
A Systematic Analysis of Assignment Primitives

Scott M. Pike
Texas A&M University

pike@cs.tamu.edu

Wayne D. Heym Bruce Adcock
Derek Bronish Jason Kirschenbaum

Bruce W. Weide
The Ohio State University

w.heym@ieee.org, {adcockb, bronish, kirschen,
weide}@cse.ohio-state.edu

Abstract
Data movement in nearly all modern imperative languages
is based on a single primitive: traditional assignment. (With
traditional assignment, data are moved between variables by
copying.) Unfortunately, traditional assignment poses many
known software engineering drawbacks with respect to effi-
ciency for value types, and with respect to modular reason-
ing for reference types. Moreover, its entrenched legacy has
stifled serious regard of potentially superior data-movement
primitives. Exploration of the complete design space for
data-movement primitives supports the following conclu-
sions: (1) traditional assignment is fundamentally flawed,
and (2) any other data-movement primitive would be better.

Keywords aliasing, assignment, data movement, parameter
passing, swapping

1. The Data Movement Question
The issue of how to achieve data movement between vari-
ables is a technical problem that must be addressed by all
software developers and by all designers of imperative pro-
gramming languages. We pose this problem as the data-
movement question: How does some variable (say, x) get
the value of another variable (say, y)?

Before answering this question, many people legitimately
ask another: Why would one ever want to make some vari-
able (say, x) get the value of another variable (say, y)? In
other words, if the value of y is needed at some point in a
program, why not just use y directly, rather than first making
x get that value and then using x? Some of the more common
and important reasons follow.

1. Parameters passed to (and results returned from) function
calls must be transmitted between callers and callees. For
example, the value of a formal parameter (say, x) must
get the value of a corresponding actual parameter (say,
y) when an operation declared as “P(x)” is invoked by a
client as “P(y)”.

2. Sometimes a value needs to be remembered for future use
(e.g., an intermediate result, checkpoint data, etc.) or for
separate use in two or more computations.

3. Repetition constructs must establish their loop invariants
at the end of each iteration. This often involves making
the value of some variable (say, x) — denoting some
important quantity at the beginning of the loop body —
get the value of a corresponding variable (say, y) at the
end of the prior iteration of the loop body.

4. When storing elements into a collection, the code imple-
menting the collection component must make some vari-
able (say, x) in a collection’s representation get the value
of another variable (say, y) that is to be stored there.

The canonical answer to the data-movement question —
implicit in case 1 and explicit in cases 2, 3, and 4 — is
to use the traditional assignment primitive “x := y” (also
written as “x = y” in many languages). This built-in solution
to data movement runs thick in the bloodline of all popular
imperative languages, e.g., Fortran, C, C++, Java, and C#.

Operationally, traditional assignment is straightforward.
At the level of hardware instruction sets, traditional assign-
ment simply copies the data stored in location y into loca-
tion x, replacing the data previously stored in location x.
This is something that all computer hardware is designed
to do efficiently, so it is no surprise to see a direct high-
level-language manifestation of such an important low-level
mechanism. Virtually all modern software systems have
been engineered with this data-movement primitive in mind.
The choice of traditional assignment as the built-in primitive
for data movement seems so basic, obvious, and authorized
as not to merit serious reflection or reconsideration.

We claim that this received viewpoint is unwarranted;
the traditional assignment primitive is fundamentally flawed
and leads to suboptimal software designs in several critical
dimensions. The goal of this paper is to initiate a departure
from the past — one aimed at breaking the genealogical
grasp of traditional assignment on both software design and
programming language design.



We start by revisiting some known problems with tradi-
tional assignment (also called preserving assignment here-
after) in Section 2. In Sections 3 and 4, we characterize
and explore the full solution space of alternative answers to
the data-movement question. Our analysis in Section 5 con-
cludes that exchanging assignment (swapping), replacing
assignment, and destructive assignment are all superior to
traditional preserving assignment as a foundation for soft-
ware engineering and programming language design. Fun-
damentally, these alternatives better support modular reason-
ing about software system behavior and lead to improved ef-
ficiency, simpler storage management, and easier software
component specification and understanding.

The contributions of this paper are in recognizing, char-
acterizing, and analyzing a surprisingly simple question that
is, in essence, a cornerstone of software design. We develop
a common analytical framework for integrating and unifying
prior work on data movement. Furthermore, we suggest how
relatively simple changes in imperative languages can en-
able software engineers to take advantage of non-traditional
data-movement primitives.

2. Technical Framework
This section outlines technical and historical factors that
underpin the analysis in Sections 3 and 4. We postpone a
broader treatment of related work to Section 6, in which
we survey the impact of various assignment primitives on
programming languages and modular reasoning systems.

2.1 Different Kinds of Right-Hand-Sides
We begin by noting that traditional assignment, despite some
languages’ typographical evidence to the contrary, is an
asymmetric operation. For example, in a language where
assignment is written “x = y”, x and y play different roles.
The recipient of data is x, and the source of the data is y.

There seems to be no room for debate over how an as-
signment of y to x impacts x: it gets the value indicated by y.
There are also cases where the impact of such an assignment
on y seems incontrovertible. For example, if y is a declared
constant or a literal, it is unchanged by the assignment. Fur-
thermore, if y is an expression or a call to a side-effect free
function, the universally understood meaning is first to eval-
uate y and then to let x get that result. We therefore proceed
in the rest of the paper to discuss only how an assignment
of y to x impacts y in the problematic case: when y is just a
“bare” variable.

It should be noted at the outset that a move away from
traditional assignment does not mean a total abandonment
of aliasing, nor of value-copying. To achieve the effect of
traditional assignment (e.g., x := y) in the presence of a
new assignment primitive (say, ←), one can introduce a
function that returns a copy of whatever is passed to it, be
it reference or value. Replica seems to be a good choice
for this function’s name. By the previous discussion, one

can see that there is only one reasonable meaning for x ←
Replica(y), namely, set the value of x to be the value returned
by Replica(y). Therefore, the effect of traditional assignment
for both values and references can still be achieved in the
cases where it is desired, even when using non-traditional
assignment operators.

2.2 Aliasing and Reasoning Complexity
A well-known folk theorem in computing circles is that “all
problems in computer science can be solved by another level
of indirection, but that will usually create another problem.”1

Like most folklore, this claim is partially true — a fact not
lost on programming language designers, who have consis-
tently delivered a variety of language constructs to make it
easier to write programs that use indirection. Unfortunately,
one problem not solved, but rather exacerbated, by indirec-
tion is reasoning about software system behavior. The re-
sult of using indirection is the capacity for aliasing, which
is widely acknowledged as a primary source of reasoning
difficulty for imperative programs.2

Indeed, it is not just actual aliasing, but the mere po-
tential for aliasing that complicates both formal specifica-
tion and verification, and hence informal understanding of
— and informal (but sound) reasoning about — software
system behavior [Weide and Heym 2001]. This has been
widely known for decades. As early as 1973, Hoare re-
marked of pointers that “their introduction into high-level
languages has been a step backward from which we may
never recover” [Hoare 1989]. In 1976, Kieburtz explained
why we should be “programming without pointer vari-
ables” [Kieburtz 1976]. Cook’s seminal 1978 paper on the
soundness and relative completeness of Hoare logic identi-
fied aliasing (of arguments to calls, i.e., even in a language
without pointers or reference variables) as the key techni-
cal impediment to sound modular verification of imperative
programs [Cook]. In writing about aliasing, Hogg noted that,
“The big lie of object-oriented programming is that objects
provide encapsulation” [Hogg 1991], which is not the case
when aliasing can cross putative encapsulation boundaries.

2.3 The Traditional Assignment Paradigm
As a data-movement primitive, traditional assignment exac-
erbates the conflict between the inefficiency of value types
and the (aliasing-induced) reasoning problems of reference
types. Traditional assignment has two related interpretations
in modern high-level imperative languages, depending on
whether x and y are variables of a value type or variables
of a reference type. If x and y are variables of a value type,
e.g., int, then copying leaves x and y independent of each
other, so all subsequent changes to x do not affect y, and vice
versa. This is fine for built-in types, which are small, but it

1 This aphorism, which is frequently attributed to Turing Award winner But-
ler Lampson, is actually due to David Wheeler, inventor of the subroutine.
2 By aliasing, we mean what is often called visible aliasing; that is, having
multiple names for a mutable entity.



becomes unacceptably inefficient for user-defined types with
potentially mammoth representations.

On the other hand, if x and y are variables of a ref-
erence type, then the references x and y subsequently can
be changed independently, i.e., without affecting each other.
But the objects referenced by x and y are not independent,
because subsequent method calls that change the object ref-
erenced by x also change the object referenced by y, and vice
versa. This difference between copying values and copying
references is evident in the two common parameter-passing
mechanisms of call-by-value and call-by-reference.

In the case of reference types, an additional implica-
tion is that traditional assignment creates aliases, which (if
observable) dramatically complicate the formal specifica-
tion [Weide and Heym 2001] and modular reasoning about
program behavior [Hogg et al. 1992]. Note also that when
reference types are involved, after a traditional assignment
statement there is generally one more reference to some ob-
ject and one fewer reference to another object, so there are
storage management implications either for (1) the program-
mer in a language such as C++, or for (2) the garbage col-
lection mechanism in languages such as Java and C#.

The question of the “observability” of aliasing arises be-
cause an object that is referenced might be either mutable
(capable of having its value changed) or immutable (having
a fixed value upon creation). No reasoning problem arises
from aliases to an immutable object, because that object’s
value can’t be changed through any such reference; there
might as well be just one copy of the object for each ref-
erence. In other words, a reference type where the referent
is immutable can be thought of as a value type. There may
or may not be performance and storage management differ-
ences associated with the distinction (depending on the ref-
erent type), but there are no reasoning differences.

Despite the potential for reasoning problems, both tradi-
tional assignment and the value-reference type dichotomy
have been codified into modern commercial software tech-
nologies, including C++, Java, and the .NET framework.
From a software engineering standpoint, this is a step back-
wards into ontological dualism. That is, programmers must
be aware that variables of some types have ordinary val-
ues, while variables of other types hold references to objects
(where the objects have the actual values). Such dualism un-
dermines a simple, coherent, and unified view of specify-
ing and reasoning about types. Ideally, we would like a uni-
form type ontology that provides the reasoning simplicity of
value types together with the execution efficiency of refer-
ence types. Simply put, the traditional assignment primitive
(as a solution to the data-movement problem) falls short of
this goal.

For parameterized components — which have become
popularized by generic programming constructs such as tem-
plates — this creates a special problem. Inside a compo-
nent that is parameterized by a type Item, there is no way

to know prior to template instantiation time whether tradi-
tional assignment of one Item to another will copy a value
or a reference. Of course, we can hack a “fix” as it is done
in Java by introducing otherwise-redundant reference types
to immutable objects (such as Integer) that correspond to
value types (such as int). Actual template parameters can
then be limited to reference types, but the bloated type on-
tology exhibits a marked lack of parsimony. The technique
known in .NET (and now Java) as “boxing” is a cosmetic
improvement in terms of syntax, but fails to remove the
value-reference dichotomy or the need to understand its ram-
ifications for program behavior.

Alternatively, we can adopt a design discipline that tries
to make user-defined class types act like value types rather
than reference types. A popular approach in this direction
is Coplien’s orthodox canonical form for C++ [Coplien],
in which assignment and copy constructors make “deep
copies”, so that “variables created from your classes can
be assigned, declared, and passed as arguments just like
any C variable” (page 38). Indeed, users of the C++ Stan-
dard Template Library (STL) are told to follow this ad-
vice [Musser et al. 2001]. Accordingly, we refer to this tra-
ditional assignment paradigm as preserving assignment,
since it preserves the value of the right-hand side parameter.

In summary, going the direction of making everything
a reference rather than a value only exacerbates the com-
plications for specification and modular reasoning that are
caused by potentially aliased references. It is true that the
reasoning problems created by aliasing could, in principle,
be avoided by requiring that all reference types should refer
to immutable objects. This would be tantamount to mandat-
ing pure functional programming in a nominally imperative
language, and to our knowledge no one is seriously propos-
ing this as the light at the end of the tunnel on the moving-
toward-references track.

Indeed, the prevailing advice for software component de-
signers and clients would be better characterized as moving-
toward-values — except that while this works in C++, it
does not work in other popular languages that provide lit-
tle or no flexibility for overriding assignment and copy
constructors (e.g., Java). Hence, the collection classes in
java.util, for example, have been designed with preserving
assignment of references as the underlying data-movement
primitive; and there is little a client using these classes can
do about it.

2.4 Exchanging Assignment
One alternative data-movement primitive, exchanging as-
signment or swapping [Kieburtz 1976, Harms and Weide
1991], has been studied more carefully and used more sys-
tematically than the other two equivalence classes of alter-
natives evaluated in Section 3. Like preserving assignment,
exchanging assignment has been used as the basis for the de-
sign of a research language, Resolve [Sitaraman and Weide
1994], and associated component libraries. Resolve, adapted



as a discipline for C++ programming, has been evaluated in
both educational and industrial software settings, including a
100K+ SLOC commercial software product [Hollingsworth
et al. 2000]; the code shown later in this section is represen-
tative of what is in that product. Previous work [Harms and
Weide 1991, Hollingsworth et al. 2000] also has addressed
how exchanging assignment interacts with other program-
ming language issues (e.g., parameter passing) and soft-
ware design issues (e.g., application-induced requirements
for deep copies). With exchanging assignment, the answer
to the data-movement question becomes: “x :=: y”. For in-
stance, if x = -42 and y = 97 before x :=: y, then x = 97 and
y = -42 afterward.

We use exchanging assignment to illustrate how both
software component design and client code differ when pre-
serving assignment is not taken for granted as the under-
lying data-movement primitive. As an example, consider a
FIFO queue component with methods to Enqueue and De-
queue an item from the queue, to get the queue’s Length, and
perhaps others. Most of these methods do what anyone us-
ing a FIFO queue component might expect from experience
with a component design based on traditional assignment.
However, Enqueue is different: it moves the argument value
onto the queue and hence changes the argument’s value in
the client program. In the component design discipline used
in the study mentioned above [Hollingsworth et al. 2000],
an appropriate value for the argument upon return from En-
queue is an initial value for the argument’s type; but this is
not the only design possible.

How is such a queue component used in a client program?
Here is sample client code for finding and removing a small-
est item from a non-empty queue q, returning it in min, and
possibly permuting q in the process. This code illustrates one
of the few new programming idioms that arise when using
exchanging assignment, i.e., how to iterate over a collection
by using a “catalyst” variable rather than an iterator [Weide
et al. 1994]. (For efficiency, one probably would see an it-
erator in the STL or java.util version of such code, because
these libraries are based on preserving assignment.) The C++

operator &= is used in this code for :=: because there is no
native exchanging assignment in C++ . The component de-
signer provides this exchanging assignment data-movement
operator, by convention, for each new user-defined type.

void Remove_Min (Queue_Of_Item& q, Item& min)
{

Queue_Of_Item q1;
q.Dequeue (min);
while (q.Length () > 0) {

Item x;
q.Dequeue (x);
if (x < min) {

x &= min;
}
q1.Enqueue (x);

}
q &= q1;

}

Perhaps surprisingly, as illustrated here, using exchang-
ing assignment demands few changes in programming style
[Hollingsworth et al. 2000]. One’s investment in software
engineering and programming knowledge is not lost merely
because the data-movement primitive is different.

As we will explain further below, exchanging assignment
is safe with respect to modular reasoning, because the effect
of data movement does not introduce aliasing. Moreover, it
allows all types to be viewed as values without compromis-
ing efficient execution. Types with small representations can
be exchanged directly by swapping values. The component
designer (or, if :=: is a language primitive, the compiler) can
introduce one level of hidden indirection for representations
larger than a given threshold, and swap pointers to the repre-
sentations of x and y in order to effect the logical exchange of
x and y as values. To a large extent, the other two alternatives
to preserving assignment also offer these relative advantages
with comparably subtle — but crucial — changes in compo-
nent design and client coding idioms, as we see next.

3. Solution Space and Criteria
First, we need to characterize the possible ways one could
define a (binary) data movement primitive. We use “←”
to denote this primitive operator — in English we might
pronounce it “gets” — so by definition the answer to the
data movement question is: x ← y. Again note that y here
is simply a “bare” variable, since the cases of assigning
the result of an expression evaluation or a function call
are generally unproblematic with respect to data movement.
The key to identifying and classifying all possible meanings
for ← is to note that while ← is required to leave x with
the old value of y in order to solve the stated problem,
there is complete flexibility in the way that ← provides a
new value for y. Pragmatically, these alternatives can be
subsumed under four equivalence classes that characterize
the possible values of y after executing x ← y:
1. Destructive Assignment: y has no value (undefined)

2. Replacing Assignment: y has a legal value of its type,
chosen from a statically-specified set of values



3. Preserving Assignment: y has its own old value

4. Exchanging Assignment: y has x’s old value
These exhaust the possibilities that make any sense. There
are only two specific values in sight as the problem is stated:
the old value of y and the old value of x. Other than these, we
can select the new value of y without regard to the old values
of x and y, from among all the values of its type, in two ways:
we can give y no value (the “undefined” option), or we can
give it some value chosen arbitrarily (non-deterministically)
from among a set of admissible values. This second case
could be further partitioned in obvious ways; for example,
considering only a singleton set of admissible values deter-
mines a unique statically-specified final value for y. It turns
out that nothing hinges on this further partitioning. Also,
non-deterministic choice could also be replaced by proba-
bilistic choice of some kind, but again it turns out that this
does not affect any of our conclusions. Hence we do not fur-
ther discuss these variants.

The four possibilities above apply both for values and
references. First, suppose the type of x and y is int, a value
type. If beforehand, x = -42 and y = 97, then after x ← y
we must have x = 97. But we could leave y undefined
(i.e., unusable in subsequent computations until it gets re-
initialized with a new value of type int); we could leave y
with some statically-specified value (e.g., a natural choice
for type int might be 0); we could leave y with its old value
(i.e., 97); or we could leave y with x’s old value (i.e., -42).

Now suppose the type of x and y is a reference to objects
of type T. If beforehand, x = ref-to-B and y = ref-to-A
(where A and B are objects of type T), then after x ← y
we must have x = ref-to-A. But we could leave y undefined
(i.e., unusable in subsequent computations until it gets re-
initialized with a new reference to type T); we could leave
y with some admissible value (e.g., a natural choice for all
reference types might be null, or possibly ref-to-O, where O
is any object of type T); we could leave y with its old value
(i.e., ref-to-A); or we could leave y with x’s old value (i.e.,
ref-to-B).

Before analyzing the equivalence classes for data move-
ment operators, we need a set of criteria that might bear on
an evaluation of “better” versus “worse”. The most impor-
tant criterion is that the solution should not break modu-
lar reasoning about software behavior, because this founda-
tion is required for any scalable software engineering dis-
cipline [Weide et al. 1995]. In Section 4, we consider the
following desiderata that are obviously of general interest
and that could differ from one data movement operator to
another.

• Efficiency: How much time does← take to execute? We
consider faster to be better.

• Ease of storage management: How much complication
does← introduce into storage management? We consider
less complication to be better, not only because it is easier

to understand, but also because it is likely to mean better
efficiency in terms of overall execution time.

• Ease of specification and reasoning: How much com-
plication does← add to the understanding of component
specifications and their use in modular reasoning by com-
ponent clients? Any scalable engineering discipline must
be able to verify component properties in isolation with-
out having them “break” when the component is subject
to composition. We consider less complication to be bet-
ter.

This set of evaluation criteria is not necessarily complete.
For example, another criterion might be maximization of
client knowledge; that is, how much information does the
client know about the state of the program after “x ← y”
executes? Arguably, more information is better, in the sense
that (if all other things are equal) a more-deterministic pro-
gram is easier to reason about than a less-deterministic one
— and in some cases it can be more efficient, too, if clients
can use the additional information to their advantage.

Another legitimate (although less general) criterion might
be appropriateness for a particular software development
paradigm — for example, compatibility with hierarchical
subtyping as witnessed by object-oriented development. We
suspend such considerations for the moment, but return to
them in Section 5.

4. Analysis and Results
Tables 1 and 2 summarize the analysis of this section using
a “Good” versus “Deficient” scale for each evaluation crite-
rion from Section 3. Table 1 lists the results for data move-
ment between value types; Table 2 lists the results for data
movement between reference types. Each table row corre-
sponds to one of the four alternatives for the value of y after
executing “x← y”.

Looking across the rows, we find deficiencies in all but
Case #4 (i.e., exchanging assignment). Notably, the row with
the most difficulties is Case #3, in which y’s new value
equals its old value (i.e., traditional preserving assignment).
The other two options also could be considered better ap-
proaches than preserving assignment, which — as an unfor-
tunate legacy of early languages without user-defined types
— has been hardwired into every widely-used commercial
software technology.

Next we consider the most significant table entries for
each of the possible solutions to the data movement problem.
Figures 1 through 4 illustrate the data movement operators
and remark on their deficiencies. For Figures 1(a) through
4(a), x and y are int objects. For Figures 1(b) through 4(b), x
and y are references to Set-Of-Int objects.

Destructive assignment (Figure 1) has a major disadvan-
tage in that it complicates specification and reasoning about
software behavior. Each value and reference type must be
augmented with a special value: “undefined.”



Case New value of y after “x←
y;”

Efficiency of← Ease of storage
management

Ease of specification and
reasoning

1 Destructive Assign Good Good Deficient
2 Replacing Assign Deficient Good Deficient
3 Preserving Assign Deficient Good Good
4 Exchanging Assign Good Good Good

Table 1. Evaluation summary for data movement operators with respect to value types. Since aliasing is not at issue, support for modular reasoning and
ease of storage management are uncomplicated. The primary deficiencies arise for efficiency and ease of specification, principally because potentially large
representations are expensive to create (Case #2) and to copy (Case #3), and because specifications and/or their understandability are complicated by undefined
and/or under-defined values. See Figures 1–4 for details.

Case New value of y after “x←
y;”

Efficiency of← Ease of storage
management

Ease of specification and
reasoning

1 Destructive Assign Good Good Deficient
2 Replacing Assign Good Good Deficient
3 Preserving Assign Good Deficient Deficient
4 Exchanging Assign Good Good Good

Table 2. Evaluation summary for data movement operators with respect to reference types. The use of indirection makes all four alternatives potentially
efficient. As with the value types, however, reasoning is complicated by undefined and/or under-defined and/or null references. Additionally, the potential for
aliasing undermines modular reasoning and complicates storage management in the case of traditional preserving assignment (Case #3). See Figures 1–4 for
details.

Java programmers, especially those familiar with JML,
know the minor mess caused by allowing null values for
reference variables. Suddenly, preconditions start looking
like: “p 6= null and . . . ” and/or postconditions start looking
like “if #p = null then . . . else . . . ” The same style arises
when variables are allowed to be undefined. It is possible to
make the problem disappear syntactically simply by making
it an implicit proof obligation at each point in the program
that, say, none of the variables involved in an expression or
a call is undefined (except possibly x in a situation like “x←
...;”). But it remains incumbent upon the programmer to add
this to his/her informal reasoning about program behavior;
it’s not merely a formality needed in program proofs.

In Figure 2 we see an illustration of replacing assign-
ment. The efficiency concern arises from the cost of con-
structing and reclaiming values with large representations.
For example, the admissible replacing value for a PixelMap
value type might be a 2D array of 90,000 integers all initial-
ized to 0. Such costs could be mitigated at the expense of
complicating the language implementation with lazy initial-
ization/finalization features. Note also that, while null is an
obvious choice for the resulting value of assignment using
reference types, it presents the same reasoning problems as
in the previous case. The inventor of null references, C.A.R.
Hoare, recently went so far as to call them a “billion dollar
mistake” [Hoare 2009]. One could instead, as Figure 2(b)
shows, use a non-null reference to a new admissible value,

but again we return to the efficiency issue of initializing this
value.

By far the most prevalent assignment primitive in mod-
ern programming languages is preserving assignment, the
behavior or which is shown in Figure 3. This primitive suf-
fers from both efficiency and modular reasoning drawbacks.
The efficiency problem arises when copying value types with
possibly large data representations, which users of the C++

STL are advised to do [Musser et al. 2001]. Reasoning prob-
lems arise when traditional assignment is used to copy ref-
erences/pointers as so-called “shallow copies”. Other papers
(e.g., [Harms and Weide 1991], [Hogg et al. 1992], [Weide
et al. 1995]) have already examined the many problems this
causes. Indeed, the traditional assignment operator is the
only data movement approach where support for modular
reasoning is an issue, because it alone introduces aliased ref-
erences on its own. All the other solutions are alias-free un-
less the programmer explicitly wants to create an alias, as
explained in Section 2.1, which also simplifies their storage
management requirements compared to traditional preserv-
ing assignment.

Exchanging assignment is shown in Figure 4, and winds
up being the optimal choice in our analysis. This is due to
the fact that it incurs neither aliasing nor efficiency penal-
ties. As mentioned earlier, an exchanging assignment can be
implemented efficiently to execute in constant time by (i)
copy-exchanging small representations directly and by (ii)



introducing a hidden level of indirection for larger represen-
tations. The key insight behind why this is possible is that
— from the client’s perspective — there is no logical dif-
ference between exchanging two object references and ex-
changing the two values of the referenced objects. That is,
exchanging the name bindings is logically indistinguishable
from exchanging the actual object values.

x

x← y;

y

x y

−42 97

97 ⊥

(a) Destructive assignment for
value types. Variable y is unde-
fined after “x← y”

{1, 2, 3}

{1, 2, 3}

{4, 5}

{4, 5}

x

x

y

y

x← y;

⊥

(b) Destructive assign-
ment for reference types.
Reference y is undefined
after “x← y”

Figure 1. Leaving y undefined requires the introduction of a new value
for each type: undefined. This adds additional complication to the pro-
grammer’s reasoning process; now implementers must specify and clients
must understand exactly what behavior modules will have in the presence
of this special value. Specification and reasoning are easier if every variable
always has a legal value of its nominal type, i.e., if it is always “defined”,
even if its value at some point is arbitrary or not uniquely specified.

5. Discussion
A careful reader may wonder whether the criteria were
“rigged” to produce this outcome. Doesn’t exchanging as-
signment have any problems? An early assessment sug-
gested that programmers who are used to traditional as-
signment might have to learn a new paradigm of program-
ming in order to use exchanging assignment [Hogg et al.
1992]. However, subsequent experience with using this data
movement operator (both in the classroom and in build-
ing commercial software) suggests that not much changes
for the programmer except the quality of the resulting soft-
ware [Hollingsworth et al. 2000].

As was mentioned in Section 2.1, it is possible to achieve
traditional assignment effects using the other assignment op-
erators. More specifically, the usefulness of indirection men-
tioned in Section 2.2 remains true to some extent, and pro-
grammers will inevitably wish to introduce aliases in some
cases. Use of the Replica function discussed in Section 2.1
(e.g., “x ← Replica(y)”) is one elegant way to retain this
ability regardless of what assignment primitive ← actually
denotes, because it makes the right hand side an unproblem-
atic function call.

One other potential problem with exchanging assignment
has been suggested by Minsky [Minsky 1996]: because of its
symmetry, exchanging assignment does not mesh well with
the inherently asymmetric notion of subtyping in object-
oriented languages. Suppose y is of type S and x is of type

x

x← y;

y

x y

−42 97

97 0

(a) Replacing assignment for
value types. Variable y has some
(statically) specified value after
“x← y”. This figure suggests 0
as a suitable possible value for
int objects, but any set of values
could be specified.

{1, 2, 3}

{1, 2, 3}

{4, 5}

{4, 5}

x

x

y

y

x← y;

{}

(b) Replacing assignment for reference
types. Reference y has some (statically)
specified value after “x ← y”. This
figure suggests Ref-to-EmptySet as a
suitable possible value.

Figure 2. Replacing assignment can be achieved in two different ways.
One can either specify a unique statically-determined value for y, or let y
take on some value from a statically-determined set of admissible values.
Leaving y with a unique specified value of its type is a reasonably good ap-
proach, except for the efficiency of ← for value types, particularly those
with large representations. Not only must that admissible value be con-
structed for y, but also the old value of x must be reclaimed. For reference
types there is no efficiency problem because null is a perfectly reasonable
default value, but of course this introduces the same reasoning issues that
afflict destructive assignment. Alternatively, leaving y with one of an ad-
missible set of values is also a reasonable approach. It doesn’t suffer from
the efficiency concerns because one correct implementation is to specify
the set of alternatives as containing all (legal) values of the type, and then
simply exchange the values of y and x. The only question, then, is why you
wouldn’t want to tell the client the new value of y in order to maximize the
client’s knowledge of the values of the program’s variables. Not doing so
compromises ease of reasoning.

x

x← y;

y

x y

−42 97

97 97

(a) Traditional preserving as-
signment for value types. Vari-
able y has its original value after
“x← y”.

{1, 2, 3}

{1, 2, 3}

{4, 5}

{4, 5}

x

x

y

y

x← y;

(b) Traditional preserv-
ing assignment for refer-
ence types. Reference y
refers to its original ob-
ject after “x← y”.

Figure 3. For value types, preserving assignment presents a serious
efficiency concern when the value to be preserved has a large representation.
Furthermore, for reference types, preserving assignment is undesirable due
to the automatic aliasing it induces.



x

x← y;

y

x y

−42 97

97 −42

(a) Exchanging assignment for
value types. Variable y has the
original (old) value of x after “x
← y”.

{1, 2, 3}

{1, 2, 3}

{4, 5}

{4, 5}

x

x

y

y

x← y;

(b) Exchanging assign-
ment for reference types.
Reference y refers to
the object previously re-
ferred to by x.

Figure 4. Exchanging assignment swaps its operands (be they values
or references), so no aliases are created to potentially thwart modular
reasoning, and no garbage is created to complicate either implicit or explicit
storage management. Exchanging assignment also maximizes the client’s
knowledge of the program state after execution, because it specifies a unique
(dynamically determined) value for y which sometimes can be used to
advantage in subsequent code.

T, where S is a behavioral subtype of T [Liskov and Wing
1994, Leavens and Weihl 1990]. (The actual objection to ex-
changing assignment on the grounds of its interaction with
subtyping fails to note that if we are not talking about behav-
ioral subtypes, then not even traditional assignment should
be allowed.) The claimed problem is that O-O programmers
want to be able to assign y to x in this case, but not vice versa
— so exchanging assignment cannot be used.

We do not give a complete analysis of this issue here, but
briefly explain one aspect of it. Indeed, exchanging assign-
ment cannot be permitted where the variables’ types do not
match, if the situation involves an explicit use of exchang-
ing assignment. However, the first and by far most common
use of data movement is for parameter passing, and here ex-
changing assignment can be used even in the presence of
subtyping. The declared type of the actual parameter (i.e.,
in the example, S) must be a subtype of the declared type
(i.e., T) of the formal parameter. For purposes of exchanging
assignment to pass this parameter to this call to the method
M (and again for the return), simply consider the type of the
formal parameter to be the same as the type of the actual pa-
rameter (i.e., S). Now the actual and formal are swappable.
This does not affect the soundness of the separate reasoning
about the correctness of M’s method body because that rea-
soning uses T as the type of the formal, and by assumption
S is a behavioral subtype of T. It just happens that only T
methods happen to be invoked in the body of M.

Even if incompatibility with subtyping were treated as a
significant objection to exchanging assignment, either de-
structive or replacing assignment would still be better than
traditional assignment, and they are not subject to the sym-
metry objection. These two are the best choices for those
who prefer asymmetry in their data movement operator in
the presence of subtyping.

6. Related Work
Not only is there nothing sacred about traditional assignment
as an answer to the data movement question, it is the worst
choice among a landscape of better alternatives. We include
this brief section on related work to indicate the spectrum of
research on problems associated with traditional assignment
and aliasing. The primary purpose of this section is to or-
ganize alternative operators for data movement that enforce
alias prevention by virtue of their semantic definition, but
without sacrificing efficiency.

6.1 Specification and Verification in the
Presence of References and Aliasing

In modern languages, the common store of entities to which
references refer is not manifest in the language syntax. As
many researchers (as well as Fortran programmers, albeit in
the opposite direction) noted long ago, the common store is
like an array of entities and the references into it are like in-
dices into that array. Therefore, in order to specify and rea-
son about programs with references, it suffices technically
to make the common store explicit in the code (as in Fortran
programs that simulate pointers with arrays and indices). Eu-
clid, for example, made a common store called a collection
an additional parameter to any call with a parameter that was
a reference into it. Reasoning about a collection was then just
like reasoning about arrays [Horning 1978]. This, or some-
thing essentially identical to it, remains the basic approach to
specifying and reasoning with references [Weide and Heym
2001].

In the 1970s, specification and verification of programs
with pointers was done using the precursors to object-
oriented languages, notably Pascal. In the culmination of
this line of work, Luckham and Suzuki explicitly modeled
the state of memory in specifications and in verification con-
ditions [Luckham and Suzuki 1979]. An important missing
ingredient in this early work was any use of abstraction in ex-
plaining the behavior of new types, apparently because Pas-
cal lacked user-defined types with hidden representations. In
1980, Ernst and Ogden considered similar specification and
verification issues in Modula, which had a module construct
with hidden exported types [Ernst and Ogden 1980]. Later,
the same authors published a verification method for “shared
realizations” of ADTs, including heap storage (i.e., the com-
mon store) [Ernst et al. 1994]. This led to a value-based
specification, with reference details arising only within the
proof of the module implementation. This approach worked
under the assumption that the only source of possible alias-
ing in the language was within that implementation, i.e., not
from external client assignment of references.

More recently, related work has involved specification
and verification of standard object-oriented software. The
problems addressed include specifying behavior of com-
ponents involving references, and potential aliasing both
from copying references and from parameter passing anoma-



lies [Leino and Nelson 2002]. JML [Cheon and Leavens
2002], for example, supports specifications with references
and with values.

In summary, the fundamental problem of how to specify
and verify programs with reference types is technically solv-
able by making sure that abstract state variables associated
with references “follow them around” throughout specifica-
tions, programs, and proofs. However, because the potential
for aliasing complicates specification and reasoning, many
researchers have sought to limit aliasing.

6.2 Techniques to Limit Aliasing
In the 1990s, this research area experienced a resurgence of
activity. Early in this resurgence, Hogg et al. provided a clas-
sification taxonomy for the area, defining terms for alias de-
tection, advertisement, control, and prevention [Hogg et al.
1992]. Detection is the static or dynamic diagnosis of poten-
tial or actual aliasing. Advertisements are annotations that
help modularize detection by declaring aliasing properties.
Control is the provision of tools and techniques enabling
the programmer to “manage” aliasing. Prevention is the use
of constructs that rule out aliasing in a statically checkable
fashion. Among all these techniques, prevention would seem
to afford the greatest simplification of specification and rea-
soning. It also seems that many of the control techniques
might provide greater simplification than would techniques
of detection and advertisement. Hogg et al.urged that “alias-
ing must be detected when it occurs, advertised when it is
possible, prevented where it is not wanted, and controlled
where it is needed” [Hogg et al. 1992]. Due to space con-
straints here, we list only a few works representing the cat-
egories in this classification. A paper summarizing work in
all these categories appeared in 1999 [Noble et al. 1999].

The task of creating compiler-generated optimizations
has motivated a large body of work on pointer analysis. An
extensive summary of this work [Hind 2001] also includes a
concise description: “A pointer analysis attempts to statically
determine the possible runtime values of a pointer. As such
an analysis is, in general, undecidable, a large collection of
approximation algorithms have been published that provide
a trade-off between the efficiency of the analysis and the
precision of the computed solution.” Put otherwise, static
alias detection may be able to help programmers, but the
lack of precision remains a general concern. Programmer-
supplied advertisements therefore have been suggested to
improve precision [Hendren and Gao 1993].

Work on alias control appears to have begun when
Reynolds proposed a method for checking syntactically that
pairs of statements obviously do not interfere with each
other [Reynolds 1978]. His idea was “to prohibit interfer-
ence between identifiers, but to permit interference among
components of collections named by single identifiers”. New
approaches to controlling aliases continue to be introduced.
Banerjee has shown how standard semantic techniques can

be used to assess and compare confinement disciplines pro-
posed in the literature [Banerjee and Naumann 2002].

There is a spectrum of approaches within the preven-
tion category, ranging from enabling prevention to insisting
and relying on it. The essential ideas involve mutability and
uniqueness of reference. As observed in concurrent-program
design [Noble et al. 2000], visible aliasing does not occur
when there is only one reference to a mutable object, or when
there are multiple references to an immutable object. In his
“islands” proposal, Hogg provided an incremental solution
working toward encapsulation of the use of aliasing [Hogg
1991]. Minsky also saw the problem of aliasing as being
“caused by the almost universal practice in programming to
transfer information by copy” [Minsky 1996]. His solution,
like Hogg’s, employed a destructive read operation. Simi-
larly, alias prevention is enabled by “linear types” [Baker
1995]. Fähndrich has proposed a type system that reduces
the usual restrictions on linear types [Fähndrich and DeLine
2002]. Work at the end of the spectrum that insists and re-
lies on alias prevention has been discussed earlier in this pa-
per [Kieburtz 1976, Harms and Weide 1991].

6.3 Practical Impact of Data Movement on Reasoning
These data movement considerations have been applied in
several settings. We discuss the impact of the use of data
movement operators in the literature in this section.

The language Tako [Kulczycki and Vasudeo 2006] is
(essentially) Java with alias avoidance techniques. While
this design goal manifests itself in many ways throughout
the language, its treatment of assignment primitives is most
important here.

Tako attempts to use exchanging assignment whenever
possible. Specifically, exchanging assignment is used when
the types of the two parameters are exactly the same. The
other legal kind of assignment in Tako occurs between ob-
jects of two different types, where one is a behavioral sub-
type of the other. As Section 5 notes, the symmetry of ex-
changing assignment precludes its use in such situations. In-
stead, Tako uses replacing assignment in these cases. All
types in Tako have an initial value, so the replacing value
is chosen to be an initial value for the type of the right-hand
side parameter.

The Jahob tool [Zee et al. 2008] is able to verify Java
ADT implementations given code annotations for loop in-
variants, abstraction relations, and representation invariants.
While the tool is able to prove many implementations correct
and its proofs are sound, the utility to clients of components
verified using this approach is still unclear.

For example, an implementation of a java.util.Map-like
component as a linked-list data structure was verified by
this tool. A Map component provides methods to define
new key/value pairs in the map, to remove a particular
key/value pair from the map given the key, and to access
the value corresponding to a given key in the map. The ver-
ified component requires that any object key lookups are



performed using reference equality, rather than value equal-
ity. The java.util.Map interface specification from the java
documentation [Sun 2009] instead specifies that key lookups
must be performed using the equals() method; keys must be
compared as values, not references. The specification of the
verified component avoids possible thorny issues relating to
preserving assignment for reference types, namely aliasing.
This example shows the analysis provided in Section 2.2 is
backed by experience; the use of the preserving assignment
for data movement complicates reasoning about programs.

As discussed in Section 2.2, Resolve [Sitaraman and
Weide 1994] has explored the consequences of using ex-
changing assignment as the primary data movement opera-
tor, with the most recent work [Sitaraman 2009, Kirschen-
baum et al. 2008] focusing on automated modular verifica-
tion of the use of abstract data types. Based on the literature,
the analysis in Section 2.2 is accurate; reasoning about pro-
grams modularly is possible while maintaining efficiency.

The other possible data movement operators have, to our
knowledge, not been implemented by any programming lan-
guages and then tested seriously on commercial software
projects.

7. Conclusions
Since traditional assignment was introduced at a time when
languages had only value types with small representations,
it was a perfectly good data movement solution for its day.
With the advent of languages having user-defined types and
reference types, though, it has become sub-optimal for gen-
eral use; i.e., it should not be the built-in data movement
primitive in modern languages. But traditional assignment
is deeply woven into the fabric of computing for most soft-
ware engineers, whose early computing education typically
involved programming only with built-in value types having
small representations. Languages could still allow traditional
assignment in such situations.

The other three data movement primitives all have sev-
eral advantages over traditional preserving assignment as the
built-in data movement primitive that is available for every
type. Most importantly, they do not interfere with modular
reasoning. Some are efficiently implementable for all value
and reference types, regardless of the sizes of their data rep-
resentations. All dramatically simplify storage management
because there is only one reference to any object; hence, the
clean-up discipline is to reclaim resources when a variable
goes out of scope. Additionally, exchanging assignment also
simplifies specification and reasoning by unifying values and
references in a fundamental way: there is no logical differ-
ence to the client between exchanging two object references
and exchanging the values of the referenced objects. This
means that introducing the exchanging assignment in place
of preserving assignment — and in this case in preference to
the other two possible data movement operators as well —
facilitates a move toward a uniform value semantics. This

is precisely the opposite direction taken by Java and .NET.
Further details on the consequences of such a move are dis-
cussed in [Weide and Heym 2001].

8. Acknowledgments
This work was supported in part by the National Science
Foundation under grants number CCR-0081596, and CCF-
0811737. We also wish to thank other current and for-
mer members of the Resolve/Reusable Software Research
Group, and especially Neil Coplin and Olga Volgin, for their
useful comments and contributions.

References
Henry G. Baker. “Use-once” variables and linear objects: storage

management, reflection and multi-threading. ACM SIGPLAN
Notices, 30(1):45–52, 1995. ISSN 0362-1340.

Anindya Banerjee and David A. Naumann. Representation inde-
pendence, confinement and access control. In Proceedings of
the 29th POPL, pages 166–177. ACM Press, 2002.

Yoonsik Cheon and Gary T. Leavens. A simple and practical ap-
proach to unit testing: The JML and JUnit way. In Proceedings
of ECOOP 2002, volume 2374 of Lecture Notes in Computer
Science, pages 231–255. Springer-Verlag, 2002.

S. A. Cook. Soundness and completeness of an axiom system for
program verification. SIAM Journal on Computing, 7:70–90,
1978.

James O. Coplien. Advanced C++ Programming Styles and Id-
ioms. Addison-Welsey, New York, NY, 1992.

George W. Ernst and William F. Ogden. Specification of Abstract
Data Types in Modula. ACM Trans. on Programming Languages
and Systems (TOPLAS), 2(4):522–543, 1980.

George W. Ernst, Raymond J. Hookway, and William F. Ogden.
Modular verification of data abstractions with shared realiza-
tions. IEEE Trans. on Software Engineering, 20(4):288–307,
1994.

Manuel Fähndrich and Robert DeLine. Adoption and focus: prac-
tical linear types for imperative programming. In Proceedings
of PLDI 2002, pages 13–24. ACM Press, 2002. ISBN 1-58113-
463-0.

Douglas E. Harms and Bruce W. Weide. Copying and swapping:
influences on the design of reusable software components. IEEE
Trans. on Software Engineering, 17(5):424–435, May 1991.

Laurie J. Hendren and Guang R. Gao. Designing programming lan-
guages for the analyzability of pointer data structures. Computer
Languages, 19(2):119–134, April 1993.

Michael Hind. Pointer analysis: Haven’t we solved this
problem yet? In 2001 ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and En-
gineering (PASTE’01), Snowbird, UT, June 2001. URL
http://www.research.ibm.com/people/h/hind/

paste01.ps.

C.A.R. Hoare. Hints on programming-language design. In C.A.R.
Hoare and C.B. Jones, editors, Essays in Computing Science.
Prentice Hall, 1989.



C.A.R. Hoare. Null references: The billion dollar mistake. Presen-
tation at QCon London, March 2009.

John Hogg. Islands: aliasing protection in object-oriented lan-
guages. In Proceedings of OOPSLA ’91, pages 271–285. ACM
Press, 1991.

John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and
Richard Holt. The Geneva convention on the treatment of object
aliasing. ACM SIGPLAN OOPS Messenger, 3(2):11–16, 1992.

Joseph E. Hollingsworth, Lori Blankenship, and Bruce W. Weide.
Experience report: using RESOLVE/C++ for commercial soft-
ware. In David S. Rosenblum, editor, Proceedings of the ACM
SIGSOFT 8th International Symposium on the Foundations of
Software Engineering (FSE-00), volume 25 of ACM Software
Engineering Notes, pages 11–19. ACM Press, 2000.

J. J. Horning. A case study in language design: Euclid. In F. L.
Bauer and M. Broy, editors, Program Construction, volume 69
of Lecture Notes in Computer Science, pages 113–132. Springer
Verlag, 1978.

R. B. Kieburtz. Programming without pointer variables. ACM SIG-
PLAN Notices, 11(3S):95–107, March 1976.

Jason Kirschenbaum, Heather Harton, and Murali Sitaraman. A
Case Study in Automated, Modular, and Full Functional Veri-
fication. In AFM ’08: Third Workshop on Automated Formal
Methods, pages 53–58. ACM, July 2008.

Gregory Kulczycki and Jyotindra Vasudeo. Simplifying reason-
ing about objects with Tako. In Fifth International Workshop
on Specification and Verification of Component-Based Systems,
pages 57–64, New York, NY, USA, 2006. ACM.

Gary T. Leavens and William E. Weihl. Reasoning about object-
oriented programs that use subtypes. In Proceedings of the Joint
ECOOP/OOPSLA Conferences, pages 212–223. ACM Press,
1990.

K. Rustan M. Leino and Greg Nelson. Data abstraction and infor-
mation hiding. ACM Trans. on Programming Languages and
Systems (TOPLAS), 24(5):491–553, 2002.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion
of subtyping. ACM Trans. on Programming Languages and
Systems (TOPLAS), 16(6):1811–1841, 1994.

David C. Luckham and Norihisa Suzuki. Verification of Array,
Record, and Pointer Operations in Pascal. ACM Trans. on Prog.
Languages and Systems (TOPLAS), 1(2):226–244, 1979.

Naftaly H. Minsky. Towards alias-free pointers. In Proceedings
of ECOOP ’96, volume 1098 of Lecture Notes in Computer
Science, pages 189–209. Springer-Verlag, 1996.

D. Musser, G. Derge, and A. Saini. STL Tutorial and Reference
Guide, Second Edition. Addison-Wesley, Reading, 2001.

James Noble, Jan Vitek, Doug Lea, and Paulo Sergio Almeida.
Aliasing in object oriented systems. In ECOOP ’99 Workshops,
volume 1743 of Lecture Notes in Computer Science, pages 136–
163. Springer-Verlag, 1999.

James Noble, David Holmes, and John Potter. Exclusion for com-
posite objects. In Proceedings of OOPSLA ’00, volume 35 of
ACM Sigplan Notices, pages 13–28. ACM Press, 2000.

John C. Reynolds. Syntactic control of interference. In Proceedings
of the 5th POPL, pages 39–46. ACM Press, 1978.

Murali Sitaraman. Building a Push-Button RESOLVE
Verifier: Progress and Challenges. Technical Re-
port RSRG-09-01, School of Computing, Clem-
son University, Clemson, SC, January 2009. URL
http://www.cs.clemson.edu/~resolve/reports/RSRG-

09-01.pdf.

Murali Sitaraman and Bruce W. Weide. Component-based software
using RESOLVE. ACM SIGSOFT Software Engineering Notes,
19(4):21–67, 1994.

Sun. Java Platform, Standard Edition 6 API Specification.
World Wide Web electronic publication, 2009. URL
http://java.sun.com/javase/6/docs/api/overview-

summary.html.

B. Weide, S. Edwards, D. Harms, and D. Lamb. Design and
specification of iterators using the swapping paradigm. IEEE
Trans. on Software Engineering, 20(8):631–643, August 1994.

Bruce W. Weide and Wayne D. Heym. Specification and ver-
ification with references. In 2001 OOPSLA Workshop on
Specification and Verification of Component-Based Systems.
http://www.cs.iastate.edu/ leavens/SAVCBS/papers-2001, 2001.

B.W. Weide, W.D. Heym, and J.E. Hollingsworth. Reverse en-
gineering of legacy code exposed. In Proceedings of the 17th
ICSE, pages 327–331. ACM Press, 1995.

Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional
verification of linked data structures. SIGPLAN Not., 43(6):349–
361, 2008.


