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Abstract

Dynamic process management is a feature of MPI-2 that allows an MPI process to create new processes and manage

communication between processes belonging to both the groups - the original set and the newly spawned set. In this paper,

we design an MPI-2 dynamic process management interface over InfiniBand. We study the Unreliable Datagram (UD) and

Reliable Connection (RC) transport modes of InfiniBand for dynamic job startup. We also propose an improved inter-group

point-to-point design that relies on a zero copy mechanism and an enhanced intergroup collective framework that leverages the

performance benefits of using shared memory based collectives. We also propose a set of micro-benchmarks to evaluate these

designs. Our studies revealed that the UD based-design allows for better spawns rates and there are significant improvements

in the performance of communication operations with our proposed framework. Finally, we provide an evaluation of using a

re-designed ray-tracing application.

Keywords : Message Passing Interface, Dynamic Process Management, InfiniBand, Collective communication.
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1 Introduction

The Message Passing Interface (MPI) is currently the most dominant model for programming parallel computers today. The

MPI specification defines a standard interface for communication, providing both point-to-point and collective communica-

tion primitives. The static model of MPI-1 mandates that the number of tasks is fixed at job launch time. This requirement

restricts the applications from spawning additional tasks for portions of the application or to expand and contract with com-

pute node availability. As a result, the MPI-2 specification added support for dynamic process management. This allows

MPI applications to create and communicate with new processes, thus providing a new paradigm for programming MPI ap-

plications. Dynamic process management is an emerging concept that enables application designers to adopt the well-known

master/worker paradigm to solve some of the complex real-world problems. Dynamic process management is being used in

grid application design and some of the multi-scale applications[24]. Several popular MPI implementations (OpenMPI[17],

MPICH2[16]) currently support this feature.

InfiniBand is commonly used as the high performance interconnect as it offers low communication latencies and high

bandwidths. As many as 30% of the top500 supercomputers use InfiniBand [1]. It is necessary to have an efficient dynamic

process interface that addresses the connection management and communication issues for MPI over InfiniBand to enable

applications to fully leverage the performance benefits of using InfiniBand networks. This opens up important problems that

need to be addressed while designing the dynamic process interface. The dynamic process management interface must use the

most suitable transport offered by InfiniBand to effeciently manage the connections between all the processes involved. In a

dynamic environment, processes communicate over an inter-communicator that comprises of both the parent communicator and

the spawned communicator. Most of the communication operations in MPI are optimized for processes that are within the same

communicator group. Designing and evaluating the communication operations between two or more groups of communicators

is an important research problem that we have addressed in this paper. Unlike many other MPI operations, there are no

standard benchmarks for evaluating the performance of the dynamic connection management framework and the inter-group

communication framework.

To summarize, the following are the main problems that we have addressed in our paper :

• InfiniBand offers various transport options. What are the performance implications of using the different transport

methods for the dynamic process management interface?

• How do inter-communicator point-to-point operations comapre with their intra-communicator counterparts? Can we

improve the inter-communicator point-to-point communication framework to achieve lower latencies?

• The performance of inter-communicator collective operations will strongly impact the application run-times. Is it possi-

ble to enhance the inter-communicator collective communication framework for the dynamic process interface?

• In the context of dynamic process interface, it is necessary to have a correctly benchmark the performance of the various

dynamic process management functions and the communication operations. Is it possible to create a new benchmark

suite to evaluate the performance of such functions?
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Unlike traditional Ethernet models, additional setup requirements are required for InfiniBand. We have explored using two

of the common InfiniBand transports for the connection management framework and studied their performance implications.

We have optimized the communication framework for the dynamic process interface, by proposing an enhanced inter-group

point-to-point design that utilizes the kernel based zero-copy mechanism called LiMIC, which leads to lower latencies for

larger messages exchanged between two process within the same node [9]. We also propose an improved inter-group collective

framework that exploits the shared memory based collectives to achieve significant performance benefits for the collective

operations [14, 19, 10, 20] in the dynamic process environment. We also propose a new set of benchmarks that evaluate the

important dynamic process management functions and the various point-to-point and collective communication operations that

are defined in the MPI standard. Our designs are implemented in MVAPICH2[18]: a MPI library for InfiniBand and iWARP.

We evaluate our designs and compare our results against the dynamic management framework support available in OpenMPI.

To model a real-world application, we evaluate a ray-tracing application that was re-designed to use the dynamic process model.

The rest of the paper is organized as follows: In Section 2 we present an overview of the dynamic process management

interface. An introduction to InfiniBand and its capabilities are presented in Section 3. In Section 4, we speak about the

inter and intra communicator collective operations and describe the high performance collective designs being used for intra-

communicator collectives . Section 5 presents the various issues involved with designing a high-performance dynamic process

management solution. In Section 6, we propose a number of new benchmarks to evaluate the performance of dynamic process

management implementations. Section 7 provides an evaluation of the various design options proposed using benchmarks

and Section 8 provides an application evaluation. Section 9 cites work related to dynamic process management and finally

Section 10 provides conclusions and offers future work in this area.

2 MPI and Dynamic Process Management

This section provides a brief overview of MPI communicators and the MPI-2 dynamic process management interface. We also

discuss an application use-case that uses the MPI dynamic process interface.

2.1 MPI Communicators

An MPI process is described by a (rank, process group) pair. The communicator encapsulates the ranks and the process group

for which the ranks are described. All MPI communications are described in the context of a specific communicator. A

communicator is a software construct that defines a group of processes and a context (tag/identifier) for communication within

that group. MPI operations use the rank and communicator context information to decide the target rank within the process

group. MPI COMM WORLD is a pre-defined communicator that allows for communication between all processes of the job.

MPI allows programs to create new communicators that contains a specific set of processes. These communicators are refered

to as intra-communicators as they are used for communication within that group of processes.

MPI defines another type of communicator called the inter-communicator. Inter-communicators have a local process group

and a remote process group and all communication is always between process in the local group and a process in the remote
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group.

The dynamic process interface in MPI-2 allows a process that resides in a specific intra-communicator, to spawn a new set

of processes, that are contained in a different intra-communicator. An inter-communicator that comprises of both the intra-

communicators is created and facilitates communication between the two process groups. Further, MPI allows us to create a

new intra-communicator that includes all the running processes in both the process groups - the parent communicator and the

spawned communicator. In the Figure 1, the working of an inter-communicator has been illustrated

Figure 1: Inter-communicator

2.2 Dynamic Process API

The MPI standard defines three functions to create and join new processes into existing MPI jobs.

• MPI Comm spawn : This is a collective function called by all the processes in a communicator. When this function is

called, the root process of the communicator spawns a set of child processes. All the processes return from the call only

when the inter-communicator that connects the existing process group and the newly spawned process group has been

created.

• MPI Comm accept/MPI Comm connect : These functions provide a client-server paradigm to facilitate the creation

of an inter-communicator between the parent and child process groups.

• MPI Comm join : Using this function two processes with an existing TCP/IP connection can establish an inter-communicator

and start MPI message exchange.

3 InfiniBand

InfiniBand is a popular processor and I/O interconnect that has become popular and is enjoying wide success due to low latency

(1.0-3.0µsec), high bandwidth and other features. Over 30% of the Top500 fastest supercomputers show InfiniBand as the

interconnect being used. The InfiniBand network device is also referred to as Host Channel Adapter (HCA).
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3.1 Communication Model

The InfiniBand communication model uses two queues called the send queue and the receive queue, together called a queue

pair (QP). Send and receive work requests (WRs) are posted in these queues and the completion of the request is indicated

by putting a completion entry in the completion queue (CQ). Completion can be detected by polling the CQ. InfiniBand also

supports an event-based completion model that can be used for asynchronous completion.

3.2 Transport Services

InfiniBand defines four transport modes: Reliable Connection (RC), Unreliable Datagram (UD), Reliable Datagram (RD) and

Unreliable Connection (UC). Of these, RC and UD are required to be implemented in any InfiniBand-compliant HCA. RD is

not required and is not implemented in any currently available devices.

The RC model is a connected reliable model and the most popular service. An RC QP can be used to communicate with

another dedicated RC QP. Thus using RC for n peers requires each peer create at least n-1 QPs to be fully-connected. RC

provides most of the InfiniBand features such as RDMA and atomic operations.

The UD transport service is unconnected and unreliable. No message delivery guarantees exist. The main advantage of UD

is that a single UD QP can communicate with any other UD QP in the system. They are not explicitly connected as in RC.

Instead, to address a message to another QP in the system the Local Identifier (LID) and the QP Number (QPN) can be used.

The LID can roughly be thought of as an IP address and QPN a port in InfiniBand terminology. The downsides of UD are

that reliability must be taken care of in the application and only a single Maximum Tranfer Unit (MTU) of data (2KB on most

HCAs) can be sent at a time. Thus, the software must perform the packetization. Despite these downsides, previous work has

shown that MPI applications benefit from UD transports due to lower overheads [12].

4 Collective Communication

In this section, we give a brief overview of the intra and inter-communicator collective communication operations that are

defined in the MPI Standard.

The collective communication for intra-communicators have been extensively studied. Profiling information gathered from

common applications reveal that a significant amount of application run-time is spent in the collective calls. Since collective

operations typically involve multiple processes exchanging messages simultaneously, it is necessary to design algorithms that

are fully aware of the communication pattern, system and network characteristics to acheive high performance. InfiniBand

offers RDMA support that enable a process to write directly into another process’ memory and this feature has been leveraged

for intra-communicator collectives [2, 21, 11, 25]. Multi-cores have become ubiquitous and the core density per node is

constantly increasing. Owing to the common shared memory regions, such machines allow for faster communication between

two processes that reside within the same node, when compared to communication done over the network. This concept has

lead to several interesting design options that utilize the shared memory to optimize the intra-node exchange phases of the intra-

communicator collective operations [14, 19, 10, 20]. These algorithms have resulted in significant improvements in application
7



runtime.

The inter-communicator collectives are commonly used in the context of dynamic process management. It is common for

processes in the parent communicator to be involved in collective operations with the processes in the spawned communicator

and this is done over the inter-communicator that comprises of both the communicator groups. Based on the message exchange

pattern, the MPI standard categorizes the inter-communicator collective operations as All-to-All, All-to-One, One-to-All and

Other. All-to-One and One-to-All collective operations are typically rooted operations and involve the movement of messages

in a specific direction between the two groups of communicators. All-to-All operations involve messages being exchanged

between processes belonging to both the groups simultaneously. Collective calls that belong to the Other category either have

a communication pattern that do not fit into the above categories - such as MPI SCAN or do not involve any explicit movement

of messages such as MPI Barrier.

The inter-communicator collectives involve slightly different message exchange patterns than their intra-communicator

counterparts. Collective communication between processes that reside within the same communicator is a very well studied

area and several optimal algorithms have already been proposed. However, in the context of collective communication in the

dynamic process interface, optimizing the performance of inter-communicator collectives is an important research problem that

we have addressed in this paper.

5 Design

In this section we describe our design for the dynamic process management framework. Figure 2 shows the architecture of the

MPI-2 dynamic process management. The MPI application uses the API described in Section 2 to spawn new tasks. An MPI

Figure 2: Dynamic Process Management framework

Figure 3: Flowchart of spawn

design has to handle the startup of the new tasks and the three parts of the startup are the spawn phase, scheduling phase and

the communication phase.
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5.1 Spawn phase

The spawn design requires that the MPI application talk to the job manager. This is accomplished using a common protocol

between the dynamic process management API and the job launcher. This phase requires network communication on the

management network (usually using TCP/IP). In our designs, we consider two job launchers, the Multi-Purpose Daemon

(MPD), which is the default scheme in MPICH2 [16] and mpirun rsh, a MVAPICH2 specific startup manager based on the

ScELA [23] architecture. The job launcher interface defines a protocol that is used to propagate the parent’s port information,

size of the new job, command and arguments.

5.2 Scheduling the tasks

MPI-2 standard does not define a way to do task placement. The task scheduling is performed by the startup agent or a job

management system. Scheduling of dynamic tasks requires the job manager to maintain global history of dynamic tasks and

place tasks based on this history. Our implementation uses MPD or mpirun rsh to schedule tasks. MPD is discussed in more

detail in [3]. mpirun rsh framework is based on the ScELA architecture and is discussed in detail in [23].

Both tools place tasks in a round-robinmanner, but suffer from the drawback that multiple spawns are scheduled to the same

nodes resulting in imbalance. The studies in [4] have addressed this issue in LAM-MPI by suggesting various task placement

mechanisms to maintain load balance. The job launchers schedule the tasks and perform the final exec of the processes. Finally,

the child processes sychronize with the parent process group to complete the dynamic process launch.

5.3 Communication phase

To design the spawn interface we require the parent to request a spawn and wait to sychronize with the child processes to es-

tablish the inter-communicator. The communication phase begins with the child-root of the spawned process group connecting

back to the parent to exchange process group information. To establish the inter-communicator the processes need to know

the process group ID, the size of the remote process group and the context ID to be used. Additionally, implementations may

require a way to identify each remote rank independently to exchange messages. In our design each rank is uniquely identified

by their UD queue pair numbers and the LID. This information is exchanged between the root processes and broadcast within

their local groups. Figure 3 shows the flow of information required to implement the spawn interface.

5.3.1 Communication methods

Every spawn requests results in the child-root connecting to the parent process to exchange information. An application that

spawns tasks frequently will incur the overhead of this connection establishment and communication for every spawn. Thus, to

efficiently design the spawn interface we need lightweight connection establishment protocols. As noted in Section 3 there are

two different transport modes for InfiniBand: RC and UD, that we can use for this designing this phase.
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5.3.2 MPI Comm spawn

To perform the spawn, we first create the connection information of the parent that is passed to environment of the spawned

children. This is managed via environment variables and propagated by the job manager. The parent process advertises a port

in the form of an LID and two UD queue pair numbers. One of the UD queue pair numbers is utilized for the accept/connect

interface. The other UD queue pair number is used for RC QP connection establishment [26]. Once the processes are spawned,

the parent process waits for the child-root of the remote group to connect back.

5.3.3 MPI Comm connect

The spawned process group collectively performs the connect. Only the child-root connects to the parent process, while the

other ranks wait for remote group information. We have two possible designs at this point, using RC for message exchange

versus using UD.

• UD: If the amount of data to be exchanged with remote root is small then it is more efficient to use a direct UD exchange.

In this mode, the child-root sends the process group size, process group ID and context ID for the communicator in a

single UD message. The parent-root acknowledges the exchange and sends its process group ID, group size and context

ID. Both the ranks broadcast the remote group informationwithin their ownMPI COMM WORLD. In the next step, both

root processes exchange the connection information within their local groups. In our design the connection information

consists of the LID and UD QPN. In applications that spawn often and spawn few processes the UD direct exchange

model is more scalable and quicker than creating short-lived RC connections.

• RC: If an application spawns large jobs and spawns are infrequent, the connect API uses the second UD QP number to

establish an RC connection with the remote root. This connection establishment is according to the algorithm defined in

[26]. Following the message exchange, the two root ranks establish a RC connection that is used to exchange process

group information.

At the end of the above stage each process has the information required to independently create the inter-communicator

to communicate with the remote group. The inter-communicator can now use regular MPI communication using the point-to-

point, remote memory access (RMA) or collectives.

5.4 Enhanced inter-communicator point-to-point operations

Multi-core computing has now become ubiquitous and the number of processing units within a compute node is constantly

increasing. For most message sizes, the communication between processes that reside within the same compute node is faster

than communication between processes that are on different nodes. This is because the processes use the common shared

memory for exchanging the messages. However, this approach involves an extra-copy of the message being made in the shared

memory region. For larger messages, the overhead introduced by the extra-copy is undesirable. In [9], authors have proposed

utilizing a portable zero-copy based, kernel assisted design called LiMIC, for optimizing the intra-node communication. In this
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work, we have studied the advantages of using the LiMIC module for optimizing the intra-node communication, in the context

of dynamic process management.

5.5 Shared Memory based inter-communicator collectives

In the dynamic process framework, collective operations are performed over processes that are in both the communicator groups

- the parent communicator and the spawned communicator. These collective operations are essentially inter-communicator

collective operations done on the communicator that comprises of the parent and the spawned communicators. In MVA-

PICH2, the inter-communicator collective operations are designed on top of the intra-communicator collective calls. Most

of the inter-communicator collectives can be viewed as a combination of two communication phases. One phase involves

an intra-communicator collective call done locally on either of the two groups. In this phase, the MPI library creates a new

intra-communicator from the inter-communicator to include all processes that are local to a particular group, either the parent

communicator or the spawned communicator. The intra-communicator collective phase is done in the context of the new intra-

communicator. The other phase involves communication between the local roots of the two groups. The inter-communicator

MPI Alltoall operation is one of the exceptions to such a generalization. By default, all inter-communicator collective oper-

ations utilize the non-optimized versions of the intra-communicator collectives. This is mainly due to the fact that that new

intra-communicator is a single-level communicator that does not consider the topology of the processes. As explained in

Section 4, the shared memory based collective algorithms rely on grouping processes that are within the same compute node

within a hidden 2-level communicator. In this paper, we have re-designed the inter-communicator collective operations to

utilize the optimized shared memory based collective algorithms. In our proposed shared memory based inter-communicator

collective framework, the MPI library creates a 2-level intra-communicator from the inter-communicator. This allows the

inter-communicator collective operations to make full use of the high performance designs that have been proposed for intra-

communicator collective operations.

6 Designing Benchmarks for Dynamic Process Management

To the best of our knowledge, there are currently no metrics or standard applications to benchmark various designs and im-

plementations of MPI-2 dynamic process management. To address this need we design a set of benchmarks that are useful to

measure performance of a MPI-2 library. The benchmarks are similar to the existing OSU Benchmark suite [15] released with

the MVAPICH/MVAPICH2 software.

6.1 Spawn Latency

The spawn latency benchmark measures the time taken to perform the MPI Comm spawn routine. We time the execution of

this function in the parent-root process. MPI Comm spawn is a collective operation over the spawning communicator and

hence the benchmark can vary the size of spawning parent-communicator and the size of spawned child-communicator. The

time to spawn is an important metric as it is the measure of the overhead in using dynamic process management. Minimizing
11



this overhead is vital if dynamic processes are to be used in MPI applications. Due to involvement of system resources and

job manager framework, the measured values of the latency has significant variation. The benchmark averages the latency over

a large number of runs. The time to disconnect is not considered in the measurement of the latency. The work done by the

spawned processes does not affect the measurement as the latency measured is a part of the MPI Init time on the child group.

6.2 Spawn Rate

The spawn rate benchmark measures the rate at which an implementation is able to perform the MPI Comm spawn routine. It

is calculated by spawning jobs continuously and finding the rate at which the implementation is able to create new MPI jobs.

The benchmark does not consider the time for disconnecting the inter-communicator. Spawn Rate is an important metric as

it can estimate the scalability of our design. As the spawn rate benchmark oversubscribes the processors we try to minimize

the effect of spawned jobs on the spawn rate by putting the spawned process to sleep until the benchmark is complete. This is

required as multiple jobs will be scheduled to the same cores as the benchmark progresses, this being the default behavior of

the job launchers considered.

6.3 Inter-communicator Merge Latency

MPI specification provides four intercommunicator operations, including MPI INTERCOMM CREATE, MPI INTERCOMM

MERGE,MPI COMM DUP andMPI COMM FREE. SinceMPI INTERCOMM CREATE has been implemented in MPI Co

mm spawn, we chooseMPI INTERCOMM MERGE funcion as a representive of intercommunicatoroperations. MPI INTERC

OMM MERGE creates an intra-communicator by merging the local and remote groups of an inter-communicator, which pro-

vides users more flexible options on intercommunicator operations, for example, applying appropriate topology on merged

intra-communicator. The latency for intercommunicator merging is increased along the number of processes in local and re-

mote process group. In our micro-benchmark, we spawn n processes in remote process group, where n is equal to the number

of processes in local process group. To get a reliable result, the benchmark calls the function in a loop. In each loop, the new

intra-communicator is first established through MPI Intercomm merge function, then it’s freed by MPI Comm free function.

Only the time spent on merge function is accumulated. An average result is calculated in order to get more precise numbers.

6.4 Inter-communicator point-to-point latency

Point-to-point inter-communicator operations involves the movement of data from a local group to a remote group. This

inter-group message latency is an important metric as designs may have better optimizations for intra-communicators than

inter-communicators. With inter-communicators, message delivery has an additional overhead of mapping from the (local

process group, rank) to the (remote process group, rank). In some designs, such as ours, no connections are setup between

ranks of the local and remote process groups. Connections are setup on-demand, when the ranks really need to communicate.

This connection establishment time can be excluded from measurement by using a warmup loop. Our benchmark calculates an

average latency between two processes from different groups but are on the same node.

12



6.5 Inter-communicator collectives latency

As explained in Section 4, the time taken spent in the collective operations significantly impacts the overall performance of the

applications. Applications that utilize the dynamic process management features perform collective operations that are done

over an inter-communicator that comprises of the parent and the spawned communicators. In Section 5, we proposed an inter-

communicator collective framework that utilizes the optimized shared memory based collective algorithms. It is necessary to

design micro-benchmarks that measure the performance of the various inter-communicator collective algorithms. To the best of

our knowledge, there is no benchmark suite that is also designed to measure the performance of inter-communicator collective

operations. In this paper, we have designed a benchmark suite to measure the performance of a few of the inter-communicator

collective operations including MPI Bcast, MPI Reduce, MPI Allreduce, MPI Reduce Scatter, MPI Allgather, MPI Alltoall

andMPI Barrier. For each of these operations, we have designed the benchmarks to adhere to the inter-communicator collective

specifications defined in the MPI-2 Standard. Since the connections between processes are set up only when the they first start

sending messages to each other, it is essential to design the benchmarks to amortize the cost of the connection setup phase.

In our benchmarks, for each message size, we call the inter-communicator collective operations several times and collect the

average time each process takes to complete one collective operation. For rooted collective calls, it is also important to measure

the minimum and maximum amount of time spent within the collective call, across the set of all the processes in the inter-

communicator. This is because of the assymetric nature of the message exchanges for such collective calls. In MVAPICH2,

we have shared memory based collective algorithms for MPI Bcast, MPI Reduce, MPI Allreduce and MPI Barrier. In the

following section we have demonstrated the benefits of using these algorithms for inter-communicator collectives in the context

of communication in a dynamic environment. However, owing to a limitation in our shared memory design, at this point,

we are limited to having only one process in the parent communicator for the benchmarks involving the inter-communicator

counterparts of these operations. However, we believe that the results are still representative of the overall performance and can

be used to infer the benefits of using shared memory based designs for inter-communicator collective operations. For the final

version of the paper, we intend to have this minor issue resolved to allow for a broader set of results.

7 Performance Evaluation

7.1 Experimental Platform

We use a 64-node Xeon cluster with each node having 8 cores and 6 GB RAM. The nodes are equipped with InfiniBand DDR

HCAs and 1 GigE NICs. All the nodes are connected to a single file server accessed by the NFS (Network File System)

protocol. We present results using a 64x8 layout, which uses all 512 cores, with cyclic allocation of ranks. We also present

a result with block allocation of ranks. Our designs were implemented in the MVAPICH2 library. We evaluate our design in

MVAPICH2 as well as OpenMPI, another popular MPI library.
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7.2 Spawn Latency

Figure 4 (a) shows the results of running the spawn latency benchmark. The latency experiments are run on nodes without any

busy tasks to yield the lowest possible results. We present five results in the graph, mvapich2-MPD-RC: which uses only RC

connections andMPD for startup,mvapich2-mpirun rsh-RC: which uses RC connections andmpirun rsh for startup,mvapich2-

MPD-UD, which uses UD for initial information exchange and MPD for startup and mvapich2-mpirun rsh-UD which uses UD

for initial information exchange,mpirun rsh for startup andOpenMPI: which shows the latency results for the OpenMPI library.

As seen in Figure 4, the RC and UD implementations perform almost equally when MPD is used for very small job sizes. For

job size of 32 and beyond the UD design shows a slight benefit. With mpirun rsh we see that the UD design provides a lower

spawn latency. The mvapich2-mpirun rsh-RC and OpenMPI perform similarly (up to 128 processors) as both use a connection

based startup model with similar job launch mechanism. However, for 512 processes, mvapich2-mpirun rsh designs perform

better than OpenMPI. On the job startup angle, we find the MPD startup mechanism is faster than mpirun rsh for small job

size, however for larger jobs mpirun rsh is more scalable. This is due to the fact that MPD maintains a ring-of-daemons on all

nodes, spawning a new job on a node just requires a TCP/IP message to be sent to the daemon. The MPD mechanism, however

has higher startup latency as number of ranks grows. mpirun rsh framework is a daemon-less startup manager based on ScELA

architecture[23]. It incurs higher overhead for small job launches, but it is highly scalable and provides very low latency for

higher jobs sizes.
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Figure 4: Latency - 512 cores: (a) Cyclic rank allocation and (b) Block rank allocation

The second set of results we present in Figure 4 (b) are the the spawn latency with block allocation of ranks. This is an

important result as it shows the effect of HCA contention on the spawn time. As seen in the graph, when there are multiple

jobs per node, the UD spawn design performs better than the RC design, as the UD model has lesser startup overhead. The

UD design is more relevant here as job allocation is generally block distributed. The UD design is simpler and lightweight.

OpenMPI performs very similar to mvapich2-mpirun rsh-RC in this benchmark for up to 256 processes. However, for 512

processes mvapich2-mpirun rsh designs perform the best.
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7.3 Spawn Rate

The spawn rate benchmark is evaluated with 16-nodes of the cluster, for a total of 128 cores. The benchmark measures the

rate of sustained spawn supported by our design. The reported value is the number of spawns/second with increasing job sizes.

Figure 5 shows the results of the benchmark running on our design.

 0

 2

 4

 6

 8

 10

 12

 1  2  4  8  16  32  64  128  256  512

S
p
a
w

n
 r

a
te

 (
s
p
a
w

n
/s

e
c
o
n
d
)

No. of processes spawned

mvapich2-MPD-RC
mvapich2-MPD-UD

mvapich2-rsh-RC
mvapich2-rsh-UD

OpenMPI

Figure 5: Spawn rate
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Figure 6: Inter-communicator merge latency

We see that the UD design using MPD job manager provides the best spawn rate. The relatively higher cost of creating

and destroying RC queue pairs leads to a slower spawn rate with RC. As we have seen mpirun rsh startup has a higher initial

overhead and results in a lower spawn rate, however it scales very well and maintains a steady spawn rate with increasing job

size. OpenMPI performs similar to mpirun rsh and has a low spawn rate for small jobs. Only mvapich2-MPD designs are

able to provide a high spawn rate for small jobs. The spawn rate is an important metric to consider when designing an MPI

application with frequent job spawns. The benchmark clearly shows that to have a high spawn rate we need a low-overhead

connection mode (like UD) and an MPD-like startup framework.

7.4 Inter-communicator Merge Latency

The inter-communicator merge latency benchmark involves up to 16 nodes with 128 cores. On each node, half of the cores

are occupied by processes from local progress group while the other half of cores are used by spawned processes. Then the

benchmark creates a new intra-communicator which includes all the processes in both local and remote process groups. In

our mvapich2 implementation, we use point-to-point functions to exchange information that is used to determine which group

is ordered first in the generated communicator, while in OpenMPI, this is done by allgather operation. The difference in the

algorithm might result in the better performance of OpenMPI on merge latency, according to Fig 6. Also after the new intra-

communicater established, an intra-communicator broadcast is called in order to update local information, where the shared

memory collective design helps to reduce the latency slightly. We will have more insight in inter-communicator collective

operations in Section 7.6.
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7.5 Inter-group Latency

The inter-group latency is a basic latency test to measure the difference between intra-communicator latency and inter-communicator

latency.
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In Figure 7 we compare the latency for inter-communicator and intra communicator point-to-point operations for default

MVAPICH2 and OpenMPI. For the default MVAPICH2 version, the inter-communicator latency is slightly higher than the intra

communicator exchange latency. This is due to searching of process group and managing the translation from local group to

remote group. In OpenMPI, intra-communicator latency is better than inter-communicator latency for messages smaller than

16K. However, for larger messages, inter-communicator point-to-point operations shows better results.

In Figure 8, we compare the inter-communicator latency across OpenMPI, the default version of MVAPICH2 and our

proposed design that utilizes the LiMIC module. We can see that our proposed design performs significantly better than either

of the other two inter-communicator versions. The performance improvement is about 67% for 64KB message size.

7.6 Inter-communicator collectives latency

7.6.1 MPI Alltoall

In an MPI AlltoAll operation done over an intra-communicator, each process sends a distinct message to every other process

and receives a distinct message from every other process. In case of an inter-communicator, each process in one group sends a

distinct message to every process in the other group and vice versa and there is no exchange of data between processes within

a single intra-communicator. Since MVAPICH2 does not have a shared memory based algorithm for MPI Alltoall, in our

benchmark, we have equal number of processes in the parent process group and the the dynamically spawned process group.

As seen in Fig 9, the current implementation of MVAPICH2 performs better than OpenMPI for all the message sizes. It is

imporant to observe that the current algorithm for inter-communicator MPI Alltoall uses a pair-wise exchange scheme for all

messages which results in poor performance for small messages. However, utilizing the zero-copy based mechanism for point-

to-point calls, does not lead to any gains for this collective operation. This can be attributed to the communication pattern of
16



the pair-wise exchange scheme. In a given iteration, a process might be involved in message exchange between two processes,

one of them is within the same node and the other is in a different node. The time required to complete this iteration depends

on the inter-node communication time, irrespective of how quickly the intra-node operation completes.
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Figure 9: Inter-communicator Alltoall Latency :(a) Small Messages and (b) Large Messages

7.6.2 MPI Allreduce

This benchmark measures the time taken for an inter-communicator MPI Allreduce operation to complete. In an inter-

communicator MPI Allreduce operation between two communicators A and B, the result of the reduction of the data pro-

vided by processes in group B will be stored at all the processe in group A and vice versa. Since MVAPICH2 offers an effecient

shared memory based algorithm forMPI Allreduce, we have explored the performance implications of having a shared-memory

enabled inter-communication MPI Allreduce operation. However, we are constrained to have one process in the parent com-

municator. In this test the parent processes spawns 63 child processes uniformly across 8 nodes. From the results in Figure 10

we see that the current version of MVAPICH2 consistently shows lower latencies when compared to OpenMPI. We can also

see performance benefits of using shared memory based inter-communicator MPI Allreduce algorithm along with the kernel-

based zero copy mechanism being used for all intra-node large message exchanges. The improvement is about 36% at 512KB

message size.

7.6.3 MPI Bcast

In an inter-communicator broadcast, one of the groups defines the root and data is sent from the root to all the processes in the

other group. In MVAPICH2, we perform this operation by having one point-to-point exchange between the root of the parent

communicator and the child-root of the spawned communicator. The child-root then does an intra-communicator MPI Bcast.

In our proposed design, the intra-communicator MPI Bcast phase uses the effecient shared memory broadcast algorithm. Our

benchmark involves one process in the parent communicator and it spawns 63 processes and performs MPI Bcast over this

inter-communicator. The results in Figure 10(a) show that MVAPICH2 performs comparably or better than OpenMPI for

17
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Figure 10: Allreduce Latency for 63 Spawned Processes: (a) Small Messages and (b) Large Messages

messages sizes upto 8KBytes. For 16KByte messages OpenMPI performs better. From Figure 10(b) we see that MVAPICH2

consistently performs better than OpenMPI for large message sizes. The proposed schemes show notable effect on performance

for message sizes beyond 16KBytes. We see a 56% improvement in latency for 512KB message size and a 22% improvement

for 2MB message size.
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Figure 11: Broadcast Latency for 63 Spawned Processes: (a) Small Messages and (b) Large Messages

7.6.4 MPI Reduce

The inter-communicatorMPI Reduce operation involves all the processes specifying the root of the operation. Suppose the root

is in the intra-communicatorA, the data from all the processes in the intra-communicatorB is ultimately accumulated at the root.

In MVAPICH2, this operation involves a local intra-communicator MPI Reduce performed on the remote communicator and

this data is sent to the root through a point-to-point call. MVAPICH2 supports an optimized shared memory based algorithm for

MPI Reduce. In our proposed design, we have used the optimized intra-nodeMPI Reduce algorithm for the reduction phase on

the remote communicator. We also observed that process skew that originated during back-to-back calls to MPI Reduce resulted
18



in widely varying timing results. To address this issue, in our benchmark, we call MPI Barrier, before each call to MPI Reduce.

However, the time spent in MPI Barrier is not considered for our analysis. In Figure 12, we can see that for medium and larger

messages, our proposed framework delivers better performance than OpenMPI and the default inter-communicator schemes in

MVAPICH2. Compared to the default MVAPICH2 performance the proposed framework has a 30% improvement at 512KB

message size.

7.6.5 MPI Barrier

Finally, we also evaluate the performance of the inter-communicatorMPI Barrier operation. InMVAPICH2, the inter-communicator

barrier operation has been designed on top of a pair of inter-communicator broadcast operations. As explained earlier, the inter-

communicator broadcast operation has been designed on top of intra-communicator MPI Bcast calls. Since the MPI Barrier

involves the movement of a small message, we use the point-to-point based binomial algorithm during the broadcast opera-

tion. Owing to this, we do not expect to see any performance improvements in our proposed inter-communicator framework.

We noticed that the inter-communicator MPI Barrier operation has been implemented on top of a call to inter-communicator

MPI Allreduce, in OpenMPI. In Table ??, we can see that MPI Barrier designs used in OpenMPI provide lower latencies.
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8 Application (Distributed Rendering) Evaluation

Graphics rendering is a highly parallelizable activity. Distributed rendering works by distributing each frame to be rendered to

the compute nodes of a cluster. A frame can usually be rendered independently of other frames and the only communications

involved are the initial frame data distribution and final collection of rendered images. Rendering can be programmed easily

using a master-slave model. Render farms are common in Computer Graphics Imagery (CGI) industry, with the farms hosting

several render servers that can be used by clients.

To demonstrate the feasibility and real-world application of the dynamic process interface we designed a dynamic process

version of POV-Ray, a popular, open-source ray-tracing application. Using our design, a graphics programmer can decide at
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execution time the optimal number of compute nodes required for the job and spawn the rendering on the nodes. There have

been MPI parallelization efforts on POV-Ray [6], but these implementations use a static runtime environment. The dynamic

process interface can be programmed to have a changing environment in which we can expand or contract the available slave

resources. This is similar in concept to a render farm and this paradigm can be programmed using the MPI-2 interface. We

present our evaluation of the POV-Ray in the following paragraph.

We implemented a parallel version of POV-Ray to use the MPI-2 dynamic process interface. However as of now, all

message transfers are based on point-to-point operations. So, we do not expect to see any improvements through our proposed

collective framework. The timing data for the application with our proposed framework that uses LiMIC could not be obtained

for this version of the paper. We compare the results of using our RC design, UD design and traditional static runtime parallel

POV-Ray. For our evaluation we render a 3000x3000 glass chess board with global illumination. Figure 13 shows the results

of our evaluation.

As seen in the graph, the dynamic process framework adds very little overhead to the overall execution of the application.

Until 32 processors the speedup factor is almost the same for all three designs. Beyond 32 processors, the cost of startup and

parallelization starts to accumulate and the dynamic version incurs some slowdown.

Evaluating real-world problems clearly shows the feasibility of the dynamic process framework. Moreover, using dynamic

processes gives more control to the application programmer who can intelligently decide the parallelization factor and place-

ment of the jobs at run-time. Additionally, using the dynamic process framework applications can dynamically change size and

scale of the application which is a key benefit.

9 Related Work

The architecture of a dynamic process creation framework for MPI was described by Gropp and Lusk [8]. The MPI-2 standard

[7] defined the process creation and management interface. The standard defined only the process creation interface leaving

the job scheduling to the MPI implementation. Gabriel et al [5] evaluated the dynamic process interfaces of several MPI-2
20



implementations. They measure the bandwidth achieved in point-to-point message exchange over traditional versus dynamic

communicators, however they do not provide any mechanism for implementing the interfaces.

Marcia Cera et al [4] have explored the issue of improving scheduling of dynamic processes. Their solutions are aimed at

load balancing jobs across nodes of a cluster and providing novel ways of scheduling dynamic processes across a cluster.

Several researchers have explored using dynamic processes for fault-tolerance in MPI applications [13]. Kim et al. [22]

explored the design and implementation of dynamic process management for grid-enabled MPICH. However, their work did

not explore the design of the MPI-2 dynamic process interface, but implemented a new MPI interface MPI Rejoin that allows

processes to join existing process groups.

Several designs that utilize shared memory and RDMA features to acheive high performance for intra-communicator col-

lective operations have been proposed. Some of the notable works include [14, 19, 10, 2, 21, 11, 20, 25]. Effecient intra-node

point-to-point designs have been proposed in [9].

10 Conclusions

With increasing popularity of multi-core processors and commodity clusters, MPI has become the dominant parallel program-

ming model. However, several large applications have traditionally used the master/slave programming model. The MPI-2

dynamic process interface can be used in the master/slave model. Additionally, MPI-2 dynamic process primitives provide a

client-server API as well. In this paper we have addressed the design perspective of an efficient dynamic process interface.

MPI Communication operations over intra-communicators are well studied and optimized but optimizing point-to-point and

collective communication operations over inter-communicators is an important issue that needs to be addressed in the context

of dynamic process interface. In this paper, we have proposed a new framweork for inter-communicator point-to-point and

collective operations that leverage the use of kernel based zero copy intra-node message transfers and effecient shared memory

based collective algorithms to achieve high performance. We implemented our designs and evaluated them on MVAPICH2, a

popularMPI implementation for InfiniBand. We have also designed a new benchmark suite to evaluate our designs and compare

them with the dynamic process framework available in Open-MPI. Our study draws the following conclusions on designing

and evaluating the dynamic process framework and inter-communicator communication.

• AnMPD-like daemon based startup model is required for supporting frequent task spawning. The spawn rate benchmark

clearly shows the superiority of the daemon-based startup model. But at the same time MPD suffers from very high

latency for large job sizes. For very large job launches, the ScELA [23] architecture has proved to be highly scalable and

reliable. Thus, mpirun rsh based startup models are required for managing large jobs.

• Lightweight communication primitives are better for the task startup phase. The benchmarks show the advantage of using

a UD model for InfiniBand. Similar lightweight transport schemes (such as UDP) should apply in other environments

(such as 10GigE). Ideally, we need a hybrid design that can switch from low-overhead mode to a higher-overhead high-

performance mode based on job sizes. Our current designs do not perform this switch and this is a area of future work

we plan to explore.
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• Evaluation of our designs shows that Kernel-based zero copy mechanism (LiMIC) and shared-memory based collec-

tive algorithms can be exploited to achieve considerable performance gains in inter-communicator point-to-point and

collective communciation operations in the dynamic process management framework.

• MPI applications don’t incur heavy overhead in using the dynamic process framework. The evaluation of the ray-tracing

application clearly demonstrates the feasibility of the dynamic process paradigmwith the benefits of dynamically growing

or shrinking jobs.

In the future we hope to explore designing applications with non-static job sizes using the MPI-2 inter-communicatormerge

operations. We also hope to explore the job scheduling for dynamic tasks in more detail.

11 Software Distribution

Currently, in MVAPICH2, we use mpirun rsh and mpd for spawning jobs in the dynamic process management interface. For

establishing connections between processes and for transfering messages between processes, we use the RC transport mode

offered by InfiniBand. In the future, We plan to incorporate the designs for UD based connection establishment, enhanced

inter-communicator point-to-point and collective communication operations into our next releases . The new benchmarks

designed for evaluating dynamic process management interface of MPI-2 libraries will be integrated with the standard OSU

benchmarks [15] and made available to the community in the near future.
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