
Maximizing Energy Efficiency for Convergecast
via Joint Duty Cycle and Route Optimization

Wenjie Zeng, Anish Arora, and Ness Shroff
Department of Computer Science and Engineering, Ohio State University, Columbus, Ohio 43210

Email: {zengw, anish, shroff}@cse.ohio-state.edu

Abstract—The energy efficiency of the widely used converge-
cast pattern depends substantially on the choice of medium access
control (MAC) and routing protocol. In this paper, we formalize
the maximization of convergecast energy efficiency with respect
to its MAC and routing as a resource constrained optimization
problem. We then analytically show that this maximization
problem is linear in the context of two prototypical MACs —
a locally synchronized wakeup (as in S-MAC) and a locally
staggered wakeup MAC (as in O-MAC)— assuming low, uniform
traffic that is delivered reliably and without interference. With
this insight, we present a centralized algorithm, MeeCast, that
solves the optimization problem utilizing linear programming
techniques. We also design a distributed version of MeeCast,
for the case where the traffic is ultra-low, and prove that it
achieves optimality as well as fast convergence time. Notably,
this version is self-stabilizing, so it autonomically handles changes
in traffic load, network topology, loss of coordination and state
corruption. In comparison with a state-of-the-art convergecast
protocol, Dozer, MeeCast achieves better energy efficiency and
application lifetime in the context of S-MAC and identical energy
efficiency but better application lifetime in the context of O-MAC.

I. INTRODUCTION

Monitoring is the predominant use case for Wireless Sensor
Networks (WSNs) today, cf. [1], [2], [3], [4]. Thus converge-
cast, wherein data from children nodes is collected by parent
nodes and progressively forwarded towards one or more base
stations, is a common case operation and its energy efficiency
is of systemic importance. By energy efficiency, we informally
mean the amount of data collected by the base station per unit
of energy consumed by the whole network.

In general, optimization for energy efficiency can be per-
formed at multiple layers ranging from application level data
aggregation, to transmission power control and path selection,
to traffic and wakeup scheduling, down to physical layer
channel selection schemes. Layers are often interdependent.
Recent work on cross layer optimization ([5], [6]) has shown
that optimization within a single layer usually fails to achieve
optimality because it does not address layer interdependencies.
We are therefore motivated to consider optimizing converge-
cast energy efficiency in a cross-layer fashion.

It is by now well understood that radio receiver power
consumption is a dominant component of the energy equation
in low-power WSNs [7]. In other words, minimization of radio
idle listening, overhearing of traffic intended for others, and
interference has substantial efficiency impact from a systems
analysis viewpoint. Our problem focus therefore includes

control of traffic scheduling, which determines when a node
should send or receive, as well as wakeup scheduling, which
determines how long it should be active.

Both traffic and wakeup scheduling are functions of the
MAC. In conventional network architectures, the control of
the former is usually internal to the MAC, whereas that of the
latter is usually exposed so that higher layers can choose the
overall duty cycle. By duty cycle, we mean the percentage
of time a node’s radio is activated by its MAC; the duty
cycle can be further decomposed as reception (respectively,
transmission) duty cycle, which determines the percentage
of time a node receives (respectively, transmits). Exposing
duty cycle control on a per node basis to the routing layer
is particularly relevant for energy efficiency of multi-hop
convergecast, since convergecast load varies from node to node
and hop to hop. A node operating a node at a duty cycle higher
than necessary will waste energy by idle listening, whereas
operating at an insufficient duty cycle will fail to satisfy its
local communication load, which depends on its local data
generation rate and the routing layer induced traffic.

Conversely, the routes chosen for convergecast depend on
MAC layer scheduling. Routing is typically based on metrics
such as Packet Reception Rate (PRR) and latency, which in
turn depend on MAC scheduling, especially when the duty
cycle is optimized to just accommodate the current traffic:
A lower than desirable duty cycle results in low reliability
and high latency; the same is true for a duty cycle allocation
to nodes in a neighborhood that is higher than the channel
capacity in that neighborhood can accommodate. Moreover,
routing needs to account for duty cycle constraints of nodes.
For instance, Zhao et al [8] have shown that although link
quality is time variant, good links are relatively stable over
relatively long time windows, and thus nodes on the reliable
paths are likely to remain as preferred next hops for multiple
children and thereby drain their battery much faster. Selecting
only nodes with the best links reduces application lifetime, so
it is potentially preferable to choose paths over less preferable
hops in order to accommodate node energy constraints.

In sum, a scheme that optimizes efficiency within one layer
only will fail to address this cyclic dependency between the
MAC and routing layers. Our problem focus thus accommo-
dates joint routing and duty cycle control.

Contributions of the paper. In this paper, we formalize
the maximization of energy efficiency with regard to MAC
scheduling and routing as a resource constrained optimization

2

problem. We then analytically show that this maximization
problem is linear in the context of two prototypical MACs —
a locally synchronized wakeup (as in S-MAC) and a locally
staggered wakeup MAC (as in O-MAC)— assuming uniform,
low traffic that is delivered reliably and without interference.
Given the linearity, there is an efficient centralized algo-
rithm, MeeCast, for solving the optimization problem even
at a computationally-constrained base station. In comparison
with a state-of-the-art convergecast protocol, Dozer, MeeCast
achieves better energy efficiency and application lifetime in the
context of S-MAC and identical energy efficiency but better
application lifetime in the context of O-MAC.

Our assumptions warrant some discussion. Low traffic is
the norm for WSNs, as monitoring data rates are invariably
well below the network capacity (i.e., [2], [3], [4]). Reliable
delivery and no interference may be assumed only because
joint control of the MAC and routing can avoid collisions
and select desirable links when the traffic is low. (It should
be noted that works such as ([9], [10]) that take interference
into account during optimization, coupled with power control
and scheduling, usually show non-convex constraints over link
rates, which makes efficient solutions difficult to achieve. Effi-
cient solutions for optimization problems involving scheduling
have typically involved approximation algorithms or TDMA
MACs.)

Our assumption of uniform traffic is however restrictive in
that it focuses on use cases where the data generation and
flow is periodic in some fashion for nontrivial lengths of
time. For the case where the traffic changes on a slow time
scale, MeeCast can be run when a change is detected. We
also present the alternative of using a distributed version of
MeeCast that is self-stabilizing. By self-stabilizing, we mean
that every computation of the network, upon starting from
an arbitrary (but, ultra-low) load and network state, always
converges within finite time to a state where the network is
operating optimum duty cycle and routes. This property also
provides autonomic recovery to diverse faults, especially node
failure which is typically non-trivial for the commodity nodes
used in conventional, as well topology, loss of coordination
and state corruption.

Organization of the paper. In Section II, we discuss
preliminaries and formulate the energy efficiency problem as
a constrained flow optimization problem. In Section III, we an-
alyze the communication capacity of nodes under O-MAC and
S-MAC. We describe our centralized and distributed solutions
for maximizing energy efficiency via simultaneous routing
and duty cycle optimization (our proof of self-stabilization
is relegated to a technical report [11] for reasons of space.)
We validate performance via simulations in Section V, discuss
related work in Section VI, and make concluding remarks in
Section VII.

II. PROBLEM STATEMENT

We begin with the system model, formalize the notion of
energy efficiency of convergecast, and then state the energy
efficiency problem.

A. System Model

A wireless sensor network is represented by a directed graph
G = (V,L), where V is a non-empty set of wireless nodes,
one of which is distinguished as the base station bs, and L is
a set of half-duplex, reliable links L. Let i, j range over 1..|V |
and l over 1..|L|. (For convenience, we henceforth abbreviate
|V | as V and |L| as L.)

Node vj can receive messages from vi if and only if
(vi, vj) ∈ L. Let us define node incidence matrix A, where
A ∈ ZV×L, as:

Ail =

 1 , if vi is the start node of l
−1 , if vi is the end node of l
0 , otherwise

.

Let us also define matrix A+, A+ ∈ ZV×L+ , as A+
il = 1 if

Ail > 0 and A+
il = 0 otherwise. And matrix A−, where A− =

A+ −A.
Let x ∈ RL+ be the rate vector in which xl is the data rate

over link l and s ∈ RV+ be the source rate vector in which si
is the source rate of vi. For l = (i, j), we will use xl and xij
interchangeably. We assume that all source rates are constant
albeit not identical. For each link l ∈ L and i ∈ {V − {bs}},
xl ≥ 0 and si ≥ 0. Introduce an extra vector s′ in which
s′i = si if i 6= bs and s′i = 0 otherwise.

Denote Ii and Oi as the sum of incoming data rates to and
outgoing data rates from vi respectively, where

Ii = (A−x)i , Oi = (A+x)i .

In light of flow conservation law, we have

Ii + si = Oi , sbs = −
∑

i∈{V−bs}

si.

B. Energy Efficiency

Let T be the running time of the application and di the
percentage of active time of the radio at vi. Assume that the
energy consumption rate for staying active, be it sending or
receiving, is a constant, the energy Ei spent by vi during T is
then measured by diT . Each node vi has a duty cycle upper
bound Di, Di ∈ (0, 1]. Di is an application specific parameter
which is useful for multiple purposes, such as to guarantee the
lifetime of the application or to ensure fairness.

In generic network contexts, energy efficiency is defined to
be the reciprocal of the energy consumed by all participating
nodes in the network, denoted as Eabs in (1). Given that the
merit for a monitoring applications is its ability to collect data
from sensor nodes, we propose here a convergecast specific
definition of energy efficiency, denoted as Ec in (1), to be the
ratio of the total number of useful data packets received by
base station to the total energy spent.

Eabs =
1∑

i∈V
diT

, Ec =
IbsT∑

i∈V
di × T

=
Ibs∑

i∈V
di
. (1)

Ec captures the cost effectiveness of the system whereas a
inefficient system collecting zero data at the base station can

3

still have a high Eabs as long as the sum of the duty cycles
is low.

Time synchronization and other control messages are com-
mon radio energy overheads that depend on the actual imple-
mentation of the protocols. We eschew further consideration
of these overheads in this work.

C. The MaxEE-Convergecast Problem

The energy efficiency optimization is formalized as a con-
strained network flow optimization problem. Given A, s, and
D as constant inputs, we formulate the objective function
Ec(x, d) as follows:

(P) Ec(x, d) = Ibs/
∑
i∈V

di ,

in which vector d controls the duty cycle of nodes and vector
x defines the routing and the amount of traffic per link.

We define Ri(ri, x) as the receiving capacity of vi, i.e.,
the maximum data rate vi can successfully receive when it
spends ri percentage of time in receiving under traffic x.
Similarly, we define Fi(ti, x) as vi’s forwarding capacity with
a transmission duty cycle ti. The capacity of vi, denoted as
θi(di, x), is defined as

θi(di, x) = min
ri+ti=di

{Ri(ri, x) + s′i , Fi(ti, x)} . (2)

Function θ depends on factors such as the underlying MAC
protocol, interference range, etc. Our optimization problem is
then expressed as:

Maximize Ec(x, d)
Subject to
1. Ax = s

2. 0 ≤ xl,∀ l ∈ L (3)
3. 0 ≤ di ≤ Di,∀ i ∈ V
4. 0 ≤ θi(x, d)− (Ii + s′i),∀ i ∈ V

The first and second constraint ensure the flow conservation
law and valid link rates, respectively. The third constraint im-
poses nodal duty cycle constraint. The last constraint ensures
that every node runs at a sufficient duty cycle such that its
capacity is greater than the communication demand. We define
the set of feasible solutions Ω(A, s,D), henceforth abbreviated
as Ω, for problem (P) with parameters (A, s,D) to be:

Ω(A, s,D) = {(x̂, d̂) : (x̂, d̂) satisfies all constraints in (3)} .

For any feasible solution (x, d) ∈ Ω, Ibs =
∑
i∈V s

′
i must

hold. Since the optimal solution must be feasible, we can
rewrite the problem (P) as:

(P1) Minimize Qc(x, d) =
∑
i∈V

di/
∑
i∈V

s′i ,

subject to the same set of constraints in (3). Clearly Problem
(P1) and (P) have the same solution because the objectives
are reciprocal and their constraints are the same.

Since
∑
i∈V s

′
i is assumed to be constant, in order to min-

imize Qc we essentially need to minimize
∑
i∈V di given the

constraints in (3). In the next section, we show that θi(di, x)
is also linear in x and d for a number of representative MAC
protocols when they can be operated to achieve interference-
free communication scheduling. This enables us to solve our
optimization problem using linear programming techniques.

III. CAPACITY UNDER EXTANT MACS

In this section, we first analyze capacity function θ under a
theoretical TDMA in which all communications are perfectly
scheduled. This TDMA idealizes the class of MAC protocols
in which nodes are aware of their neighbors’ schedules and
can control their duty cycle independently, such as O-MAC
[7]. We show that, under low traffic, O-MAC approximates
the interference-free scheduling of the ideal TDMA and the
capacity constraint in (3) is then a linear in x and d under
O-MAC.

Next we analyze S-MAC [12]. This represents a different
class of MAC protocols where the nodes cannot control duty
cycle independently. We show that, under the assumption that
S-MAC can achieve interference-free transmission, problem
(P1) is still in the linear space.

We denote Ni as the 1-hop neighborhood and ηi as the
interference range of vi. Both Ni and ηi are determined by
A. ηi also depends on other constants such as the relative
locations of nodes and the transmission power. Since A is
constant, both Ni and ηi can be regarded as constants.

A. TDMA Protocols

Under ideal TDMA, nodes are perfectly synchronized and
an oracle is used to schedule so that there is no transmission
collision, idle listening, or overhearing. More formally, let ts
be the time it takes for a node to send or receive a packet.
Define αi(j, t) as the send schedule for vi where αi(j, t)
equals 1 if vi is scheduled to send to vj during (t, t+ ts) and
0 otherwise. Similarly, define βi(j, t) as the receive schedule.
When αi(j, t) = βj(i, t) = 1, up to one packet can be
successfully sent from vi to vj . The following properties are
satisfied by the ideal TDMA, for any i, j,m, n ∈ V, j 6= i, n 6=
i,m 6= n, a ∈ ηi, a 6= i , t, T ∈ Z+:

1. αi(j, t) = 0 ∨ (αi(j, t) + βj(i, t) = 2)
2. αi(m, t) · αi(n, t) = 0 ∧ αi(j, t) · βi(n, t) = 0 (4)
3. (αi(j, t) · βa(n, t) = 0) ∧ (βi(j, t) · αa(n, t) = 0)

4.
∑
τ≤T

αi(j, τ) =
∑
τ≤T

βj(i, τ) = bxijT c ,

Property 1 guarantees that when vi communicate with vj ,
vj is scheduled accordingly. Property 2 states that a sender
does not send to more than one node and an active node can
either receive or send at a time. The third property specifies
that senders within the interference range of a node do not
transmit at the same slot and receivers within the interference
range of the same sender do not receive at the same slot (to
avoid over-hearing). The last property ensures that for any link

4

(i, j), the sending (receiving) slots assigned to vi (vj) during
a period of T is equal to xijT .

Capacity θi is affected by both duty cycle di and the
interfering traffic. Under ideal TDMA, since every packet
transmission and reception is well scheduled, there is no inter-
ference, idle listening, or overhearing. The receiving capacity
and sending capacity is thus computed as:

Ri = ri/ts and Fi = (di − ri)/ts .

Theorem 1. Under ideal TDMA, the capacity θi(di, x) of node
i is maximized to (di+s′its)/2ts when it spends (di−s′its)/2
percentage of time in receiving. The optimization problem (P1)
is thus linear.

Proof: Let r∗i = (di − s′its)/2. Let ri 6= r∗i be the
percentage of time node i receives. (i) If ri > r∗i , we have
Fi = (di − ri)/ts < Ri + s′i, then θi(di, x) = Fi < (di −
r∗i)/ts = (di+s′its)/2ts; (ii) If ri < r∗i , thenRi+s′i < Fi and
θi(di, x) = Ri+s′i < r∗i /ts+s′i = (di+s′its)/2ts. Therefore,
the capacity of node i is maximized to (di + s′its)/2ts when
it spends (di − s′its)/2 percentage of time in receiving.

Replacing θi(di, x) with (di + s′its)/2ts in the capacity
constraint in (3), we transform it into

0 ≤ (di + s′its)/2ts − (Ii + s′i)⇐⇒ (2Ii + s′i)ts ≤ di . (5)

Given that s′i is a constant, we see that the capacity constraint
is linear in d and x, and thus problem (P1) is linear.

Right after the beginning of data collection, the effective
data rate over some link (i, j) might be less than xij because
the traffic routed through it might not have arrived, resulting
in idling listening slots at the receiver. Once all flows routed
through link (i, j) reach vi, because of the alignment between
the communication schedule and the uniform traffic, the ef-
fective data rate will be steady and equals to xij . Since the
distance between any node and the base station is bounded by
V , the number of such idle listening slots is also bounded. As
a result, the energy overhead due to such initial idle listening
is bounded by a constant and is negligible for large T .

Of course, ideal TDMA assumes full information about the
network and the traffic, which is usually not available. O-MAC
provides a distributed implementation of ideal TDMA that
approximates its properties under low traffic. In O-MAC, the
global time is split into frames and each frame is further split
into Tp slots, each of which is ts in length. Time-synchronized
receivers are scheduled either globally and deterministically or,
more efficiently, pseudo-randomly to wake up and receive in
each frame. In the pseudo-random scheme, each node locally
selects its receiving schedule. Under low traffic, the authors
in [7] show that the probability that two receiver schedules
overlap is negligible. A node’s receiving frame schedule is
broadcast to its neighbors which then contend for transmission
during the receiving slots. Each receiving frame schedule
contains a fixed number of receiving slots that is determined by
the node’s reception duty cycle. Therefore, O-MAC naturally
supports the first three properties in (4) except for interference-
free transmission. However, for any given x, it is in principle

feasible for a receiver to attach a non-overlapping sending
schedule for the contending senders along with its receiving
schedule. Each child vj of vi would be assigned Tpxijts
sending slots per frame in order to align with the traffic xij .
As a result, O-MAC satisfies the properties of (4) except that
the alignment between the communication schedule and the
traffic flow would be on a per-frame basis, which may require
a longer queue at each node.

B. S-MAC

In contrast, S-MAC organizes nodes in clusters, and all
nodes of each cluster are scheduled to wake up at the
beginning of every frame. Nodes try to join an existing
cluster before they attempt to create their own cluster. Nodes
that follow more than one wakeup schedule are called the
border nodes. For ease of analysis, we assume that the
whole network is within one synchronized cluster and so all
nodes share the same wake-up schedule. S-MAC utilizes RTS-
CTS messages to schedule contending senders which makes
interference negligible under low traffic. In other words, nodes
pay the price of control messages for achieving interference-
free communication.

Since every data packet requires an RTS-CTS exchange,
assuming that sending RTS or CTS, including the initial back
off, takes one slot each, then every packet transmission takes
three slots. RTS-CTS messages preclude any node within the
neighborhood of the sender or the receiver to send during the
same period. As a result, for a data rate xij , it takes 3xijTpts
slots per frame in the shared slots of vi and vj’s neighbor-
hoods to successfully transmit it. Since duration information
is embedded in all RTS-CTS messages, we assume that packet
transmissions are back-to-back such that the transmission of
one data packet is immediately followed by another round
RTS-CTS-DATA transmission in the next three slots.

Because of the shared wakeup period, the last constraint in
(3) can no longer be defined on a nodal basis. In the worst
case, each node within Ni sends and receives at different
slots, during all of which vi has to be awake. Thus, given the
neighborhoods’s total traffic is equal to 3

∑
j∈Ni

(2Ij + s′j),
vi has to be awake for 3

∑
j∈Ni

(2Ij + s′j)ts to accommodate
it in the worst case.

We modify the constraints in (3) to reflect the unique shared
wakeup period feature of S-MAC. The new constraints are
shown as follows:

1. Ax = s

2. 0 ≤ xl, for ∀ l ∈ L (6)
3. 0 ≤ di ≤ Di, di = dj , for ∀ i, j ∈ V

4. di ≥ 3
∑
j∈Ni

(2Ij + s′j)ts,∀ i ∈ V .

Based on this analysis, when S-MAC is used and all nodes
are within the same synchronized cluster, the optimization
problem of minimizing Qc(x, d) subject to constraints defined
in (6) is a linear optimization problem.

5

IV. SOLUTION

We now present MeeCast that solve the optimization prob-
lem for maximal energy efficiency convergecast. Section IV-A
presents centralized version MeeCast that requires global
information at the base station. With an additional assumption
about traffic being low, Section IV-A first proves the optimality
condition under the assumption and then presents a distributed
version of MeeCast. We prove that the distributed solution
achieves not only optimality but also fast self-stabilization.

A. Centralized MeeCast

As we have shown in section III, the objective function as
well as the constraints are expressed in a linear form of the
variables x and d under the ideal TDMA, O-MAC and S-MAC
with the non-interfering transmission assumption. The energy
efficiency optimization problem is therefore solved via existing
linear programming techniques at the base station by collecting
global information about A, s and D. The centralized program
consists of three phases. First, the base station initiates an
information collection process by flooding a start message
through the network. This message informs nodes about the
start of a new configuration and constructs a routing tree for
the information collection in the next phase. In the second
phase, each node vi collects and sends its local connectivity
information, Di, and si, to the base station using the tree
constructed. In the last phase, the base station solves the linear
programming problem and distributes the optimal d∗ and x∗

to the network.
The program is executed at the beginning of the deployment

and has to be re-executed whenever nodes or links fail, the
duty cycle constraints change, or the traffic changes. How-
ever, when such changes occur, rather than a network wide
collection of neighborhood information, a local report from
the affected node(s) will be sufficient for the base station to
recompute (x∗, d∗) based on a new (A, s,D). As we can see,
when changes/faults are frequent, centralized MeeCast entails
heavy overhead.

B. Distributed and Self-Stabilizing MeeCast

To enable more robust, efficient, and autonomic adaptation
to traffic changes, network changes and faults, we propose a
self-stabilizing and distributed MeeCast to problem (P1) under
O-MAC. (The distributed protocol for S-MAC is left to future
work.) We show that distributed MeeCast achieves optimal
energy efficiency via a shortest path tree with a convergence
time proportional to the depth of the network, provided the
following assumption holds.

(∀ x such that Ax = s, (2Ii + s′i)ts ≤ Di), (7)

where (2Ii+s′i)ts is the minimum duty cycle requirement for
vi based on (5).

In other words, given an x that satisfies the flow conserva-
tion constraint, we assume that the corresponding d can satisfy
the duty cycle constraints. Note that this is typically true for
existing monitoring applications whose duty cycles are often
in the range of 0.1 to 1 percent.

Now, we show the optimality condition under the assump-
tion. Let p be a path from vi to the base station if and
only if for p = (k1, k2, k3 . . . , km(p)), where m(p) is the
length of p, k1 = i, km(p) = bs, and (ku, ku+1) ∈ L, for
u = 1, 2, . . . ,m(p) − 1. Define Pi to be the set of possible
paths from vi to the base station. Pi is determined by A and
is thus constant. Let si(p), p ∈ Pi, be the amount of source
traffic from vi sent along path p. For one packet to be sent
from vi to the base station along p, each node in p, except for
the first and last node, has to receive and send this packet once,
resulting in a total number of (mi − 1) sends and (mi − 1)
receives, i.e., a total of 2(mi − 1) communications.

Lemma 1. When Ax = s, we have si =
∑
p∈Pi

si(p) and∑
i∈V
Ii =

∑
i∈{V−bs}

∑
p∈Pi

si(p) · (m(p)− 1) . (8)

Proof: The first equation is obvious, we prove the sec-
ond equation. Let ϕi(p, j) be an indicator function where
ϕi(p, j) = 1 if and only if for some p ∈ Pi, vj ∈ p∧ vj 6= vi.
One observation is that Ii =

∑
j∈V

∑
p∈Pj

sj(p)ϕj(p, i).
Then ∑

i∈V
Ii =

∑
i∈V

∑
j∈V

∑
p∈Pj

sj(p)ϕj(p, i)

=
∑
j∈V

∑
p∈Pj

∑
i∈V

sj(p)ϕj(p, i)

=
∑
j∈V

∑
p∈Pj

sj(p) · (m(p)− 1) ,

where the last equality holds because there are only m(p)− 1
nodes with ϕj(p, i) = 1 for any p ∈ Pj .

Define m∗i to be the shortest path from node i to the base
station, i.e.,

m∗i = min
j∈V

(wij +m∗j) , (9)

where wij =1 if (i, j) ∈ L and wij = ∞ otherwise. For any
p ∈ Pi, m∗i ≤ m(p). Now we present the optimality condition
under assumption (7):

Theorem 2. When ideal TDMA is used and assumption (7)
holds, Qc(x, d) is minimized if and only if for any i ∈ V and
p ∈ Pi:

m(p) = m∗i and di = (2Ii + s′i)ts . (10)

Proof: Feasibility for di ≤ Di and Ax = s is guar-
anteed by the assumption and the protocol respectively, it
remains to prove optimality. Let x∗ be constructed according
to m(p) = m∗i and d∗ is set according to this theorem. Let
(x, d) ∈ {Ω(A, s,D)− {(x∗, d∗)}} be any feasible solution.
Based on inequality (5) and Lemma 1, we have

Qc(x, d) =

∑
i∈V

di∑
i∈V

s′i
≥

∑
i∈V

(2Ii + s′i)∑
i∈V

s′i
(11)

6

= 2

∑
i∈V

∑
p∈Pi

si(p)(m(p)− 1)∑
i∈V

s′i
+ 1

≥ 2

∑
i∈V

s′i(m
∗
i − 1)∑

i∈V
s′i

+ 1 .

As we can see, Qc(x, d) is minimized when the shortest paths
are selected so that m and d satisfy the conditions specified
in the theorem.

Corollary 1. If x consists of a shortest path tree, it is feasible
and optimal.

In the following subsections, we first introduce some pre-
liminaries of self-stabilization and then present the distributed
MeeCast protocol.

1) Computation Model: We use the read/write computa-
tion model. Kulkarni et al show in [13] that the Write All
with Collision (WAC) model, which captures communication
collisions in WSNs, can be transferred to a read/write model
while preserving self-stabilization property if the system is
timed, i.e., each node has its own clock and the rate of all
clocks are the same. Since we design our protocol under ideal
TDMA, the pre-condition of the timed system is satisfied.

The protocol executes at each node and consists of a finite
set of variables and actions. Variable z of node i is denoted as
z.i. Each node contains one set of public variables that can be
read by neighbors and one set of copy variables that store the
latest updates of the public variables for each of its neighbors.
Each action consists of two parts: guard and the statement.
We associate a unique name with each action. Thus, an action
has the following form:

〈name〉 :: 〈guard〉 −−−→ 〈statement〉 .

The guard is a boolean expression over public variables,
copy variables, and constant variables of the node. The action
updates zero or more variables of the node. An action is
enabled if and only if its guard evaluates to true. Execution
of statements is weakly fair, i.e., the number of steps between
two executions of an infinitely enabled statement is bounded.
A statement is executed atomically and at most one action can
be executed at a node at one time. Nodes can execute enabled
statements concurrently. In a read action, vi reads the public
variables from a neighbor j and updates its local copies.

The state of vi is the union of all the variables of vi.
The state of system G, denoted as q.G, is the union of the
current system topology (V,L) and the current states of all
the up nodes. Given a system G and a problem specification,
there exist a set of legitimate system states, denoted as Q(G).
(Q(G) for our problem is specified in section IV-B5.) A system
computation is a sequence, be it finite or infinite, of alternating
states and actions starting with an initial state q0, where for
every k ≥ 1, state transition qk−1, ak, qk means that the
execution of action ak changes the system state from qk−1

to qk. A set of states is closed if, starting from any state in
this set, no computation has any state outside this set.

Definition 1. A protocol is self-stabilizing if, starting from an
arbitrary initial state q0, every computation has a suffix where
every state is in Q(G).

2) Fault Model: In a wireless sensor network, nodes and
links that are up can crash, nodes and links that are down can
become up and join the system. The non-constant variables of
any node can be corrupted. We assume that the base station’s
state, all nodes’ constant variables, as well as their actions
are never corrupted. When a fault occurs, a system might
transit into a state outside of Q(G). Self-stabilization ensures
that when faults stop occurring, subsequent execution of the
protocol will eventually reach a state in Q(G), from which
point the specification of the system will be respected (at least
until the next fault occurs).

3) Protocol Overview: Distributed MeeCast stabilizes both
x and d for all nodes to Q(G) in a finite number of steps.
The routing tree is determined by the mi at each node. The
update of metric m is propagated from the base station as
each node reads from its neighbors. Each node locally selects
its parent based on the shortest path rule. Because each node
keeps a copy of the parent information of its neighbors, it can
deduce the set of children and compute x based on the Ax = s
constraint and d as shown in Theorem 2. The leaf nodes are
the first ones to stabilize x. Then non-leaf node can compute
its x once all its children have their x values stabilized.

4) The Design of MeeCast: Our description begins with
the constants and variables used in the protocol. MeeCast has
four public variables: m.i, d.i, x.j.i, and p.i. Node i stores
the current distance to the base station in m.i; d.i stores node
i’s current duty cycle; x.j.i is the data rate from vi to vj , in
which x.i.i = s′i; p.i is the parent of node i. Also each node
maintains three copy variables m′.j.i, x′.j.i, and p′.j.i that
stores m.j, x.i.j, and p.j respectively. In particular, m′.i.i =
m.i, x′.i.i = s′i, and p′.i.i = p.i.

MeeCast also uses two constant variables: N.i and w.j.i.
N.i is the set of the neighboring nodes of i; w.j.i is the cost
of link (i, j) where w.j.i = 1 if both vi and vj are up and link
(i, j) is up. Otherwise, w.j.i =∞. We assume that there’s an
underlying service that will update w.j.i for each node i. The
update of w.j.i can be implemented by various mechanisms
such as periodic heartbeat messages. To avoid self-loops, w.i.i
is set to ∞. Last, we utilize a helper function sumRate(i),
sumRate(i) = x.i.i+

∑
j∈N.i∧p′.j.i=i x

′.j.i, to compute Ii+
s′i.

For base station bs, m.sb, d.bs, and p.bs are always
fixed to 0, 1, and −1 respectively, where we assume
no node has an ID of −1 . The distributed MeeCast
is described in guarded command notation as follows:

7

Program.i, for node i 6= bs and j ∈ N.i

S1 :: MP.i −−−→
p.i, m.i, x.(p.i).i := i, ∞, 0

S2 :: (m′.j.i+ w.j.i < m.i) ∧ p′.j.i 6= j −−−→
p.i, m.i := j, m′.j.i+ w.j.i

x.j.i := sumRate(i)
SYN :: x.(p.i).i 6= sumRate(i) ∧ ¬MP.i −−−→

x.(p.i).i := sumRate(i)
d.i := (2 ∗ sumRate(i)− x.i.i) ∗ ts

RD.j :: x′.j.i 6=x.i.j ∨m′.j.i 6= m.j ∨ p′.j.i 6= p.j −−−→
p′.j.i, m′.j.i, x′.j.i := p.j, m.j, x.i.j

where MP.i is defined as:

(∀k : m.i < m′.k.i+ w.k.i) ∨ (p.i 6= bs ∧ p′.(p.i).i = p.i) .

When MP.i = true, node i is a false sink whose m.i is less
than w.j.i+m.j for any of its neighbors vj . Upon detecting
a false sink, S1 signals the fault by setting the parent of the
faulty node to itself so that the descendants will switch to other
parents. Also, S1 sets the outgoing rate from the faulty node
to 0 so that its ancestors can adjust duty cycles to reflect the
removal of the subtree rooted at this faulty node. Action S2
updates the routing structure according to the shortest path
rule. To adapt to faulty nodes, faulty links and change of
routing, each node updates their ~x.i and d.i whenever they
are inconsistent with the latest updates received from the
neighbors in action SYN. A node reads from a neighbor j and
updates its local copy variables x′.j.i, m′.j.i, and p′.j.i in
action RD.j. Faulty nodes and links are detected when w.j.i
becomes ∞.

5) Stabilization: While we relegate the detailed proof of
self-stabilization and convergence time analysis to [11], con-
ceptually, the stabilization is a convergence “stair” consisting
of three phases, with three corresponding closed sets of states,
namely Q1(G), Q2(G), Q(G), each of which is a subset of
the previous one. They are defined as follows:

Q1 = (∀ i ∈ V : MP.i = false ∨ p.i = i) ,
Q2 = Q1 ∧ (∀ i ∈ V : m.i = m∗i) ,
Q = Q2 ∧ (Ax = s ∧ d = (2I + s)ts) .

Q(G) is the legitimate set of states the system is designed self-
stabilize to. We prove stabilization by showing that, starting
from an arbitrary state, the system will first self-stabilize to
a state in Q1, from which the system further self-stabilizes
to Q2 and finally arrives in Q. Q1 ensures that there is no
false sink. Starting from any state in Q1, the system can
self-stabilize to the shortest path tree that grows out from
the only sink — the base station. Then starting from any
state in Q2, x will be stabilized from the leaf nodes and
duty cycles are set according to the stabilized x, ending in
Q. We can show that the time for the stabilization to Q1,
Q2, Q are all upper bounded by some constant factor of

network depth δ(G), where δ(G) = maxi∈V {m∗i }. Therefore,
the overall convergence time is also proportional to δ(G).

V. PERFORMANCE EVALUATION

In this section, we compare centralized MeeCast with Dozer
[14], which is designed to minimize energy consumption for
ultra low duty cycle data collection in WSNs. We show
that, by appropriately setting Di, an application programmer
can optimize energy efficiency with the guarantee that the
application lifetime is above some threshold c. First, let us
define the application lifetime Tl(d). Let Ei be the remaining
energy of vi, then Ei/di measures the remaining lifetime of
vi. Given d, define Tl(d) to be the time when the first node
runs out of battery, i.e.:

Tl(d) = min
i∈V

(Ei/di) .

If we set Di = Ei/c for all nodes, then we are guaranteed
that the application lifetime is greater than c. In the following
sections, we compare both the energy efficiency and the
application lifetime of MeeCast with Dozer under O-MAC
and S-MAC assuming Ei = cDi for some constant c > 0.

A. O-MAC

Dozer tries to minimize energy consumption by orches-
trating MAC, topology control and routing layers. Dozer’s
scheduler provides another approximated implementation of
the ideal TDMA. Each node is aware of the transmission
schedules of both its parent and its children so that they send
and receive only at the designated slots. However, collisions
can occur in Dozer and is explicitly addressed by acknowl-
edgments and random schedule shifts. As we have shown, O-
MAC approximates ideal TDMA under low traffic. To compare
MeeCast and Dozer on a fair ground, we assume that the
random shifts can separate all the interfering communications
apart and call this Dozer-Ideal. In other words, the scheduler
of Dozer also satisfies the all properties in (4). Dozer assigns
1 as the cost for each link and utilizes a shortest path tree.

Dozer-Ideal and MeeCast optimize (x, d) upon the problem
defined by A, s and D. di’s are computed based Theorem 2.
Our results do not include infeasible solutions. As we have
proven in Corollary 1, the shortest path scheme achieves the
upper bound for energy efficiency Ec. However, Dozer-Ideal
achieves such energy efficiency at the cost of violating the
nodal energy constraints, resulting in poor application lifetime.

Fig.1a and Fig.1b show the relationship between energy
efficiency, application lifetime, and the network size. Each
node has an average neighborhood size of 9. As we can
see, both Ec and Tl decrease as the network size increases.
Ec deceases as the network size grows because the average
distance from the base station increases. As the network size
increases, the application lifetime gap between Dozer-Ideal
and MeeCast increases because Dozer-Ideal tends to route
traffic through the same set of bottleneck nodes whereas
MeeCast tends to balance the traffic according to duty cycle
constraints. Tl attained by Dozer-Ideal reaches as low as 50%

8

of centralized MeeCast when the number of nodes surpasses
100.

20 40 60 80 100 120
0

0.5

1

1.5

2

of Nodes

Lif
eti

me
(a)

40 60 80 100 120
25

30

35

40

of Nodes

En
er

gy
 E

ffic
ien

cy

(b)

0.1 0.2 0.3
0

1

2

3

Link Probability

Lif
eti

me

(c)

0.1 0.2 0.3
25

30

35

40

45

Link Probability

En
er

gy
 E

ffic
ien

cy

(d)

Dozer−Ideal
MeeCast

MeeCast
Dozer−Ideal

Fig. 1. Energy Efficiency and Lifetime vs. Network Size and Density under
O-MAC. Network topologies, i.e. matrix A, are randomly generated. s′

i and
Di are uniformly distributed in [0, 6] packets per minute and [0.1%, 1%]
respectively.

In Fig.1c and Fig.1d, we study the relationship between
energy efficiency, application lifetime, and network density
on a network with 100 nodes. Network density is controlled
by varying the link probability, i.e. the probability that any
two nodes are connected. As we can see, Ec in both Dozer
and MeeCast increases as network density increases because
the average distance to the base station decreases. Tl in
MeeCast increases with link probability because MeeCast can
better balance the traffic when each node has more alternative
shortest paths. However, Tl in Dozer decreases as the network
density increases because bottleneck nodes tend to receive
more traffic as the network becomes more connected. Tl of
Dozer-Ideal reaches as low as 20% of MeeCast when the
average neighborhood size reaches 30 for a link probability
of 0.3.

B. S-MAC

In this section, we present simulation results for the same
two cases under S-MAC. For comparison, we replace the
internal TDMA scheduler of Dozer with S-MAC and call
it Dozer-SMAC. Fig.2a and Fig.2b illustrate the relationship
between Ec, Tl, and network size. As the number of nodes
in the network increases, again both Ec and Tl decrease as
the average distance from nodes to the base station increases.
Under S-MAC, MeeCast outperforms Dozer-SMAC for not
only Tl but also Ec because the duty cycle nodes run at is
determined by the neighborhood with the most traffic due
the unique shared wakeup period of S-MAC. Since Dozer-
SMAC routes traffic according to the shortest paths, nodes
close to the base station are likely to take large portions of
the network traffic, resulting in neighborhoods with high traffic
loads. Thus, the traffic of the neighborhood with most traffic
in Dozer-SMAC is likely to be greater than that in MeeCast,
resulting in a higher shared duty cycle of all the nodes and
lower Tl and Ec.

Fig.2c and Fig.2d illustrate the relationship between Ec, Tl,
and network density. As we can see, as the link probability
increases, the size of the neighborhood of each node grows
and the thus traffic generated per neighborhood increases.

20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

of Nodes

Li
fe

tim
e

(a)

20 40 60 80 100 120
0

0.5

1

1.5

of Nodes

E
ne

rg
y

E
ffi

ci
en

cy

(b)

0.1 0.2 0.3
0

0.01

0.02

0.03

0.04

Link Probability

Li
fe

tim
e

(c)

0.1 0.2 0.3
0.2

0.4

0.6

0.8

Link Probability

E
ne

rg
y

E
ffi

ci
en

cy

(d)

MeeCast−SMAC
Dozer−SMAC

Dozer−SMAC
MeeCast

Fig. 2. Energy Efficiency and Lifetime vs. Network Size and Density under
S-MAC. s′

i and Di are uniformly distributed in [0, 1] packets per minute and
[3%, 7%] respectively.

As a result, the Ec decreases as the required shared duty
cycle of the neighborhood increases as each node has to be
awake during all communications of its neighbors in the worst
case. When network is sparser, the average number of hops
from nodes to the base station is higher and the lifetime gap
between the two schemes is larger because MeeCast can better
balance traffic based on duty cycle upper bounds in a sparser
network whereas Dozer-SMAC tends to exacerbates the traffic
condition in bottleneck regions.

Overall, even with lower source rates and higher capacity
upper bounds, S-MAC achieves lower Ec and Tl than O-MAC
in part because of the significant overhearing caused by the
shared wakeup scheme.

VI. RELATED WORK

WSN designs aim to meet multiple and sometimes appli-
cation specific requirements. Nevertheless energy efficiency
is typically a critical metric for truly wireless operation. For
instance, the design of extant WSN MAC protocols focuses on
scheduling so as to minimize idle listening and/or overhearing
and delegate the control over duty cycle to upper layers.
Protocols such as B-MAC, S-MAC, and O-MAC ([15], [12],
[7]) are generic and do not assume any underlying commu-
nication pattern such as convergecast. For this reason, they
all provide hooks through which higher layers can control
the duty cycle depending upon the traffic. However, not all
MACs expose such hooks: D-MAC [16] controls duty cycle
by itself. Starting from leaf nodes, D-MAC assigns staggered
transmissions schedules to nodes in the collection tree. Nodes
sends out control packets to update their parents about traffic
status and parents adjust their duty cycles accordingly.

Routing too has been extensively studied from the perspec-
tive of minimizing the energy consumption of the network.
MintRoute [17] actively measures link qualities, updates the
routing using a shortest path scheme and adapts to link
and node changes. Shah et al [18] show that alternatively
switching between optimal and suboptimal paths helps to
increase network lifetime while maintaining an energy efficient
routing. However, neither of these exploit the underlying MAC
protocol or take into account the duty cycle constraints of
nodes.

In contrast to optimizing energy efficiency with respect to

9

a single layer, some solutions consider multiple layers. AEM
[19] derives traffic information based on tasks provided by
application programmer and decides a TDMA-based schedule
for all involved nodes at compile time. Work along these
lines has often eschewed node energy constraints. It has also
integrated multiple layer components (such as time synchro-
nization, routing, and scheduling) into a single monolithic
framework, which risks complex designs, and incompatibility
with extant MAC protocols.

Mathematical optimization techniques, such as convex opti-
mization, have been proven to be powerful in solving network
optimization problems because they enable rigorous cross-
stack reasoning of network behaviors that are very difficult
otherwise. The network optimization problem is usually for-
mulated as a utility maximization problem with some chosen
optimization variables. The network stacks upon which the
problem is being solved determine the set of optimization
variables among which link rates, routing and scheduling
are the most common ones ([5], [20]). Our work falls into
the layered network optimization category and addresses the
optimization in a context of realistic MAC protocols.

The linear problem we have formulated falls into the class
of quasi polymatroidal problems [21] which generalize of the
classic minimum cost flow problem by having constraints on
nodes instead of links. However, as far as we are aware, the
best known centralized algorithm that produces exact solutions
achieves a time complexity no better than O(V 3 log V), which
indicates slow convergence time for distributed solutions. In
contrast, one consequence of the ultra-low traffic assumption
for the distributed version of MeeCast is its fast convergence
time.

VII. CONCLUSION AND FUTURE WORK

Different network layers are interdependent viz-a-viz energy
efficiency, thus network energy efficiency optimization should
be addressed in a cross-layer manner while preserving inherent
structure to keep complexity manageable. This work has taken
a first step in designing a middle layer between standard
routing layer and MAC layer designs to optimize energy
efficiency for convergecast. It shows that the optimization
problem is linear with the assumption that O-MAC and S-
MAC achieve interference-free, reliable communication under-
low traffic. And its simulations show that our centralized
solution MeeCast performs favorably compared with a state-
of-the-art convergecast protocol, Dozer.

We have shown that optimality is achieved when the routing
structure is a shortest path tree, for cases where the duty cycle
constraint can be ignored. Distributed MeeCast suffices for
these cases and can work autonomically in the background
to self-stabilize the network to the optimal solution in a time
proportional to the depth of the network.

Our middle layer can be adapted for other choices of
routing protocols and MAC protocols. In future work, we
seek to address the class of other protocols for which efficient
solutions exist via linear or convex optimization techniques.
We will also study non TDMA-style MAC protocols further,

for which we would account for interference and investigate
the feasibility of distributed solutions.

REFERENCES

[1] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda et al., “A line in the sand: a
wireless sensor network for target detection, classification, and tracking,”
Computer Networks, vol. 46, no. 5, pp. 605–634, 2004.

[2] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler,
“An analysis of a large scale habitat monitoring application,” in Proc.
of the 2nd international conference on Embedded networked sensor
systems, 2004, pp. 214–226.

[3] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay et al., “A macroscope in
the redwoods,” in Proc. of the 3rd international conference on Embedded
networked sensor systems, 2005, pp. 51–63.

[4] K. Szlavecz, A. Terzis, S. Ozer, R. Musaloiu-E, J. Cogan, S. Small,
R. Burns, J. Gray, and A. Szalay, “Life under your feet: An end-to-end
soil ecology sensor network, database, web server, and analysis service,”
Arxiv preprint cs.DB/0701170, 2007.

[5] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and resource
allocation via dual decomposition,” Communications, IEEE Transactions
on, vol. 52, no. 7, pp. 1136–1144, 2004.

[6] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as optimiza-
tion decomposition: A mathematical theory of network architectures,”
Proc. of the IEEE, vol. 95, no. 1, pp. 255–312, 2007.

[7] H. Cao, K. Parker, and A. Arora, “O-MAC: A Receiver Centric Power
Management Protocol,” in ICNP. Proc. of the 14th IEEE International
Conference on Network Protocols, 2006.

[8] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in Proc. of the 1st international
conference on Embedded networked sensor systems, 2003, pp. 1–13.

[9] R. Madan, S. Cui, S. Lall, and N. Goldsmith, “Cross-layer design for
lifetime maximization in interference-limited wireless sensor networks,”
IEEE Transactions on Wireless Communications, vol. 5, no. 11, pp.
3142–3152, 2006.

[10] L. Qian, Y. Zhang, and J. Huang, “MAPEL: Achieving global optimality
for a non-convex wireless power control problem,” Arxiv preprint
arXiv:0805.2675, 2008.

[11] A. A. W. Zeng and N. Shroff, “Maximizing energy efficiency
for convergecast via joint routing and duty cycling optimiza-
tion,” The Ohio State University, ftp://ftp.cse.ohio-state.edu/pub/tech-
report/2009/TR36.pdf, Tech. Rep. OSU-CISRC-7/09-TR36, July 2009.

[12] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with
coordinated adaptive sleeping for wireless sensor networks,” Networking,
IEEE/ACM Transactions on, vol. 12, no. 3, pp. 493–506, 2004.

[13] S. Kulkarni and M. Arumugam, “Transformations for write-all-with-
collision model,” Computer Communications, vol. 29, no. 2, pp. 183–
199, 2006.

[14] N. Burri and R. Wattenhofer, “Dozer: ultra-low power data gathering
in sensor networks,” in Proc. of the 6th international conference on
Information processing in sensor networks, 2007, pp. 450–459.

[15] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for
wireless sensor networks,” in Proc. of the 2nd international conference
on Embedded networked sensor systems, 2004, pp. 95–107.

[16] G. Lu, B. Krishnamachari, and C. Raghavendra, “An adaptive energy-
efficient and low-latency MAC for data gathering in wireless sensor
networks,” in Parallel and Distributed Processing Symposium, 2004.
Proc.. 18th International, 2004.

[17] A. Woo, T. Tong, and D. Culler, “The MintRoute protocol, tinyos-1.
x/tos/lib.”

[18] R. Shah and J. Rabaey, “Energy aware routing for low energy ad hoc
sensor networks,” in 2002. WCNC2002, vol. 1, 2002.

[19] O. Gnawali, J. Na, and R. Govindan, “Application-Informed Radio Duty-
Cycling in a Re-Taskable Multi-User Sensing System,” in IPSN 2009,
San Fransico, California, USA, 2009.

[20] J. Kim, X. Lin, N. Shroff, and P. Sinha, “On Maximizing the Lifetime of
Delay-Sensitive Wireless Sensor Networks with Anycast,” in INFOCOM
2008. The 27th Conference on Computer Communications. IEEE, 2008,
pp. 807–815.

[21] K. C. Ol and M. Kochol, “Quasi polymatroidal flow networks,” 1995.

10

APPENDIX

In this section, we prove the self-stabilizing property and
analyze the convergence time of distributed MeeCast. Define
a node to be privileged if one or more of its actions is enabled.
First we introduce the concept of rounds to measure the time
complexity of the protocol. The first round of a computation γ
is the shortest prefix γ′ of γ in which some each continuously
privileged node executes at least one step. Let γ′′ be the suffix
that follows γ′, i.e. γ = γ′γ′′, the the second round of γ is
the first round of γ′′.

Since we assume weak fairness in the execution of state-
ments, the following statements hold: (i) there exists a upper
bound R over the the number of computational steps in a
round; (ii) for a statement that is continuously enabled, there
exists a upper bound M over the number of rounds that this
statement is executed. If either of these statements does not
hold, the semantics of fair execution is violated. To show the
convergence time of the system is proportional to the depth of
the network G, denoted as δ(G), is equivalent to show that the
number of rounds the system takes to converge is proportional
to δ(G).

We repeat the definitions of Q1, Q2, and Q here:

Q1 = {∀ i ∈ V : MP.i = false ∨ p.i = i}
Q2 = Q1 ∧ {∀ i ∈ V : mi = m∗i }
Q = Q2 ∧ {Ax = s ∧ d = (2I + s)ts}

where MP.i is defined as:

(∀k : m.i < m′.k.i+ w.k.i) ∨ (p.i 6= bs ∧ p′.(p.i).i = p.i) .

Lemma 1. Q1, Q2, and Q are all closed.

Proof: Starting from a state in Q1, system G will leave
Q1 if and only if some node becomes a false sink when one of
the following transient faults occurs (i) node i’s state becomes
corrupted; (ii) i’s parent becomes corrupted or fails, or (iii)
link (i, j) fails. When one of the above involves vj and vi
reads from vj via RD.j, the state of vi transits out of Q1.
Otherwise, no action in MeeCast will transfer a node from
a healthy node into a false sink. Thus Q1 is closed. Q2 is
closed because although both S1 and S2 modify m, neither
of them are enabled in Q2. Thus, Q2 is closed. For any state
in Q, since Ax = s holds, every node should have integrated
the traffic generated by the sub-trees rooted at its children as
well as its own source traffic into its outgoing traffic. Thus the
following must hold

∀ i ∈ V :
((∀ j ∈ N.i : (p′.j.i = p.j ∧ x′.j.i = x.i.j ∧m′.j.i = m.j))

∧ x.(p.i).i = x.i.i+
∑

k:p.k=i

x.i.k) .

Thus, no node is privileged in Q and Q is closed.

Lemma 2. Starting from an arbitrary state q0, system G
will self-stabilize to a state in Q1 in a number of rounds
proportional to δ(G).

Proof: Define indicator function mp(i) where mp(i) = 1
if MP.i = true∧p.i 6= i and 0 otherwise. Define step function

mp(q.G) =
∑
i∈V

mp(i) .

mp(q.G) decreases whenever S1 is executed at some node. As
long as mp(G) > 0, there must exist some node i in which
S1 is continuously enabled. MP.i becomes false once S1 is
executed at node i unless another transient fault occurs. Once
a node i executes its S1 and changes MP.i to false by setting
p.i = i, its children will execute RD.i and learn about the
faulty state in at most M rounds. It takes at most another M
rounds before all the children execute S1 to signal the fault.
Thus, all nodes k hops away from the base station will be
in Q1 after at most 2kM rounds after the fault occurs. As a
result, starting from an arbitrary state q0, the system G will
self-stabilizes to a state in Q1 in at most 2Mδ(G) rounds.

Lemma 3. Starting from any state in Q1, system G will self-
stabilize to a state in Q2 in a number of rounds proportional
to δ(G).

Proof: Thus, for any state in Q1, the predicate (∀ i ∈
V,∃ j ∈ N.i : m.i ≥ m.j + w.j.i) must hold, otherwise vi is
a false sink. Define a function m(q.G) to be:

m(q.G) =
∑
i∈V

m.i

Obviously, m(q.G) ≥
∑
i∈V m

∗
i . Every time action S2 is

executed, m(G) will be decreased. For any system not in Q2,
there must exist some node vi whose action S2 is continuously
enabled. This is because, once S2 is enabled at some node,
it will continue to be enabled until S2 is executed. The only
other action S1 that modifies m.i is never enabled in Q1. Thus,
m(q.G) is guaranteed to decrease every M rounds. And thus
the system will stabilize to Q2.

Now we show the convergence time using induction. We
will prove that the nodes k hops away from the base station
will have mi = m∗i in at most 2Mk rounds. After the first
M rounds, any node i that is one hop away from the base
station must have learned that m′.bs.i = 0 because RD.bs
must be continuously enabled at a node i whose m′.bs.i 6= 0.
Then among these nodes, for any i whose p.i 6= bs, S2 will
be executed in at most another M rounds. Thus, after the
first 2M rounds, every node i one hop away from the base
station must have m.i = m∗i = 1. Now assume that after 2kM
rounds, all nodes k hops away from the base station has set
their m.i = m∗i = k. The same rationale can be used to prove
that every vi k+ 1 hops away from the base station will have
m.i = m∗i = k+1 in at most another 2M rounds. As a result,
starting from any state in Q1, system G will self-stabilize to
a state in Q2 in at most 2Mδ(G) rounds.

Lemma 4. Starting from any state in Q2, system G will self-
stabilize to a state in Q in a number of rounds proportional
to δ(G).

11

Proof: We only prove the system will converge to a state
in Q′, where Q′ = Q2 ∧ {Ax = s}. Since d is set according
to x in SYN, the stabilization to Q directly follows that to Q′.
Define step function F (q.G)=(x(q.G),y(q.G)) where x(q.G) is
define as:

x(q.G) =
∑
i∈V

ω(i)

where ω(i) = 1 if x.(p.i).i 6= sumRate(i) and ω(i) = 0
otherwise; y(q.G) is defined as

y(q.G) =
∑
i∈V

∑
j∈V

(σj(i) · x.i.i− pj(i) · x.j.i) .

where σj(i) = 1 if vj is on the path from vi to the base station
and σj(i) = 0 otherwise; pj(i) also is an indicator function
where pj(i) = 1 if vj is the parent of vi and pj(i) = 0
otherwise. F (q.G) > F (q′.G) if and only if x(q.G) > x(q′.G)
or x(q.G) = x(q′.G)∧ y(q.G) > y(q′.G).

∑
j∈V (σj(i) · x.i.i

computes the total traffic that should pass vi given the routing
tree defined by m.i. When the system stabilizes, the outgoing
traffic from each node should be equal to the sum of traffic
passing through it.
x(q.G) is non-decreasing as x.j.i is set to sumRate(i) in

action SYN. Since the equality mi = m∗i holds for any state
in Q2, the child-parent pair defines a shortest path from
every node to the base station. Since every node reads the
traffic information from its children, the information about
the amount of outgoing traffic generated by vi propagates
down the path when the RD.i action is executed at vi’s parent.
In other words, y(q.G) decreases whenever some node i’s
traffic information is propagated further to an ancestor that
has not previously included this information in its outgoing
traffic calculation. Eventually, the traffic generated by vi will
be factored into the traffic for every node on v′is path to the
base station. This process occurs concurrently at all the paths
and continues until the last path finishes and F (q.G) decrease
to (0, 0). As a result, the time complexity of this process is
determined by the longest path in the network, whose length is
δ(G). Between any pair of child and parent, it takes at most
M rounds for the parent to read from the child. It takes at
most another M rounds for the parent to update its outgoing
rate by executing SYN. As a result, it takes at most 2Mδ(G)
rounds for the system to self-stabilize from any state in Q2 to
Q

Proposition 1. Based on Theorem 2, the system is optimized
when the system state is in Q in a number of rounds propor-
tional to δ(G).

