested in elements of Vor S and Del S that provide an approximation of D. For any space X,

the restricted Voronoi diagram is the complex formed by the collection of intersections between Voronoi

elements and X. Its Delaunay counterpart, the restricted Delaunay triangulation of S with respect to X, is

denoted DelS|X. A simplex τ ∈ Del S is in DelS|X if its dual Voronoi face Vτ has a nonempty intersection

with X. For any σ ∈ D, DelS|σ denotes the Delaunay subcomplex restricted to σ. Figure 3 illustrates an

example restricted Delaunay triangulation in two-dimensions.

Figure 3: Restricted Delaunay triangulations. Left: a sample of our clover PSC with its corresponding

Voronoi diagram (in blue). Right: Within the dual Delaunay triangulation (dashed and red segments), only a

subset of its edges are restricted to the clover (red segments). When a sample is chosen carefully, restricted

Delaunay triangulations can approximate this shape.

During Delaunay refinement, restricted Delaunay triangulations act as a mesh of a working approxi-

mation of the input. Since in three dimensions DelS contains simplices spanning the convex hull of S,

DelS|D acts as a filter to compute the subset that approximates the input D. As a subset of the Delaunay

triangulation, elements in the restricted Delaunay triangulation inherit the Delaunay property as well. This

fact is important for meshes with shape quality concerns, a byproduct of satisfying Delaunay constraints is

that elements have a tendency toward improved shape over elements used in arbitrary triangulations over the

same point set.
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3.3 Refinement for Interface Surfaces

The refinement algorithm in [14] proceeds in two distinct phases. The first phase protects input features, the

set D≤ 1, by covering them with a set of balls (see left two images in Figure 4). These balls act as a protected

zone—it is guaranteed that no point will be inserted within the balls during refinement. Computing these

balls could require a number of expensive computations involving feature size, so the algorithm from [14]

begins by using a set which may have radii that are too large. The progression of the algorithm itself controls

the need to shrink balls that are too large.

Figure 4: Refinement algorithm on the spheres dataset. Left: a set of curves are extracted where three or

more labeled regions intersect. Middle left: these curves are protected with an initial set of balls that may

later get refined by the algorithm. Middle right: these balls are converted to weighted points and refinement

fills in samples for the interface surfaces. Right: The output mesh captures all interfaces.

The balls are then turned into weighted points and inserted into a Delaunay triangulation. The restricted

Delaunay triangulation is computed, and each vertex in it is checked if it satisfies a disk condition. This

condition requires that vertices on elements of D2 have a neighborhood which is a topological disk, while

vertices lying on elements of D≤ 1 are allowed to satisfy the condition with a set of half disks. If any vertex

fails the disk condition, a new vertex is inserted which lies on the intersection between D and a Voronoi

edge dual to some a restricted triangle. Finally, once all vertices satisfy the disk condition, the restricted

Delaunay triangulation is refined further to satisfy size and quality requirements.

The computation of intersection points between Voronoi edges and D requires a primitive that computes

a point of intersection between an arbitrary line segment and the interface surface defined by the indicator

functions. We use a binary-decision walking oracle, similar to the one discussed in [6]. This oracle uses

binary search to find all points on the segment where the labeling transitions. It proceeds as follows. First,

the labels at each endpoint of the line segment, la and lb, are computed as well as the label at the midpoint,

lm. If la = lb, but lm is different, then each half of the segment is recursively checked. If la 6= lb each

the half between a and b is checked provided that the label at that half’s endpoint differs from lm. Once

the distance between a and b becomes smaller than a user specified tolerance, an intersection point (the

midpoint) is returned instead of recursively checking the halves. This algorithm is simple to implement and

our experiments indicate more robust than solving the trilinear system defined by the indicator functions.

3.4 Extracting Curves

The final ingredient required to implement the algorithm is a method to extract the curve network D≤ 1 from

the input dataset. An example network for the spheres dataset is shown in left image of Figure 4. We use

an algorithm that walks through each cube cell in the grid that contains three or more labels. Our goal is to

generate a set of segments whose union is the set D≤ 1.

We first use bilinear interpolation on each face of the cell to compute the intersection points with a curve

(defined by three indicator functions) and the face. If a cell has only two such points, we connect them with

a segment, forming a piece of some element of D1. Otherwise, if a cell has more than two (indicating that
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more than one curve passes through the cell), we subdivide the cell at its midpoint into eight pieces. Each

of the 8 subcells are checked again, and we allow them to be subdivided up to three levels deep. If there

are still more than two points at the finest level of subdivision, we connect all intersection points to their

centroid, forming an element of D0.

This process again saves us from solving the roots of a cubic equation, instead favoring more robust

subdivision. One caveat is that occasionally multiple elements of D0 may be computed in close proximity

to each other. Our curve extraction algorithm performs a final merge step which combines elements of D0

that are nearby within a user defined tolerance. After this merging process, we group segments to form each

individual curve in D1 by growing curves from each element of D0.

4 Implementation Details

4.1 Data Preprocessing

Each of our datasets requires some preprocessing to convert them to indicator functions suitable for meshing.

Some datasets require first separating the data into individual binary masks for each label. At this point,

binary morphology operators such as dilation or median filtering [36] can be applied to clean the data. All

datasets from hard segmentations then are converted from binary maskes to a signed scalar field. For this

task we apply a signed Danielsson distance filter [11] to each mask.

After producing the raw indicator functions, additional preprocessing steps were applied to control the

size of features in the data. We use a mix of Gaussian smoothing [12] as well as curvature anisotropic

diffusion (CAD) smoothing [39] at this step. CAD is a variation of classical non-linear diffusion, where the

speed of the diffusion is proportional to the local curvature of the level-sets of the image. Areas of high

curvature diffuse faster than areas of low curvature, thereby smoothing out noise while preserving large

scale image features and edges. While this method does not exhibit the edge enhancing properties of classic

anisotropic diffusion, it is more stable and preserves finer structures in the images.

4.2 Input Parameters

Our implementation accepts a parameter to scale the radii of initial protecting balls as well as parameters to

control triangle shape. Our parameters include a maximum bound for triangle circumradii (thus uniformly

sizing all triangles) and shape quality is controlled with a bound for the circumradius to shortest edge ratio.

Mesh conformity to the interface surface is controlled by allowing the user to specify a maximum distance

from the circumcenter of the triangle to target shape. Triangles are refined to satisfy shape criteria provided

their insertions do not get too close to a protecting ball.

For volume meshing, a similar set of parameters control tetrahedra shape. We allow the user to specify a

uniform size control via a maximum bound on tetrahedra circumradii. Tetrahedra aspect ratios are controlled

similar to triangles by specifying tetrahedra aspect ratio in terms of a circumradius to shortest edge threshold.

This quality criterion generates tetrahedra suitable for finite element methods, but can still allow some

sliver tetrahedra in the output mesh. These slivers can be eliminated as a postprocessing step or using the

circumradius to inscribing radius ratio for refinement.

5 Experimental Results

Our experimental datasets cover a broad range of inputs from various sources. We used synthetic data and

segmented datasets from both CT and MRI. Our datasets include segmentations done manually by experts

as well as by using various both hard and soft classification algorithms. Table 1 gives an overview of the

datasets, their size, number of labels, and modalities.
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Table 1: Dataset Summary. We list the dimensions, source, and number of labels for each data used.

Dataset # of Labels Source Dimensions

Spheres 8 synthetic 128 × 128 × 128
Orange 4 MRI 256 × 256 × 64
Temporal Bone 5 CT 256 × 256 × 256
Tomato 4 MRI 256 × 256 × 64
Brain Atlas 7 MRI 182 × 218 × 182
Torso 4 MRI 260 × 121 × 169
Bulldog Skull 4 CT 196 × 176 × 268
Soft Brain 2 MRI 181 × 217 × 181

*Note, there is an additional “background” label present in all datasets.

Our experimental PC setup consisted of an Intel Pentium4 CPU at 2.8Ghz with 2GB of memory. We

used the same machine for both preprocessing and mesh generation. Preprocessing required no more than a

few minutes for each label, once the appropriate filters were selected. Mesh generation times are reported

in Table 2.

Table 2: Meshing summary. We list the number of output vertices and the number of curves protected.

Output times (in minute:seconds) are broken down by protection time as well and time to generate the mesh.

File I/O times are excluded.

# of # of Protection Meshing

Dataset Curves Vertices Time Time

Spheres 36 4492 0:16 0:50

Orange 24 24543 0:14 8:46

Temporal Bone 16 24898 0:11 8:32

Tomato 35 25701 1:01 9:07

Brain Atlas 64 35890 1:04 17:50

Torso 57 39826 1:37 19:27

Bulldog Skull 17 51474 0:10 32:48

Soft Brain 100 211664 1:57 244:01

These times are quite competitive for meshing interface surfaces in a high quality manner. In particu-

lar, the major bottleneck of the algorithm is computing the weighted Delaunay triangulation with dynamic

insertions. If we specify a dense output mesh (as we did for the soft segmentation of the brain), we see the

computation time grow nonlinearly. However, since our meshing density does not rely on the grid resolution,

we can save ourselves computation by specifying more relaxed refinement criteria. At lower resolutions we

can still capture the shapes quite well. Thus, one strength of our algorithm is we can compute meshes which

capture the topology using significantly fewer vertices.

A visualization of the mesh we generated for the MNI brain atlas is shown in figure 1. This brain image

was obtained from the MNI-space atlases provided along with FSL [37]. A single subject’s structural image

was hand segmented, and the labels were then propagated to more than 50 subjects’ structural images using

nonlinear registration. Each resulting labeled brain was then transformed into MNI152 space using affine

registration, before averaging segmentations across subjects to produce the final probability images.
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Figure 5: Soft segmentation of the brain. Grey matter is draw transparently and white matter is drawn in

green. Red triangles show where the white matter protrudes through the grey.

Figure 5 shows a mesh from a dataset generated by probabilistic segmentation of the brain’s grey and

white matter. This dataset was obtained by first normalizing a T1-weighted MR image to the MNI152

reference space, followed by a probabilistic segmentation [38] using a combination of in-house and standard

tools such as FSL [37]. The prior probabilities for the tissue distributions were obtained from the MNI-

ICBM atlas (NIH P-20 project) [24], specified in the same reference space. The resulting probability images

contain values in the range of zero to one, representing the posterior probability of a voxel being either grey

matter or white matter. It is interesting to note that our mesh reveals that in this segmentation the white

matter pierces through the outer grey matter in several locations.

Figure 6: CT datasets. We grouped labels of the english bulldog (top) and temporal bone (bottom) datasets

to form 4 and 5 labels, respectively.

Two datasets generated from CT sources are shown in figure 6. Both datasets were hand-segmented by

experts into more than 50 structural elements. We group them in a smaller number of labels to make them

more manageable for our software to mesh. As a result, both of these datasets had far fewer curve elements
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Table 3: Quality and shape statistics. We list the average and maximum aspect ratio (radius/shortest edge

length) for each of the datasets. We also computed the minimum dihedral angle (in degrees) between all

pairs of faces circling each non-manifold edge. This measure shows how sharply the interface surfaces are

meeting at curve elements.

# of mean aspect max aspect min

Dataset triangles ratio ratio angle

Spheres 9527 1.00 1.05 42.35

Orange 49017 1.00 1.03 20.71

Temporal Bone 49911 1.00 1.03 3.74

Tomato 52729 1.00 1.03 18.39

Brain Atlas 72962 1.00 1.03 13.30

Torso 82104 1.00 1.05 14.69

Bulldog Skull 103036 1.00 1.02 12.10

Soft Brain 424690 1.00 1.02 8.72

than the MRI datasets.

Table 3 shows a summary of quality statistics for the triangles produced by the meshing algorithm.

We control the aspect ratios of triangles by refining to enforce the condition that all triangles have aspect

ratio below a minimum threshold. This table also shows the minimum dihedral angle between any pair of

triangles circling an edge along a curve element. This value indicates how sharply the interface surfaces are

meeting in the output mesh. Our implementation can tolerate surfaces meeting at arbitrary angles, as the

table indicates.

Figure 7: Torso dataset with close ups of protected curves. Labels are four the skin (transparent), skeleton

(yellow), lungs (cyan), and heart (orange).
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Figure 8: Volume meshes for the sphere and brain atlas. Our algorithm generates Delaunay tetrahedral

meshes which can be used for finite element simulations.

Three additional datasets come from MRI sources. Figure 7 shows a torso dataset with four of the major

structures labeled. This dataset has a large network of curves to protect where the skin, lungs, and skeleton

meet, shown in the closeup shots. Figure 9 shows both the orange and tomato datasets, where we peel away

the outer layers to see the internal structures. These two datasets labels are generally contained within each

other, thus they have few curves to protect.

After satisfying the constraints for surface refinement, we can generate volume meshes as well. Figure 8

shows some example volume meshes for the spheres and brain atlas datasets. Since the 3D Delaunay tri-

angulation already generates a tetrahedralization of the volume contained within the shape, as soon as the

interface surface is captured we automatically have a volume mesh. We can refine these tetrahedra by using

the standard approach of inserting the circumcenters of tetrahedra with bad radius-edge ratios. We perform

this insertion for any tetrahedra provided that the circumcenter does not cause the deletion of one of the

triangles on the interface surface. This strategy lets us refine within the volume, but ensures the interface

surface triangles remain in the output mesh.

6 Conclusion and Future Work

By using a Delaunay refinement approach, the challenge of generating quality meshes for interface surfaces

is significantly diminished. By applying an algorithm that extends a proven theoretical result, we can mesh

interface surfaces with surface elements that meet at arbitrarily sharp angles. Our experiments show that this

technique lends itself to generating both low resolution meshes fast and higher quality approximations in

reasonable time. While our times for meshing are competitive, its performance bottleneck is the asymptotic

speed to compute the weighted Delaunay triangulation. A faster implementation of this data structure could

greatly improve the run time.

Since we do not explicitly compute a measure of feature size for the surfaces, our implementation favors

using a uniform size requirement to control the mesh density. It is often desirable to have meshes which

adapt to the input’s features. However, for the case of interface surfaces, a true estimation of this measure

may not be possible to compute without a prohibitive amount of overhead. Future research is necessary to

explore how should an adaptive mesh be generated for the case of piecewise smooth shapes.

Our implementation allows for labeled inputs generated from various imaging and segmentation sources.
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Figure 9: Multi-label fruit datasets. The top row shows the orange dataset with outer skin, membrane, pulp,

and seeds. The bottom row has the tomato with labels endocarp, locule, placenta, and core.

We use only basic filters on these datasets to minimize the amount of preprocessing time. Separating this

processing step from the algorithm itself allows a domain expert control over how much the data is altered

when converted to a system of indicator functions. Since our algorithm uses the indicator functions as input,

it is interesting to note that we can process probabilistic segmentations in a more direct manner. Com-

mon usage thresholds and converts these soft segmentations to binary masks before processing—creating a

potential loss of information.
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