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Abstract

Scientific processes and analyses have become increas-
ingly more data and compute intensive in the wake of the
information sharing/mining age. Meanwhile, computing as
a utility, that is, offering pay-as-you-go access to on demand
supercomputing resources, has finally emerged in the form
of Cloud computing. In this powerful, new model of com-
puting, facilities for intelligent resource allocation must be
supported in an effort to minimize utility cost. This paper fo-
cuses on the challenges of supporting efficient data retrieval
and processing over a scientific data repository hosted in a
cloud setting. We have developed a cooperative scheme for
caching intermediate data results from scientific processes.
This cache leverages the dynamic scalability of a cloud en-
vironment for reducing process execution times, and we pro-
pose resource-conservative algorithms for this purpose. A
detailed evaluation of our system has also been performed,
considering scalability, load balancing, and impact of dy-
namic scalability on diminishing execution time.

1 Introduction

Research in the general area of the data grid has proved
beneficial to a number of users including data analysts and
scientists. Such efforts have initiated novel methods for ac-
cessing compute and data intensive processes for deriving
scientific data results. However, today’s scientific simula-
tions, observations, and experiments are capable of gener-
ating massive volumes of data per day. These data sets, due
to their size, are typically stored in persistent mass storage
systems, which provide expansive, but slow, disks across dis-
tributed systems, including the grid.

Much progress toward alleviating the hardships in large
scientific computing have been realized in the grid work-
flow community. For instance, advancements in model-
ing semantics, metadata cataloging, and AI planning tech-
niques provide automatic workflow synthesis by allowing
relevant resources to be discovered correctly and efficiently
[25, 26, 14, 6, 30]. Similarly, efforts toward optimizing dis-
tributed scheduling have ushered new heuristics in the con-
text of heterogeneous networks [7, 32]. With mounds of other
grid utilities brought into fruition for querying, deriving, and
storing data [12, 3, 33], the challenges for provisioning ef-

ficient large scale scientific computing have become unsur-
prisingly limited by data movement and process execution.
As a result, efficient access to multitudinous mass storage
data repositories is becoming increasingly imperative in grid
programming models.

Meanwhile, a powerful grid-esque computing model,
known simply as the Cloud, has brought forth pragmatic pro-
visions for computing as a utility. This model allows users
on-demand access to supercomputing infrastructure — for a
price. Evidenced by a surge of interest from multiple stake-
holders in the industry and the academe, Cloud computing
appears to be here to stay [2]. Providers, such as Amazon’s
Elastic Compute Cloud (EC2) [1] and Google’s App Engine
[15], have already made great strides toward offering this ser-
vice to the mainstream. As they gain pace in the industry,
users in many disciplines are afforded access to leverage any
amount of computing power to satisfy their relative needs.

In a perspective astray from traditional distributed and
grid paradigms, under the Cloud, computing resources
should be scaled up or relaxed dynamically to optimize util-
ity costs in handling varying workloads. This at-cost flexibil-
ity minimizes wasteful usage of allocated machines during
times when their presence is superfluous for the task at hand.
In terms of advancing systems for large scale scientific com-
putations, the timely emergence of the Cloud can certainly be
leveraged to help reduce overall execution times by a signifi-
cant factor.

In this paper, we present a dynamic cooperative caching
framework for storing reusable derived data, i.e., intermedi-
ate results. Our cache system, while currently implemented
as a component in our scientific workflow management sys-
tem [9, 10, 11], can be deployed as a general service and in-
tegrated transparently into frameworks. Our proposed cache
provides an efficient indexing structure that captures domain-
specific attributes of the cached intermediate results (in our
system, these attributes are domain concepts and spatiotem-
porality). We also propose an algorithm to conservatively ac-
quire Cloud nodes for caching on an as-needed basis. This
approach seeks to minimize node allocation by assigning
cached data greedily to already-acquired nodes, and there-
fore, reducing the utility costs of allocating compute nodes
in the Cloud. Our cache utilizes both current database and
web caching solutions to minimize indexing and migration
costs respectively.

We have evaluated our system in terms of miss rate, node



utilization, and the added effects of the cache on reducing
execution times. Our experimental results show that our flex-
ible cache system is capable obtaining minimal miss rates
while utilizing significantly less resources than statically al-
located systems of fixed-sizes in the span of the system’s run-
time. We also show that the system scales to increasing work-
loads through its dynamic Cloud resource allocation scheme.

The rest of this paper is organized as follows. In the Sec-
tion 2, we present background and goals for our cache frame-
work. In Section 3, we formalize the structures and algo-
rithms involved for our system. Experimental results are dis-
cussed in Section 4. We identify related works in Section 5
and conclude in Section 6.

2 System Goals and Background

Large scale applications in the data grid are typically mod-
eled in a tertiary architecture involving (i) clients, (ii) middle-
ware/grid services which access (iii) persistent data reposi-
tories in Mass Storage Systems (MSS). While many efforts
have been made toward easing accesses to MSS through
caching and file replication in between stages (ii) and (iii),
in today’s systems, scalability has become synonymous with
performance. This is due to the importance for cutting edge
applications to handle varying, unpredictable, and/or time-
critical workloads. Whether the objective is load balancing,
minimizing out-of-core executions, or reducing network traf-
fic, the goal of scalable systems is singular: to provide high
levels sustainability and availability.

Situations within certain applications, such as tropical
storm tracking, flood monitoring, or even sudden transgres-
sions in markets, often invoke increases in workloads due to
heightened interests from various users. But because queries
during these circumstances are often related, a considerable
amount of redundancies among processes is present, and
their intermediate and final results can often be reused to
hasten subsequent queries. Our approach exploits these over-
laps by caching and utilizing intermediate results when called
upon at a later time. Our system is a distributed, cooperative
cache which scales to increasing workloads by dynamically
allocating Cloud nodes to share the work. But this simple
solution is met with certain requirements and challenges.

2.1 System Goals

Provisioning Fast Access Methods
The ability to store large quantities of intermediate

results is hardly useful without efficient access methods.
These include not only identifying which node contains
the cached data, but also facilitating fast hits and misses
within that node. Clearly, the former goal could be achieved
rather easily through such methods as hashing or direc-
tory services, but the latter requires more considerations
toward indexing. Although the index structure is specific to
certain implementations, we utilize spatiotemporal indices
[18, 16, 4, 24] due to the wide range of applications that they
can accommodate and also their de facto acceptance into
most practical database systems.

Graceful Adaptation to Increasing Workloads
An increase in query frequency implies a growing amount

of data that must be cached. Taking into consideration the
dimensionality of certain data sets, it is easy to predict that
caches can quickly grow to sizes beyond main memory
as query intensive situations arise. In-core containment,
however, is imperative for facilitating fast response times in
any cache system. The on-demand flexibility afforded by
the Cloud is particularly important here – our system must
be memory conscious and acquire nodes to share the storage
burden, thus guaranteeing in-core access.

Conservative Utilization of Cloud Resources
Our cache framework is a form of utility computing over

the Cloud, where resource allocation should be minimized,
if possible, to control costs. This means that our system
must (i) utilize a minimal amount of nodes for the respective
workload and (ii) control the growth rate of nodes acquired.
To facilitate these tasks, we propose a load distribution
algorithm that is greedy in terms of its aggressive nature in
assigning, and thus containing, the cache within the current
system. Our algorithm, GBA (Greedy Bucket Allocation)
acquires new nodes to handle increasing workflows as the
last resort. In Section 3, we discuss technical details of this
algorithm.

High-Level Integration with Existing Systems
Our cache must subscribe to an intuitive programming in-

terface which allows for easy integration into existing sys-
tems. Like most caches, our system only presents high-level
search and update methods while hiding internal nuances
from the programmer, such as victimization and replacement
policies, management of underlying resources, data move-
ment, etc. In other words, our system can be viewed as a
grid service, from the programmer’s perspective, for caching
intermediate results.

2.2 Previous Work

The work presented here is in the context of our pre-
viously developed geospatial workflow system [9, 10, 11],
which enables automatic planning of composite services and
data sets for answering high level queries. Workflow man-
agers, historically rooted in managing large scale business
processes, have resurfaced in the data grid as powerful sci-
entific computing models. In these models, workflows may
involve any number of process executions and data sets. For
instance, consider the workflow, shown in Figure 1, which
answers a query asking for shoreline derivation at some spec-
ified time and location, a typical query in the geospatial do-
main. This workflow involves the execution of four distinct
data and compute intensive processes: (i) getStns, (ii) get-
WaterLevel, (iii) getCTM, (iv) getShoreline, which translates
to four disparate opportunities for caching intermediate (and
final) derived results. From the perspective of a workflow
manager, the cache is accessed to locate intermediate results
prior to the individual process invocations and updated af-
ter each time a result is obtained. Although specific to our
system, the spatiotemporality of geospatial data sets presents



certain complexities in terms of indexing the intermediate re-
sults. We revisit this challenge in the next section.
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Figure 1. Shoreline Extraction Workflow

3 Cache Design and Access Methods

We now present the core components in our derived data
cache scheme. In each subsection, we respectively address
efficient data identification, node hashing, and cache access
and maintenance methods in our framework.

3.1 Indexing Intermediate Results

To provide fast methods for identifying the existence of
derived intermediate results in the cache, an effective index
is required. The immediate challenge is deciding which at-
tributes of the derived data are to be indexed. Earlier, we
alluded to the fact that geospatial data are spatiotemporal,
so the relevant time and space are natural indices. How-
ever, spatiotemporal indexing alone is inadequate; disparate
phenomena can be of interest at the same location and time.
Our geospatial workflow system employs a domain ontology
which models the relationships of geospatial concepts and
the available processes and data sets. In the example from
Figure 1, the (process→ concept) ontological mappings are:
(getStns → water gauge station), (getWaterLevel → water
level), (getCTM→ coastal terrain model), and (getShoreline
→ shoreline). Thus, the index must also capture the data’s
domain concept along with its relative time and location of
interest, e.g., any data that getShoreline produces should be
indexed under the shoreline concept.

concept 1 concept 2 ... concept n t 1 t 2 t 3 ...

Concept Sub-treeFull Index Tree

Figure 2. The Modified Bx-Tree

We utilize a modification of Bx-Trees [18] to index cached
data. This particular index is useful in our approach due to
its familiar and ubiquitous underlying structure, B+Trees†.
Because B+Trees are widely accepted in most database sys-
tems, its integration is simplified. The modification to this
structure that we propose is to allow its keys to also capture
the data’s ontological concepts. First, a linearization of do-
main concepts is obtained by mapping each to a distinct in-
teger. This value is set to the leftmost binary portion of the
key. Recall that B+Tree structures are balanced, and like bi-
nary trees, sorted incrementally on keys. Then, by attaching
the concept mappings to the most significant bit portions of
the key, we can logically partition the tree into independent
concept sections. Each concept subtree is further partitioned
into the times they represent, and finally, within each time
partition lie the space filling curve (one dimensional) repre-
sentations of spatial regions. This configuration is depicted
in Figure 2. For an intermediate result pertaining to domain
concept c is located in (x, y) with time t, its key is formulated
as the bit string:

key(c, t, o) = [c]2 · [t]2 · [curve(x, y)]2

where curve(x, y) denotes the space filling curve mapping
of (x, y), [n]2 denotes the binary representation of n, and ·
denotes binary concatenation.

3.2 Consistent Hashing

The design of our caching scheme must be conducive to
changes in its underlying structure. That is, adding and re-
moving cache nodes should take minimal effort, which is a
deceptively hard problem. To illustrate, consider an n-node
cache system, where the node responsible for caching key k
is computed h(k) = (k mod n), assuming that k denotes a
key, computed via the aforementioned key(c, t, o), used for
indexing the accompanying data. Now assume that a new
node is allocated, which effectively changes the hash func-
tion to h′(k) = (k mod n + 1). This ostensibly simple
change forces all currently keyed records to be rehashed and
relocated using h′(k), otherwise requests for k would result
in an unconditional miss due to inconsistencies between the
new hash function and underlying structure. Rehashing and
migrating large volumes of records after each node acquisi-
tion is, without saying, prohibitive for most systems.

To handle this problem, known as hash disruption [23],
we implement consistent hashing [20], which has found ap-
plications primarily within distributed web proxies, among
others. In this scheme, assume some fixed range of keys,
[0, r]. Within this range exists a sequence of p buckets,
B = {b1, . . . , bp}, with each bucket mapped to a node. Fig-
ure 3 (top) shows an example of a cooperative cache system
system based on consistent hashing that consists 2 nodes and
5 buckets. When a new key k arrives, it is first hashed via
some function h(k) ∈ [0, r] then assigned to the node pointed
by h(k)’s closest upper bucket. In our figure, the incoming k
is assigned to node n2 via b4. Often, but not necessary, the
†As per [18], Bx-Trees are, in the simplest sense, B+Trees whose keys

are linearizations of spatiotemporal attributes via space filling curves and
time partitioning.



0 r

b1 b2 b3 b4 b5

n1 n2

h(k)

0 r

b1 b2 b3 b4 b5

n1 n2 n3

Acquisition of n3, mapped via b6

b6

r/2

Figure 3. Consistent Hashing Example

hash line is implemented in a circular fashion, so in our ex-
ample, a key k | b5 < h(k) ≤ r would be mapped to n1 via
b1.

Because bucket-to-node mappings are fixed, consistent
hashing reduces hash disruption by a considerable factor. For
instance, let us consider Figure 3 (bottom), where a new
node, n3, is acquired and assigned by bucket b6 = r/2 to
help share the load within the interval between b3 and b4.
The introduction of n3 would only cause a small subset of
keys to be migrated, i.e., k | b3 < h(k) ≤ b6 (area within
the shaded region) from n2 to n3 in lieu of a complete rehash
of all keys. Thus, consistent hashing simplifies the task of
workload adaptation: First, if a node n becomes overloaded
due to some large or popular bucket interval (bi, bj ], then we
can alleviate the load on n simply by adding a new bucket, bk

in the crowded region of (bi, bj ] and assigning bk to the least
loaded node. Secondly, if all nodes within our system are
full, then a new node from the Cloud can be quickly intro-
duced without much effort, and its buckets can be assigned
to crowded intervals to continue to help distribute the load
evenly.

Before presenting cache access methods, we first state the
following definitions. Let N = {n1, . . . , nm} denote the
currently allocated cache nodes. We define ||n|| and dne to be
the current memory used and capacity respectively on cache
node n. We further define the ordered sequence of allocated
buckets as B = (b1, . . . , bp) such that ∀i : bi ∈ [0, r] and
bi < bi+1. Because consistent hashing inserts keys based on
the upper bucket closest in proximity, an efficient implemen-
tation of the hash function, h(k), can be achieved by running
binary search for k over the ordered sequence, B, and return-
ing the bucket at, or immediately larger than, k. In a circular
implementation,

h(k) =

{
b1, if k > bp

arg min
bi∈B

bi − k ∧ bi ≥ k otherwise

3.3 Cache Access Algorithms

Although the method for searching for some cached result
is trivial, i.e., by running a Bx-Tree search for k on the node
pointed by h(k), the procedure for inserting into the cache
is slightly more involved. In Algorithm 1, GBA (Greedy

Algorithm 1 GBA-insert(k, v)
1: static NodeMap[. . .]
2: b← h(k) /* hash k’s bucket */
3: n← NodeMap[b] /* get b’s associated node */
4: if ||n||+ sizeof(v) < dne then
5: n.insert(k, v) /* insert directly on node n */
6: else
7: /* migrate keys (k′, . . . , k∗) from node n to node nmin */
8: Kb ← b.keys() /* all keys w.r.t. bucket b */
9: k′ ← Kb.min()

10: k∗ ← Kb.median()
11: GBA-migrate(k′, k∗, n)
12:
13: /* renew hash after migration changes structures */
14: n← NodeMap[h(k)]
15: n.insert(k, v)
16: end if

Bucket Allocation) Insert is defined with a pair of inputs,
k and v, denoting the key and value respectively. Here, v
is a reference to the intermediate data. On Line 1, a hash
map is brought into scope. This structure defines the relation
NodeMap[b] = n where n is the node mapped to bucket
value b. After identifying k’s bucket and node (Lines 2-3),
the (k, v) pair is inserted into cache node n if the system
determines that its insertion would not cause a memory over-
flow on n (Lines 4-5). Recalling the fact that caches expand-
ing into disk memory would be prohibitively slow, if an over-
flow is detected, migration must be called to make space. The

Algorithm 2 GBA-migrate(kstart, kend, nsrc)
1: Ψ← all pairs from nsrc: {(kψ, vψ) | kstart ≤ kψ ≤ kend}
2: /* find minimally loaded node */
3: nmin ← argmin

ni∈N
||ni||

4: if ||nmin||+ sizeof(Ψ) > dnmine then
5: /* stolen keys and values will overflow nmin
6: allocate new, empty node instead */
7: nmin ← nodeAlloc()
8: end if
9: /* transfer stolen cache */

10: for all (kψ, vψ) ∈ Ψ do
11: n.delete(kψ)
12: nmin.insert(kψ , vψ)
13: end for
14: /* update structures */
15: static B = (. . .)
16: B ← (b1, . . . , bi, kend, bi+1, . . . , bp) | bi < kend < bi+1

17: NodeMap[kend]← nmin

goal of migration is to introduce a new bucket into the over-
flown interval that would alleviate the load of about half of



the keys from the overflown bucket. The minimal and median
key values, k′ and k∗, relative to the overflown bucket, are
found and used to call the migration algorithm, GBA-migrate
(Lines 6-11). A quick rehash on k is needed in light of the
modified B and NodeMap[. . .] structures incurred from run-
ning GBA-migrate (Line 14). The pair, (k, v) can finally be
inserted into the rehashed node.

The GBA-migrate procedure, shown in Algorithm 2,
inputs the range of keys to be migrated, kstart and kend, and
the node from which these keys should be stolen, nsrc. The
first step is to retrieve the set Ψ of all (key, value) pairs from
nsrc. Next, the least loaded node, nmin is identified from the
current cache configuration (Line 3). If Ψ cannot fit within
nmin, however, a new node must be allocated from the Cloud
(Lines 4-8). Lines 9-13 describe the transfer of Ψ from n to
nmin. Finally, the bucket intervals, B, and NodeMap[. . .]
structures are updated in the static scope (Lines 14-17). We

Algorithm 3 steal-key-pairs(kstart, kend)
1: Ψ← {}
2: end← false
3: /* L is the leaf initially containing kstart */
4: L← bxTree.search(kstart)
5: /* sweep leaf nodes until kend */
6: while (¬end ∧ L 6= null) do
7: /* each leaf node contains multiple keys */
8: for all (k, v) ∈ L do
9: if k ≤ kend then

10: Ψ← Ψ ∪ {(k, v)}
11: else
12: end← true
13: break
14: end if
15: end for
16: L← L.nextLeaf()
17: end while
18: return Ψ

digress briefly to discuss the migration process, which was
simplified in Algorithm 2. Line 1 of Algorithm 2 can be
replaced with the more nuanced Algorithm 3. In order to
steal all keys and their values between [kstart, kend], we
perform a search-and-sweep on the Bx-Tree index. First, a
search for kstart is invoked to locate its leaf node. Then,
recalling that leaf nodes are arranged as a key-sorted linked
list in B+-Trees, a sweep on the leaf level is run until kend

has been reached. This procedure is illustrated in Figure 4.

Analysis of GBA-Insert
GBA-insert is difficult to generalize due to variabilities of

the system state, which can drastically affect the runtime be-
havior of migration, e.g., number of buckets, migrated keys,
etc. To be succinct, we make the simple assumption that
sizeof((k, v)) = 1 to normalize cached records, that is,
||n|| = n.keys(). This simplification also allows us to imply
an even distribution over all buckets in B and nodes in N . In
the following, we only consider the worst case analysis.

Since the algorithms are dependent, we begin with the
analysis of Algorithm 3, whose time complexity is denoted

kstart kend

se
ar
ch

(k
st
ar

t)

(sweep)

nsrc

Ψ

Figure 4. Migration on the Bx-Tree Index

Tstl. Because we are assuming the worst case, the maximum
number of keys that can be stolen from any node is half of
the record capacity of any node: dne/2. This is due to our
assumption of an even bucket/node distribution, which would
cause Algorithm 1’s calculation of k′ and k∗ to be assigned
such that k∗ − k′ ≈ dne/2, and thus Tstl can be analyzed
as having an O(log2 ||n||)-time Bx-Tree search followed by
a linear sweep of dne/2 records,

Tstl = log2 ||n||+ dne/2

This allows us to solve for Tmigrate, the complexity of Al-
gorithm 2, whose expansion involves Tstl followed by the
time taken to move the worst case number of records to an-
other node. If we let tnet denote the time taken to move one
record,

Tmigrate = Tstl + (dne/2)tnet

= log2 ||n||+ dne/2(tnet + 1)

Finally, we are ready to solve for TGBA, the run time of Al-
gorithm 1. As noted previously, h(k) can be implemented
using binary search on B, the ordered sequence of p buckets,
i.e., T (h(k)) = O(log2 p). After the initial hash function
is invoked, the algorithm enters the following cases: (i) the
record is inserted trivially, or (ii) a call to GBA-migrate is
made before trivially inserting the record (which requires a
subsequent hash call). That is,

TGBA =
{

log2 p, if ||n||+ 1 < dne
2 log2 p + Tmigrate, otherwise

Finally, after substitution and worst case binding, we arrive
at the following conditional complexity due to the expected
dominance of record transfer time, tnet,

TGBA =
{

O(log2 p), if ||n||+ 1 < dne
O((dne/2)tnet), otherwise

Although tnet is neither uniform nor trivial in practice, our
analysis is still sound as actual record sizes would likely in-
crease tnet. But despite the variations on tnet, the bound for
the latter case of TGBA remains consistent due to the signifi-
cant contribution of data transfer times.



4 Experimental Results

In this section, we discuss the evaluation of our coopera-
tive cache system. In our configuration, the workflow man-
ager is executed on a Linux machine running Pentium IV
3.0Ghz Dual Core with 1GB of RAM, which is linked via a
10MBps connection to the Cloud. Our Cloud environment is
emulated on a cluster, with each node having uniform band-
widths of 10MBps. In our experiments, all caches are ini-
tially cold.
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Figure 5. Behavior of Miss Rates

The first set of experiments measures miss rates over time
to evaluate the adaptation of the cache with increasing work-
loads. For this experiment, we engage the following cache
configurations: Three statically allocated caches consisting
16 (static-16), 32 (static-32), and 48 (static-48) cache nodes,
compared against our cooperative scheme (GBA), which ini-
tially starts with one node. Let us focus on the top graph of
Figure 5. For this plot, we produced varying workloads of
100 to 200 cache accesses per time unit, and ran it for 600
time units.§ This graph clearly shows that the GBA’s miss
rates drop at the same rate as configurations containing 32
and 48 nodes. The miss rates for a 16 node configuration be-
gins tapering off at 200 time units into the execution due to
LRU victimization in order to keep its indices in-core. This
problem does not affect the other three configurations, which
implies that the workload is too light for 32 and 48 configura-
tions. The graph also implies that the GBA-migration process

§Although the unit of time is arbitrary in these experiments, larger units
(e.g., minutes or hours) admittedly makes for a stronger case in using our
cache for optimizing utility costs.

is effective for adapting our cache to increasing workloads
because GBA cache miss rates are equivalent to those pro-
vided by the larger 32 and 48 node configurations. The y-axis
on the right hand side refers to node growth rate from running
GBA. As we can see from the GBA Nodes trend, our system
is able to provide ideal miss rates while using less nodes in
the duration of the run, which saves on the Cloud’s utility
cost. Also note that GBA also allows us to use the minimal
amount of nodes, 32, to achieve the same miss rate instead
of overprovisioning: For static-32 and static-48, ideal miss
rates are achieved, but both static configurations clearly uti-
lize more computing resources during the run than GBA. This
evidence supports that the GBA-based cache scheme will be
financially cheaper to utilize over the Cloud’s pay-as-you-go
model.
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Figure 6. Balancing Memory Utilization

The natural extension to this experiment is to increase the
workload. As we can see in the bottom graph of Figure 5, the
first observation is that the miss rates improve significantly
against the higher workload. This trend is expected, as cache
systems thrive on usage. In this plot, the miss rates for 16
and 32 static node configurations level off due to victimiza-
tion while GBA and the 48 node settings continue to improve
until the end of execution, which is consistent with our expec-
tations. Again, it is clear that GBA will provide better miss
rates than static-16 and static-32 by utilizing more nodes on
demand. However, it is still cheaper to use GBA over a static
48 node configuration albeit that static-48 provides equally
ideal miss rates.

The next set of experiments offers insight into GBA’s mi-
gration trends during these runs. The buffer utilization trend
refers to average percentage of the buffer used on the cur-



rently allocated nodes. Recall that the goal of the GBA-
migrate algorithm is maintaining indices in-core by mapping
additional buckets to lesser loaded nodes or by acquiring new
nodes. In both graphs, the peaks and troughs in memory us-
age can be observed early in the execution due to the fast
growth rates of the index against the low number of nodes
allocated early. The greediness of our algorithm can be ob-
served here, as evidenced by the usage spikes’ closeness to
100% utilization right before new nodes are acquired to share
the load. As expected, the usage trends flatten as more nodes
are acquired throughout later stages of the execution. These
graphs show that our system is capable keeping indices in-
core dynamically through migration and that it scales to in-
creasing workloads.

The final experiment displays the practical effects of our
cache on workflow systems. We executed repeated runs of
the scientific workflow for shoreline extraction seen earlier
in Figure 1. The workflow, when executed without benefit
of the cache, takes approximately 20 seconds to complete.
We ran the workflow repeatedly, selecting random locations
and times of relevance, and caching all results. As the main
plot in Figure 7 shows, intermediate derived data caching im-
proves the average workflow execution time over time. In
fact, toward the end, GBA records a 5-time speed up over the
non-cached version and significant speed ups over the static
8 node and 16 node configurations (due to victimization un-
der these settings). Speed up over the 32 node configuration
becomes evident toward the end of the run as GBA begins
allocating more than 32 nodes at around 110×103 queries to
avoid victimization.

0 25 50 75 100 125 150 200

Queries Issued

0

10

20

30

40

Q
ue

ry
 E

xe
cu

tio
n 

La
te

nc
y 

(s
ec

)

0

10

20

30

40

50

60

G
BA Nodes Allocated

GBA Nodes
GBA
static-8
static-16
static-32

(x 10  )3

0 50 100 150

0

10

20

30

40

0
10
20
30
40
50

Figure 7. Cache Effects on Query Execution
Time

The subgraph in this figure shows the costs of migration
when running GBA, where the peaks in query latency cor-
respond to heavier migration periods. But as the trend lines
show, these heavy periods are amortized by the considerable
amount of latency reductions over time. Furthermore, as we
saw previously in Figure 6, the demand for migration also di-
minishes as execution proceeds, which allows us to attain the
high speed up factors toward the end of the run.

5 Related Works

Although our system is novel in the sense of caching de-
rived data on demand, it is much-inspired by efforts done in
the general area of web caching [23]. To alleviate server load,
intelligently placed proxies have historically been employed
to replicate and cache popular web pages. The Internet Cache
Protocol (ICP) is employed by many web proxy systems to
exchange query messages [31], although our system does not
currently implement this standard.

Several methods can be used to evenly distribute the load
among cooperating caches. Gadde, Chase, and Rabinovich’s
CRISP proxy [13] utilizes a centralized directory service to
track the exact locations of cached data. But this simplicity
comes at the cost of scalability, i.e., adding new nodes to
the system causes all data to be rehashed. Efforts, such as
Karger et al.’s consistent hashing [20, 21] have been used to
reduce this problem down to only rehashing a subset of the
entire data set. Also a form of consistent hashing, Thaler and
Ravishankar’s approach maps an object name consistently to
the same machine [27]. Karger et al.’s technique is currently
employed in our cooperative cache.

Efforts in storage management have introduced a layer of
cache for alleviating long access times to persistent storage.
For instance, Cardenas et al.’s uniform, collaborative cache
service [8] and Tierney et al.’s Distributed-Parallel Storage
System (DPSS) [28] offer a buffer between clients and ac-
cess to MSS and other storage systems including SDSC’s
Storage Resource Broker [3]. Other efforts, including works
done by Otoo et al. [22], Bethel et al. [5], and Vazhkudai et
al. [29], consider these intermediate caching issues in vari-
ous storage environments for scientific computing. Work has
also been produced in the direction of optimal replacement
policies for disk caching in data grids [19]. Other grid util-
ities have sought for the storage of more detailed informa-
tion on the scientific, such as virtual data traces, known as
provenance. Chimera [12] is a system that stores information
on virtual data sets which affords scientists the possibility
to understand how, and why, certain data can be derived, as
well as a way to reproduce data derivations. Virtual services
[17], like our approach, stores service results in intermediate
caches architectures, have also been briefly proposed. How-
ever, like all the aforementioned grid cache systems, it has
not been considered under the context of the Cloud.

The goal of our framework seeks to expedite slow data ac-
cesses to large persistent storage by introducing a mediating
cooperative cache system. This architecture is indeed tanta-
mount to the above systems. However, our framework differs
from those in its dynamic, Cloud-related aspects. Our pro-
posed cache system is capable of growing to flexibly adapt to
increasing workloads, which are prevalent in such compute-
intensive environments as the data grid. Additionally, it is
utility cost-conscious as to optimize the financial demands of
Cloud users.

6 Concluding Remarks

Cloud providers have begun offering users at-cost access
to high performance computing infrastructures. In this pa-



per, we propose a Cloud-based cooperative cache system for
reducing execution times of scientific processes. The algo-
rithms presented herein are cost-conscious as not to over-
utilize Cloud resources. Performance evaluations show that
our cooperative cache system is scalable to varying high
workloads, cheaper than utilizing fixed networking structures
on the Cloud, and effective for helping minimize execution
times.

Although this paper focuses on conservative resource al-
location, the Cloud model also needs consideration toward
deallocation schemes for further reducing costs. The deal-
location problem, largely ignored so far, can no longer be
eluded in the context of the Cloud [2]. Although a number of
literature exists for workload monitoring and prediction, our
system may need heuristics for aggressive deallocation when
a cost threshold is reached.
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