
Hashing Tree-Structured Data: Methods and
Applications

Shirish Tatikonda and Srinivasan Parthasarathy

Department of Computer Science and Engineering, The Ohio State University
2015 Neil Ave, Columbus, OH 43202, USA

(tatikond,srini)@cse.ohio-state.edu

Abstract— In this article we propose a new hashing framework
for tree-structured data. Our method maps an unordered tree
into a multiset of simple wedge-shaped structures refered to as
pivots. By coupling our pivot multisets with the idea of minwise
hashing, we realize a fixed sized signature-sketch of the tree-
structured datum yielding an effective mechanism for hashing
such data. We discuss several potential pivot structures and study
some of the theoretical properties of such structures, and discuss
their implications to tree edit distance and properties related to
perfect hashing. We then empirically demonstrate the efficacy
and efficiency of the overall approach on a range of real-world
datasets and applications.

I. INTRODUCTION

Advances in data collection and storage technology have
led to a proliferation of information available to organizations
and individuals. This information is often also available to
the user in a myriad of formats and multiple media. With the
increasing importance given to semantic web [1], [2] and Web
2.0 technologies, languages such as XML and collaborative
community systems like DBLife [3], an increasing number
of these data stores are housed in (semi-)structured formats.
Examples abound ranging from XML data repositories [4] to
directory information on modern file systems, from MPEG-7
repositories [5] to linguistic data [6] and from social network
data [7] to phylogenetic data [8]. With the increasing use of
such structured datasets for housing information, the need for
efficiently managing, querying and analyzing such data is thus
growing.

A fundamental operation, in a number of domains, for
example in database systems, data mining, computational
geometry and network science, is that of hashing. A hash
function is a procedure that maps a large, possibly variable
sized piece of information into a small fixed sized datum.
Hash functions are ubiquitous in their use and are primarily
used as a tool to improve the efficiency of search, for example
in the finding items in a database [9], detecting duplicate
records [10], [11], and localizing related data for subsequent
analysis [12] etc. Although the idea of hashing dates more
than 50 years ago, much of the work to date has primarily
focused on the hashing of (variable-sized) sets [13], [14],
documents [15], sequences [16] and geometric objects [17].
Hashing and sketching tree- and graph- structured data is not
so well understood although it has been the focus of recent
research [18], [19], [20], [21], [22].

In this article we focus primarily on the problem of hashing
and sketching tree-structured data. For expository simplicity
we focus on rooted trees although many of our ideas apply
for free trees and directed acyclic graphs as well (not dis-
cussed further). Our approach relies on two operators – a
transformation operator that converts a tree-structured dataset
into a (multi-)set of pivotal elements, and a signature-sketch
operator that converts the (multi-)set into a fixed datum that
can subsequently employ any standard hash mechanism. We
investigate the theoretical properties (e.g. efficiency, perfect
hashing, edit-distance bounds) of several possible transforma-
tion operators and describe efficient mechanisms to compute
them. For the signature-sketch operator we primarily focus
on the use of min-wise hashing [15], [13], [14] although
alternate strategies (e.g. locality sensitive hashing [23], [24],
[25], bloom hashing [26]) may also be options to consider in
the future.

In addition to the theoretical analysis we present a compre-
hensive empirical study to compare and contrast the proposed
strategies on multiple synthetic and real datasets. We have
evaluated our methods along the axes of efficiency, storage
costs and performance from the perspective of the application
domain. The benefits of the proposed approach are show-
cased on different application domains including, XML de-
duplication, stratified sampling of structure data for mining
frequent trees on web log data and phylogenetic data analysis.

To reiterate the key contributions of our study include:

• Novel incremental, transformation operators based on the
notion of induced, embedded and constrained and em-
bedded pivot structures that map a given tree-structured
datum into a multi-set.

• Signature-sketch operators based on min-wise hashing to
convert the resulting multi-set from the transformation
operator into a fixed sized datum which can subsequently
be leveraged in estimating the similarity between different
trees.

• Theoretical results showing that one of the transformation
operators we propose can form the basis for a perfect
hash function and lower bounds relating the proposed
operators to traditional tree edit distance measures.

• Empirical results on a range of datasets and application
scenarios demonstrate efficacy and efficiency of the pro-
posed methods.

II. SKETCHING A TREE STRUCTURE

Our approach for constructing signatures for a given tree
relies on two main functions viz. a transformation function
and a signature function. While the former is responsible for
transforming the tree into meaningful substructures, the latter
is accountable for constructing shorthand sketch or fingerprint
for the given tree. The transformation function can be adjusted
to reflect different notions of tree structure depending on the
application requirements. The signature function acts upon
the image of the transformation function to construct small
sized representation to enable efficient application develop-
ment. One can then optionally employ any locality sensitive
hashing technique [23], [24], [25] to perform a variety of
operations including nearest neighbor search and grouping
similar structured trees. We now present our transformation
and signature functions, and illustrate their use in the context
of computing the similarity between two given trees. We
describe our entire tree sketching method with respect to a
particular transformation function (see Sections II-A & II-B).
We later show alternative choices for transformation functions
in Section II-C.

A. Transformation Function (tf)

A tree structure in terms of set theory can be thought of as a
partially ordered set (poset) of elements that are ordered by a
relation namely parent-child. It induces all other associations
among nodes such as ancestor-descendants, siblings etc. Not
only that the tree structure imposes different relations among
nodes but in converse these relations also precisely define a
tree structure. Therefore, one possible way to compare two dif-
ferent tree structures is to examine the relationships that given
two trees preserve – the fundamental motivation behind our
transformation function. This function maps a given tree into
a multiset of substructures known as pivots where each pivot
individually captures specific relationship present among the
nodes involved in the substructure. For the sake of explanation,
we define a particular type of pivot structure here, which is
called as embedded pivot structure. We later show how pivot
structures can be adapted to capture different notions of tree
similarity based an application demands.

Definition 2.1: Embedded Pivot: An embedded pivot sub-
structure containing two nodes u, v ∈ T is defined as the tuple
(lca, u, v) where lca is the lowest common ancestor of u and
v.

An embedded pivot evidently encapsulates the association
between u and v by denoting the ancestor-descendant relations
lca − u and lca− v. Since lca may not be the direct parent
of u and v, the pivot structure is in fact an embedded subtree
of T . The set of all pivots involving a particular node w ∈ T ,
denoted ST (w), describes the tree structure when seen from
the perspective of w. This set can further be divided into the
ones in which w is the root and the ones in which w is one

of the two child nodes of a pivot pattern. We thus have:

ST (w) = ST
root(w) + ST

child(w), where

ST
root(w) = {(lca, u, v)|lca = w}

ST
child(w) = {(lca, u, v)|u = w ∨ v = w}

Also, the set of all pivots associated with a tree T is given by
S(T) =

⋃
w∈T S

T (w)

In case of labeled trees, we store the node labels in each
pivot. A pivot would then be described as (l(lca), l(u), l(v))
rather than (lca, u, v). Since multiple nodes can have the same
label, there can be repetitions in S(T) – making it a pivot
multiset (or a bag) instead of a pivot set. Throughput this
article, we use the words multiset and set interchangeably.
We also ignore the label function l(·) whenever possible for
notational convenience. We use the hyphen (‘−’) as a wildcard
symbol in the pivot. For example, (w,−,−) refers to the set
ST

root(w). We further abuse the use of − to omit certain fields
in the pivot that are not important for the discussion.

A simple method to construct an embedded pivot multiset is
shown as Algorithm 1. It operates on a particular orientation
(a particular arrangement of an unordered tree) of the given
unordered tree. Every iteration of the outer loop in Line 2
produces all pivots in which u is one of the child node. Also,
u is paired up all the other nodes v ∈ T where v is neither
an ancestor nor a descendant of u. Since T is unordered, the
resulting pivots are also unordered. In order to ensure different
orientations of the same pivot structure are treated in the same
way, we swap the node labels in Lines 5−6. Such an artificial
order guarantees that all orientations of an unordered tree
produce the same (multi)set of pivots. Since the output size is
potentially quadratic in tree size, the computation complexity
of Algorithm 1 is O(n2), where n is the number of nodes in
T . We would like to note that it is fairly easy to parallelize
Algorithm 1 (see Section IV). Such parallel strategies are of
great importance in the context of modern day data servers,
which are typically mulicore systems.

Algorithm 1 Transformation function that constructs embed-
ded pivots

1: n← |T |
2: for each u in T in pre-order do
3: for each v in T [rml(v) + 1 · · ·n] do
4: lca ← lowest common ancestor of (u,v)
5: if lca != v then
6: if l(u) > l(v) then
7: swap(l(u), l(v))
8: add pivot (l(lca), l(u), l(v)) to S(T)

From the above algorithm, we can easily construct a formula
to compute the exact number of pivots N (T) as a function of
tree size n. In the following derivation, pre(v) and |D(v)|
refers to the pre-order number and the number of descendants

of v, respectively.

N (T) =
P

v
(rml(v) + 1 · · ·n) =

P

v
[n − pre(v) − |D(v)|]

= n2 − n·(n+1)
2

−
P

v
|D(v)| = n·(n−1)

2
−

P

v
|D(v)|

(1)
The total numberN (T) reaches its maximum when the sum

of all descendants
∑

v |D(v)| is minimum, as in the case of
bushy tree shown in Figure 1a. Similarly, the size of pivot set
has its minimum for chain trees where the tree is a single path
containing n− 1 edges (see Figure 1b). Therefore,

min(
∑

v |D(v)|) = n− 1 ⇒ max(N (T)) = (n−1)·(n−2)
2

max(
∑

v |D(v)|) = n·(n−1)
2 ⇒ min(N (T)) = 0

In order to avoid the special case of chain trees with zero
number of pivots, we assume, without loss of generality, in
rest of this article that all trees are branched i.e., the root node
has at least two children. Note that, a chain tree can be made
as a branched tree by introducing a dummy child node. For
branched trees with n nodes, the minimum number of pivots
will then be equal to n− 2, as shown in Figure 1c.

Fig. 1. The cases for minimum and maximum N (T)

We make use of these pivot sets for establishing the simi-
larity between given two trees. This is possible because the
tree similarity can be inferred by examining the structural
relationships among tree nodes, which are precisely captured
in our pivot substructures. We would like to note that sim-
ple intuitive transformations are not useful here. Consider a
mapping f that maps a tree into a set of node labels or edges
i.e., f : T → E where f(T) = ET is the set of all edges in
T . f is clearly a surjective function because many different
trees are likely to be mapped to the same edge set i.e., f
causes many “collisions”. Such functions are not helpful due
to the simplistic nature of their substructures. In contrast, our
transformation functions capture interesting structural relation-
ships present among tree nodes. Furthermore, they can be
made, when specialized with more information, to provide
unique mapping from trees to multisets (see Section III).
Such unique transformations resemble perfect hash functions
which are guaranteed to map distinct elements to distinct
keys. In cases where the application does not require such
powerful unique transformations, one may settle for simple
but no simpler pivot substructures. We present some of these
alternative pivot structures in Section II-C. Essentially, the
exact nature of the transformation primarily depends on the
underlying application.

Due to the nature of our pivot substructures, all the prop-
erties given on top of sets can now be provided for trees also.
In particular, the Jaccard coefficient that serves as a metric

for (pivot) set similarity can now be used as a measure of
similarity between the corresponding trees.

sim(T1, T2) = Jaccard(S(T1),S(T1)) =
|S(T1) ∩ S(T2)|

|S(T1) ∪ S(T2)|
(2)

The intersection (union, respectively) is generalized from sets
to multisets by taking the minimum (maximum, resp.) of the
two frequencies of a pivot in the multisets to be intersected
(merged, resp.).

B. Signature Function (sf)

Recall that the embedded pivot sets are potentially quadratic
in tree size. Merging and intersecting them as in Equation 2
can be computationally expensive. When the sets are so long,
all pivot sets may not fit in main memory. We improve the
efficiency by making use of a signature function that converts
these large pivot sets into shorthand summaries or fingerprints.
Subsequent merge and intersection operations are performed
on these small signatures. The key idea is to produce signatures
which are small enough to fit in main memory and more
importantly the similarity between two signatures is roughly
the same as the similarity between corresponding pivot sets.
There may exist multiple different ways to define a signature
function. For example, a fingerprint for a tree T can be pro-
duced as a random sample drawn from the pivot multiset S(T).
One may also choose to produce a weighted random sample
where the weight of a pivot is proportional to its multiplicity
in the multiset S(T). Here, we design a signature function
that is inspired from the popular MinHashing technique (short
for Minwise Independent Permutation Hashing) [15], [13]. It
guarantees that the two sets are similar if and only if the
respective signatures are similar [13]. The similarity between
two given trees can then be estimated by comparing their
respective minhash signatures.

sim(T1, T2) =
|S(T1) ∩ S(T2)|

|S(T1) ∪ S(T2)|
≈
|sig(T1) ∩ sig(T2)|

|sig(T1) ∪ sig(T2)|
(3)

Method: For a given tree T , we first construct the pivot
multiset S(T) according to Algorithm 1. We then construct
the tree signature sig(T) via minhashing. To this purpose, we
hash each pivot p ∈ S(T) using the following hash function:

ph(p) = (a1 · lca + a2 · u + a3 · v) mod P (4)

where p is an embedded pivot (lca, u, v), P is a large prime
number, and a1, a2, a3 ∈ ZP . Note that the node labels
are used in the above multiplication. Alphanumeric labels
are converted to numbers by using methods like Karp-Rabin
algorithm [27]. This pivot hash function is sufficiently random
and gives low probability of collision [24]. The pivot multiset
is essentially a multiset of numbers less than P where each
number denotes a single pivot.

The basic idea in signature construction is to randomly
permute the universe of pivots, and hash the pivot set under
that permutation. For a given permutation πi, the index of the
first pivot that belongs to set S(T) is produced as its minhash
value hi(T). It has been shown that for a random permutation,

the probability with which two pivot sets produce the same
hash value is equal to the Jaccard similarity of those sets [13],
[14]. Since the scheme is probabilistic, it is likely to have false
positives and false negatives. They are minimized by repeating
the process k times, resulting in k−MinHashes.

sig(T) = {hi(T) = min
p∈S(T)

πi(ph(p)), 1 ≤ i ≤ k}

where πi’s are random permutations over the universe of
pivots. For a universe of large size, explicit construction of
these permutations is very expensive. Broder et al. [13] showed
that when the universe of elements is {0, 1, · · · , P − 1}
for some prime P , one can instead consider a family of
permutations of the form:

πi(x) = ai · x + bi (mod M)

where ai ∈ Z∗
M , b ∈ ZM , and M is a prime number

that is not smaller than the universe size. They showed that
the performance of such linear hash functions is as good as
random permutations. Since the universe size is equal to P
(see Equation 4), we have M ≥ P . As shown in Equation 3,
the similarity between T1 and T2 can then be estimated to be
the Jaccard similarity of their signatures sig(T1) and sig(T2).

Along with the pivot value that is being hashed, we also
store its multiplicity in hi(·). Therefore, the intersection
(union, resp.) of signatures is computed using the multiset
extension i.e. by considering the minimum (maximum, resp.)
of the two multiplicities involved. The entire procedure to
compute the similarity between two trees is summarized as
Algorithm 2.

Algorithm 2 Similarity between two trees T1 and T2

Input: T1, T2, ph, hash family H = {(ai, bi), 1 ≤ i ≤ k)},
M

1: construct pivot sets S(T1), S(T1) using Alg. 1
2: sig(T1) ← sketch(S(T1), ph, H)
3: sig(T2) ← sketch(S(T2), ph, H)
4: compute Jaccard of sig(T1) and sig(T2)

Algorithm 3 Tree Sketching (sketch)

Input: S(T), ph, hash family H = {(ai, bi), 1 ≤ i ≤ k)}, M
Output: sig(T)

1: for each p ∈ S(T) do
2: add ph(p) to S ′(T) (Equation 4)
3: for i = 1 to k do
4: min ← 0
5: for each p ∈ S ′(T) do
6: hash← ai · p + bi (mod M)
7: if min < hash then
8: min← hash
9: add min to sig(T)

C. Different Transformation Functions

A key benefit in the above described approach is that by
carefully choosing the transformation function, one can adjust
the type of pivot substructure and thereby control the type and
amount of tree structure that is to be compared. To exhibit this
flexibility in our approach, we now briefly describe some of
the alternative definitions for pivot substructure. This list by
no means an exhaustive one. The exact choice, as mentioned
earlier, is driven by the requirements of underlying application.
We present these functions by describing the type of pivot
substructures that they consider.
• Unordered pivots (tfu

e
): The pivots discussed thus far in

this article are unordered embedded pivots where there is no
specific order defined on the two children nodes.
• Ordered pivots (tfo

e
): Here, there is particular order defined

among the two children nodes of the pivot. Typically this
order is given by the underlying data. Such ordered pivots are
useful in several application domains including computational
linguistics, bioinformatics, and document-centric XML where
the data is modeled as ordered trees. Such a transformation
function is implemented in a similar manner to Algorithm 1
except for the swap operation in Lines 5−6. Note that when the
labels are not swapped, different orientations of an unordered
tree produce different pivot sets.
• Constrained pivots (tfc): The transformation functions con-
sidered so far produce pivot sets which are inclusive of all pos-
sible pivots. For instance, Embedded pivots discussed earlier
present the global structure of the tree since each node is paired
with every other node, whenever possible. In contrast, one may
be interested only in the local structure around tree nodes. The
transformation functions can be adapted to such scenarios by
providing additional constraints representing the type of local
substructure one wants to focus on. There may exist two types
of constraints: node constraints and edge constraints. Node
level constraints allow the user to specify a set of nodes of
interest U = {u1, u2, · · · } in the tree. The transformation
function then produces only those pivots (lca, u, v) where
lca, u, v ∈ U . Such node specific constraints can easily be
pushed into the construction process in Algorithm 1 (Lines 2
and 4). As we show later in Section IV-C, node-constrained
pivots are useful in phylogenetic studies, where the biologists
are interested in studying the evolutionary relationships among
known taxa that is typically present at leaf nodes (i.e., U).

In case of embedded pivots, each edge denotes some
ancestor-descendant relationship. Local structure around tree
nodes can be emphasized by providing constraints on the
edges. Here, transformation functions are defined to restrict
the neighborhood within which the pivot nodes are located.
Only those pivots where the root (lca) node is within certain
number of hops from the other two nodes. More specifically,
this function constructs pivots of the form (lca, u, v) where
|level(lca)− level(u)| ≤ θ and |level(lca)− level(v)| ≤ θ,
for a user defined parameter θ. It is fairly easy to incorporate
such level constraints in to Algorithm 1 (at Line 4). Focusing
on local structure around tree nodes can be useful in many

applications. Consider a graphics or a vision application [28]
where the images are represented using some space partition-
ing data structure like kd-tree. Level-constrained pivots in this
case correspond to the tree structure that is localized to some
regions or parts of the underlying image. Such localization
may be useful, for example, if it is known that one part of the
image is unlikely to be correlated to another region that is far
away on the image.
• Induced pivots (tfi): In contrast to embedded pivots which
preserve ancestor-descendant relationships, induced pivots
maintain only parent-child relations among nodes. In an in-
duced pivot (lca, u, v), lca is the parent of both u and v.
Note that, induced pivots are a spacial case of level-constrained
pivots where θ = 1.
• Embedded pivots with levels (tf le): Here embedded pivots
are specialized by annotating with the level information. The
annotation can be done in two ways: each node in the pivot
is attached with its level; each edge is attached with the level
difference in corresponding nodes. In the former case, each
pivot is a 6-tuple (lca, l1, u, l2, v, l3) where l1 = level(lca), l2
= level(u), and l3=level(v). In the case where edges are an-
notated, each pivot is defined as a 5-tuple (lca,l1,u,l2,v) where
l1=level(u)−level(lca) and l2=level(v)−level(lca). Unlike
embedded pivots described earlier, these pivots embody more
structural properties present among tree nodes. In fact, this
particular transformation function provides a unique mapping
between trees and pivot sets. Please see Section III-C for a
detailed proof.

III. THEORETICAL ANALYSIS

We first introduce some terminology used in this section.
For a given tree T , we denote its root node by r(T) and its
depth or height by d(T). Similarly, the depth of a given node
u ∈ T is denoted by cu. An orientation of an unordered tree T
can be characterized by a level code c1c2 · · · cn where node i in
preorder appears on level ci. Among all possible orientations
of a given unordered tree, the one with lexicographically
largest level code is called as the canonical orientation and the
corresponding code is called as the canonical level code. Note
that in a canonical orientation, the subtrees in each family are
in non-increasing lexicographic order.

A. Bounds on Node Level Pivots

Let N(v) = |ST (v)| denote the number of pivots in which
a particular node v presents. As mentioned in Section II-A,
this number can be divided into two parts N T

child(v) = || and
N T

root(v) As mentioned earlier, the number of pivots involving
a particular node v ∈ T can be partitioned into two subsets
N T

child(v) = |ST
child(w)| and N T

root(v) = |ST
root(w)|. Note that

N T
child(v) is equal to the number of nodes with which v can

be paired in a pivot, which does not include both its ancestors
and descendants. Similarly, N T

root(v) depends solely on the
number of the descendants that v has in T . We thus have,

Nchild(v) = n− 1− |A(v)| − |D(v)|

Nroot(v) ≤ |D(v)|·(|D(v)|−1)
2 (from Eq 1)

By combining these two relations, we get:

N (v) ≤ [n− 1− |A(v)| − |D(v)|] + |D(v)|·(|D(v)|−1)
2

≤ n− 1− |A(v)| + |D(v)|·(|D(v)|−3)
2

(5)

B. Incremental Construction

Fig. 2. Computation of N (T) using Property 3.1

In many XML applications, document order i.e. the order
that exists among nodes within a single document is very im-
portant. For example, operations like XML canonicalization 1

process the nodes in ascending document order. Document
order is also important in domains like XSLT. When the nodes
are considered in document order, we show that pivot sets
can be computed in a much elegant fashion by leveraging the
following observation.

Property 3.1: Let T be a tree with associated pivot set
S(T). If a new node u is attached to an existing node v ∈ T
resulting in a new tree T ′, then S(T ′) = S(T) + ST ′

(u).
This property states that the existing pivots are not altered

when new nodes are attached to the tree (as leaf nodes). For
a given pivot (lca, u, v), no addition of a leaf node can alter
the ancestor-descendant relations between lca and u, v. Such
a property allows us to decompose a pivot set into multiple
disjoint sets. For example, if the root node r = r(T) has k
children u1,· · · ,uk (in that document order) then S(T) can be
written as ST (r) + ∪k

i=1S(T (ui)), where T (ui) is the tree
rooted at ui.

While processing a given XML tree T in document order,
Property 3.1 allows us to construct S(T) in an incremental
manner i.e., as and when the new nodes are encountered in
that document order. If u is the next node in document order
then the new set of pivots that are introduced due to u can
simply be constructed by pairing u with other existing nodes
in T except for its ancestors. The number of such pivots
is mainly dependent on the number of nodes which appear
before u in document order, and on the depth of node u
(see Figure 2). Therefore, we can quickly compute the pivot
set size in linear time by scanning the tree exactly once,
without actually computing the set itself. Such a quick size
estimation technique can be helpful in reducing the search
space in applications which involve node-by-node processing.

C. Relation to Perfect Hashing

For the transformation tf
l

e
where the pivots are annotated

with level information, we prove the following main result:
Theorem 3.2: The function tf

l

e
: T → S is injective i.e.,

given T1 and T2, if T1 6= T2 then S(T1) 6= S(T2).

1http://www.w3.org/TR/xml-c14n

This result guarantees that for every tree there is a unique
pivot set – akin to perfect hashing. We first prove this theorem
in the context of unordered, unlabeled trees, and subsequently
extend this result for trees with node labels.

1) Unlabeled Trees: Before we delve into the details of the
proof, we introduce two concepts: tree merge; and structural
equivalence between nodes within a single tree.

Definition 3.3: Tree Merge: Consider two trees T1 and T2

with canonical level codes a1 · · ·am and b1 · · · bn, respectively.
Say, ∀i < k ai = bi, and ak > bk i.e., k is the first location
at which both codes differ. We define a merged tree T1 ⊗ T2

to be a tree with the following level code:

Code(T1 ⊗ T2) = Code(T1)⊗ Code(T2)
[a1 · · · ak−1ak · · · am

= ⊗
b1 · · · bk−1bk · · · bn]

= a1 · · · ak−1ak[ak+1 · · · am ./ bk · · · bn]

where [ak+1 · · · am ./ bk · · · bn] is some valid combination of
level codes. It is guaranteed that such a combination exists.
The tree merge operation essentially creates a larger tree with
m+n−k+1 nodes such that the first k are nodes are similar
to T1, and rest of the nodes from T1 and T2 are added in some
valid combination. A simple case of tree merge operation is
illustrated in Figure 3. In this particular example, the valid
combination is obtained through simple block movement of
level codes.

Fig. 3. Tree Merging

Definition 3.4: Structural Equivalence: Two nodes u and
v in a tree T are said to be structurally indistinguishable
(or structurally equivalent) if and only if the following two
conditions hold:

i) Subtrees T (u) and T (v) possess the same structure.
ii) Either u and v are sibling nodes or their parent nodes

are structurally indistinguishable.
This definition essentially states that u and v are placed in T

in such a way that they can be swapped without affecting the
tree structure. By permuting such structurally indistinguishable
nodes one can enumerate different automorphisms 2 of T .
The recursion in the definition is carried out until the lowest
common ancestor of the two nodes is encountered, at which
point the two parent nodes are siblings. This implies that
both u and v are at the same depth in the tree. A pictorial
demonstration of the definition is shown in Figure 4. If u

2A tree automorphism is an isomorphism from a tree to itself.

and v (whose LCA is w) are structurally equivalent then the
branches of T (w) 3 which contain u and v are equivalent.

Fig. 4. Structurally indistinguishable nodes (Theorem 3.5)

Theorem 3.5: Two tree nodes u and v in T are structurally
indistinguishable if and only if ST (u) = ST (v).

Proof: This result stems from the fact that the embedded
pivots involving a given node capture the entire tree structure
when seen from that node. Also, the pivots now are specialized
by annotating edges with level difference.
Only If part: Recall that the pivots ST (u) involving a single
node u can be partitioned into two subsets ST

root(u) and
ST

child(u). The first condition in Definition 3.4 implies that
ST

root(u) = ST
root(v). All the remaining pivots in ST

child(u)
are of the form (−,−, t,−, x) where t is either u or v, and x
is some node that is neither an ancestor nor a descendant of
both u and v. We then have two cases:

• x /∈ T (w): In this case, x is a node that is present in
T ′ (see Figure 4. Since the node label and the depth are
same for both u and v due to their structural equivalence,
all pivots of the form (−,−, u,−, x) and the pivots
(−,−, v,−, x) are equivalent.

• x ∈ T (w): Here, x can either be part of T ′′ or is a node
that is on the path w v u or w v v (i.e., an ancestor
node to either u or v). If x ∈ T ′′ then one can make
the same argument as in previous case (x /∈ T (w)). If
x /∈ T ′′ and x is on the path w v u then there must
exists x′ that is on the path w v v such that x and x′

are structurally equivalent – second condition in Def. 3.4.
In such a case, the pivot (y,−, x,−, v) that belongs to
ST

child(v) will have an equivalent pivot (y′,−, x′,−, u)
in ST

child(u) in such a way that y and y′ are structurally
equivalent. We can equivalently argue the case where x
is on the path w v v. We thus proveed that ST

child(u) =
ST

child(v) if u and v are structurally equivalent.
If part: We show that this part of the theorem holds by proving
its contrapositive i.e., if u and v are not structurally equivalent
then ST (u) 6= ST (v). If they are not equivalent then one of
the two conditions in Definition 3.4 must fail.

• T (u) 6= T (v): Let the canonical level codes of T (u)
and T (v) be c1 · · · cm and d1 · · · dn, respectively. If
the subtrees differ in their structure then there must
exist x ∈ T (u) and x′ ∈ T (v) such that d(x)=ck

6= dk=d(x′) for some k ≤ min(m,n), where k is the
position at which both level codes differ. Now consider
the specific pivots p1 formed by u and the node in

3T (w) is the subtree of T that is rooted at w.

T (v) i.e., (w,−, u, dk, x′) ∈ ST
child(u) and similarly p2

= (w,−, v, ck, x) ∈ ST
child(v). Since ck 6= dk, we have

p1 6= p2.
• Now consider an instance where the second condition of

Definition 4 fails. Let the parent nodes of u and v are
z and z′, respectively. If z and z′ are not structurally
equivalent then, by a similar argument from preivous
case, we can find at least one node in each of T (z) and
T (z′) such that the nodes differ in their depth. By pairing
them with u and v, as we did in previous case, we can find
at least one pivot that is in ST

child(u) but not in ST
child(v).

We thus proved that nodes u and v are structurally equivalent
if and only if ST (u) = ST (v).

We use the above result to prove Theorem 3.2 – the function
tf

l

e
is injective.

Proof of Theorem 3.2 Consider two cases: d(T1) 6= d(T2);
and d(T1) = d(T2). In the former case, without loss of
generality assume that d(T1) > d(T2). Since all trees are
branched, there must exist at least one pivot of the form
(r(T1), d(T1),−,−,−) that is in S(T1) but not in S(T2).
Thus, S(T1) 6= S(T2).

Now consider the case where d(T1) = d(T2) = d. We prove
this case by contradiction i.e., we assume S(T1) = S(T2)
and argue that it is not possible. Let Code1 and Code2 are
canonical codes for T1 and T2. Assume that Code1 > Code2
and k be the smallest index at which both the codes differ.
Since d(T1) = d(T2), we have k > d. This instance is
summarized below:

Code(T1) = Code1 = a1 · · · ak−1ak · · · am

Code(T2) = Code2 = b1 · · · bk−1bk · · · bn

WLOG : Code1 > Code2 i.e., ∀i < k, ai = bi; ak > bk

Since the first k−1 nodes in both the trees are same and since
we assumed S(T1) = S(T2), we must have k′ such that:

∃k′ ∈ T2, k < k′ ≤ n such that ST1 (k) = ST2(k′) (6)

Now consider the merged tree T3 = T1 ⊗ T2 as defined in
Def. 3.3. Note that both k and k′ belong to the merged tree.
From Property 3.1, Equation 6, and from the way merged tree
is constructed, we can derive that the pivot sets involving k
and k′ in the merged tree are same i.e., ST3(k) = ST3(k′). In
other words, both k and k′ are structurally indistinguishable
in T3 (from Theorem 3.5). However, such a node k′ can not
exist in T2 since we assumed that Code2 is canonical and
Code2 < Code1. Therefore, our assumption S(T1) = S(T2)
can not hold true when T1 6= T2. �

2) Labeled Trees: We can easily extend the definition of
structural equivalence (Def. 3.4) to labeled trees. Based on
this definition, we provide the following theorem.

Theorem 3.6: Two nodes u and v in a labeled unordered
tree T are indistinguishable if and only if ST (u) = ST (v).

Intuition The proof is similar to the one described for
Theorem 3.5. It however relies on the fact that node labels
specialize the pivots by making them more distinct. If two

pivot sets S1 and S2 are not same when labels are not
considered then they must be different even when labeles are
taken into account. In contrast, if S1 = S2 when there are no
labels, then the sets might or might not be the same when
labels are considered. Therefore, the structural equivalence
between u and v in the unlabeled version of T is a necessary
but not sufficient condition for their equivalence in T . �

Theorem 3.7: If T1 and T2 are two labeled trees with
different structure then S(T1) 6= S(T2).

Proof: From Theorem 3.5, if two unlabeled trees differ
in their structure then their corresponding pivot sets will
be different. Since the unlabeled pivot set equivalence is a
necessary condition, the labeled pivot sets of the trees are also
different.

Theorem 3.8: Consider two labeled trees T1 and T2 with
exact same structure. If T1 6= T2 i.e. they differ in node labels
then S(T1) 6= S(T2).

Intuition By using Theorem 3.6, let the structurally equiv-
alent tree nodes of T1 are clustered into groups G1 · · ·Gk.
Permuting nodes within each such group results in different
automorphisms of T1. We can then argue that T1 and T2 will
have same pivot sets if and only if they have identical group
structure i.e., they are automorphisms of each other. �

D. Relation to Tree Edit Distance

The most commonly used distance measure on tree struc-
tured data is tree edit distance [29], [30], which denote the the
minimum number of basic edit operations (relabel, delete, and
insert) to transform one tree into the other. Some researchers
have used a variant of this basic measure that includes subtree
moves, which allow a subtree to be moved under a new node
in the tree in one step [22] – see Figure 5. In this section,
we briefly present the relation between this variant of tree edit
distance (with subtree moves) with our tree similarity measure
from Section II-A. Later in Section IV, we empirically evaluate
this relation on different datasets.

Theorem 3.9: Consider two trees T1 and T2. If
S(T1)=S(T2) then the maximum edit distance between
them is equal to m + n − 6, where m = |T1| and n = |T2|.
Proof: Since we are interested in the maximum edit distance,
we choose two extreme cases discussed in Section II-A for
T1 and T2. Let T1 and T2 be the tree structures similar to
the ones shown in Figure 1a & c, respectively. We thus have,
N (T1) = (n−1)·(n−2)

2 and N (T2) = m− 2.
If S(T1) = S(T2) then (n−1)·(n−2)

2 must be equal to m−2
(m > n). Note that the choice of T2 is very important to find
the maximum edit distance. We can not choose any other tree
structure with more than m nodes for T2 – there can not exist
a larger tree that has the same number of pivots as that of T1.
This is because T2 is a m-node tree structure with minimum
number of pivots. Also, if we consider trees with size less than
m then we may not get the maximum distance. Therefore, the
choice of T2 is justified to find the maximum edit distance.

Now, consider the edit distance between T1 and T2. To
convert T1 in Fig. 1a into T2 in Fig. 1c, we need (n − 3)

Fig. 5. Edit operations – (a) Insert and Delete (b) Subtree Move

deletions and (n − 3) + (m− n) additions. This implies that
the edit distance between trees with same pivot sets can not
exceed m + n− 6.

For each of the edit operations, we constructed some lower
bounds on the number changes in the pivot set, especially in
S(T1)∩S(T2)

4. These bounds provide an intuition as to how
pivot sets change when different edit operations are applied
on a tree.

1) Relabel ve: When a particular node label is changed
then only those pivots which contain the modified node are
altered. They include pivots both ST1

child(ve) and ST1

root(ve),
whose number is equal to N T1(v) as given in Section III-A.
We can then construct a lower bound on the pivot multiset
intersection (the numerator in Jaccard similarity) as follows:

S(T1) ∩ S(T2) = S(T1)− S
T1

root(ve)− S
T1

child(ve)

|S(T1) ∩ S(T2)|

= N (T1)−N T1(ve)

≥ N (T1)− [n− 1− |A(ve)|+
|D(ve)|·(|D(ve)|−3)

2]

≥ N (T1)−
|D(ve)|·(|D(ve)|−3)

2 − n

(7)

2) Delete ve: When ve is deleted, the children of ve are
attached to the parent of ve (say, pve

) in the resulting tree.
Suppose T1(ve) be the tree that does not contain ve and its
descendants i.e., T1(ve) = T1 − T1(ve). Note that the pivots
that belong to T1(ve) are not affected by the deletion of ve.
Therefore one needs to analyze on the pivots involving nodes
from T1(ve). Let us first consider ve itself. All the pivots in
which ve is the child are eliminated, and hence they do not
belong to new pivot set i.e., ST1

child(ve) ∩ S(T2) 6= φ. For
every pivot in ST1

root(ve), the root node is modified to pve
.

Now consider other nodes x ∈ D(ve). All the pivots of the
form (z,−, x,−, y) where y, z ∈ D(ve) are not affected by
the deletion. Only those pivots in which x is paired up with
nodes y ∈ T1(ve)−A(ve) are affected. More precisely, a pivot
(−, dx, x,−, y) will be changed to (−, dx − 1, x,−, y) in T2

– the depth of x is reduced by 1 due to the deletion of ve.
Let this set be denoted as S ′, whose exact size depends on the

4Note that these are not the bounds for our Jaccard similarity.

number of ancestors and descendants that ve has in T1.

S′ = {(−,−, x,−, y)|x ∈ D(ve) ∧ y ∈ T1(ve)−A(ve)}

S(T1) ∩ S(T2) = S(T1)− ST1(ve)− S′

For convenience, let A = |A(ve)| and D = |D(ve)|. We can
then bound the intersection size as follows.

|S′| = (n− |T1(ve)| −A) ·D

|S(T1) ∩ S(T2)|

= N (T1)−N T1(ve)− |S′|

≥ N (T1)− (n− 1−A− D·(D−3)
2)− |S′|

≥ N (T1)− (n−A) · (1−D)− 1− D·(D+5)
2

(8)

For example, if ve is a leaf node then the above expression
reduces to N (T1) − (n−A−1), where (n−A−1) is exactly
equal to the number of pivots that ve has in T1 i.e. |ST1

child(ve)|.
3) Insert ve: Insertion is a dual to deletion that is discussed

above. Therefore, the pivots which get eliminated during
deletion, for example ST1

child(ve), are introduced into T2 due
to insertion. Similarly the pivots which get introduced while
deletion are elimanated during insertion. Hence, the change
in the number of pivots is same as the bounds shown in
previous section except that A and D now refer to the number
of ancestors and descendants of ve in the modified tree T2,
respectively.

4) Move ve to vf : Now consider the last edit operation,
move. Here, a non-root node along with the subtree rooted
at node is moved from one tree node to the other. It is
depicted in Figure 5b. T (ve) that is under the node w1 in
T1 is moved under w2, resulting in T2. In such a case,
the set ST1

child(ve) changes completely, especially when the
depth of ve in both the trees is different. However, the pivots
ST1

root(ve) are unaffected by the move operation. Similar to
delete operation, the pivots involving descendants of ve and
rest of the tree nodes change from T1 to T2. They are of the
form (−,−, x,−, y) where x ∈ T (ve) and y ∈ T1 − T1(ve).
Therefore, the bound derived for this operation will be similar
to the one for delete operation except that the set ST1

root(ve)
that is eliminated during deletion is unaffected during move
operation.

IV. RESULTS

We consider several publicly available5 tree-structured
datasets drawn from a range of real-world applications includ-
ing bioinformatics (Swissprot), linguistics (Treebank), Web
log analysis (CSlogs) and XMark (online auctions), for our
evaluation study. Among these, XMark is a synthetic dataset
that models the behavior of an online auction site and is useful
for controlled experiments. The size of XMark data trees is
controlled by the scaling factor, an input to the generator.
It produces one large single tree. We remove the top-level
XML tags such as <site>, <regions>, <closed auctions>
to generate a number of small trees. All the results presented
in this section are obtained by using signatures with 16 min-
hashes. We did not observe any improvements with signature
sizes greater than 16.
Basic Construction Costs: In Figure 7a we present some
basic statistics on the overall time spent in constructing signa-
tures (including cost of transformation and signature sketching
operators) for different transformation functions. As noted
earlier the computational cost associated with the induced
pivot function tfi are expected to be linear in the size of
the tree while signatures extracted from than embedded pivot
function tfe, are expected to be quadratic in tree size6. Costs
for both functions grow linearly with the database size. It
should be pointed out that our construction algorithm exhibits
embarrassingly parallelism and thus the increased cost of
computing embedded pivots can be mitigated significantly by
leveraging the capabilities of modern multicore systems. For
example tfe on Swissprot on a dual quad core system took
about 67.3 seconds – a 7.98-fold improvement over a sequen-
tial version that takes 535 seconds. Figure 6a demonstrates the
the scalability of our hashing algorithms as we vary the tree
size. The signature construction time depends directly on the
number of tree nodes. Similarly, Figure 6b shows that the run
time scales well as we increase the size of the database.
Information Content: If we treat a pivot set as a message that
describes the associated tree then the amount of information
contained in the message (i.e., pivot set) can be quantified as
the information entropy (

∑
plogp) of the set. We can use this

measure to compare amongst multiple pivot set strategies. Let
T be a tree from the XMark dataset whose labels have been
removed. We subsequently assign new labels to T chosen from
a set L using the following scheme. We first randomly select
a special label λ ∈ L. We then assign new labels to tree
nodes by biasing the distribution towards the special symbol
λ with probability b. The remaining probability 1−b is equally
divided among other labels i.e. each label other than λ is
chosen randomly with probability 1−b

|
P

|−1 . Figure 7b depicts
the change in entropy for the main pivot set strategies we

5Swissprot, Dblp, and Treebank datasets are obtained from
http://www.cs.washington.edu/research/xmldatasets/,
CSlogs from http://www.cs.rpi.edu/˜zaki/software/ and
XMark from www.xml-benchmark.org/.

6In a controlled experiment when we changed the (XMark) tree size from
1, 000 to 10, 000 to 30, 000 nodes, the time taken by tfe increased from
0.02sec to 10sec to 112sec (quadratic).

have discussed, as the label bias b for a XMark tree of size
31, 000 is varied. The main trends, along expected lines are:
i) that the information content of embedded pivots with labels
dominate the other two strategies across the board; ii) even
when the label bias is 1.0 (all nodes have the same label)
the entropy of this strategy is not zero suggesting there is
still important information in the levels to help disambiguate
amongst trees; and iii) for low label bias values the difference
between embedded with levels and embedded without levels
becomes insignificant. We have observed similar results for a
range of trees of different sizes and shapes.
Edit Distance

In this experiment, we empirically relate the edit distance
with four operations (relabel, insert, delete, and subtree move)
and the Jaccard distance (1 - similarity) obtained via signatures
computed in Section II-B. Unfortunately the problem of com-
puting exact edit distance with moves between two given trees
is NP -Hard (see Section III-D). Furthermore, to the best of
our knowledge, there are no efficient approximation algorithms
especially in the context of unordered trees. We therefore adopt
a mechanism where a given tree T is subjected to a series of
random perturbations. As we perform these perturbations, we
monitor the change in Jaccard similarity between the original
tree T and the perturbed tree T p.

For the purposes of this experiment, we selected a tree at
random from each of our datasets 7. For each tree, we prepared
an edit script ES, which is a sequence of edit operations that
are denoted as (node,operation) pairs [22]. In order to avoid
any redundant operations, we make sure that no node is deleted
twice, no relabeled node is selected for relabel operation again,
and no subtree is moved twice. Such a valid edit script is
applied on the selected tree resulting in a new perturbed T p.
We then compare the edit distance |ES| with our signature-
based distance, 1−Jaccard(T ,T p) (see Section II-A).

We compared the performance of the three basic strategies
we propose, embedded with levels, embedded without levels
and induced with two alternative approaches from the liter-
ature. The first strategy is based on pq-grams proposed by
Augsten et al. 8 [18], [19]. Since our data trees are unordered,
we have computed windowed pq-grams using their 3-step
process [19] – sort the unordered tree, extend the tree with
dummy nodes, and compute the windowed pq-gram profile.
The results shown in Figure 8 are obtained for the default
setting of p = q = 2 and w = 39. In addition to pq-grams
we also examined the performance of a path-based strategy
denoted paths. Here, the transformation function maps the
tree into a set of root-to-leaf paths, which are then hashed
using standard string hashing methods such as PJW hash [16].
The resulting set of hash values is then used for computing
MinHash signatures.

Figure 8 reports on the performance of these five transfor-

7These experiments are representative and similar results were obtained for
other trees and other random perturbations.

8We have obtained the source code from the authors.
9We found this parametric setting to work the best, in a manner similar to

those reported by the authors[19]

 0

 20

 40

 60

 80

 100

 120

302520151051

T
im

e
 (

se
c)

Number of nodes (x 103)

Signature construction time

construction time

 50

 100

 150

 200

 250

 300

 350

 400

8070605040302010

T
im

e
 (

se
c)

Number of trees (x 103)

Signature construction time

construction time

Fig. 6. Construction costs

Data set # of trees Tree size Tree depth Sketching time (sec)
max avg max avg induced embedded emb on 8 cores

Swissprot 50, 000 7018 271.5 5 4.8 9.8 535 67.3
Dblp 328, 858 4477 32.1 6 3.0 4.4 49 6.2

Treebank 52, 851 648 68.0 35 10.4 0.5 31 3.89
Cslogs 59, 691 428 12.9 85 3.4 0.5 4 0.48
XMark 280, 000 28, 000 59.7 10 5.3 6.4 202 25.2

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.10.20.30.40.50.60.70.80.91.0

E
nt

ro
py

 in
 P

iv
ot

 S
et

Label Bias

XMark tree - 31000 nodes

Emb Without Levels
Emb With Levels
Induced

Fig. 7. (a) Datasets and their characteristics, (b) Information content in pivot multisets

 0

 0.2

 0.4

 0.6

 0.8

 1

50454035302520151050

Ja
cc

a
rd

 S
im

ila
ri
ty

Edit Distance (as a percentage of nodes)

XMark tree - 31000 nodes

pq-grams
Emb With Levels
Emb Without Levels
Linear
Induced
Paths

 0

 0.2

 0.4

 0.6

 0.8

 1

50454035302520151050

Ja
cc

a
rd

 S
im

ila
ri
ty

Edit Distance (percentage of nodes)

Dblp tree - 4477 nodes

pq-grams
Emb With Levels
Emb Without Levels
Linear
Induced
Paths

 0

 0.2

 0.4

 0.6

 0.8

 1

50454035302520151050

Ja
cc

a
rd

 S
im

ila
ri
ty

Edit distance (percentage of nodes)

Swissprot tree - 7018 nodes

pq-grams
Emb With Levels
Emb Without Levels
Linear
Induced
Paths

Fig. 8. Approximating Edit Distance

mation strategies for trees from three different datasets. The
trend-line labeled “linear” refers to a hypothetical technique
that can compute or estimate the exact edit distance, hence a
linear relation. The closer we are to this line, the better the
approximation of the algorithm.

For all data sets and all perturbation scripts we have
evaluated, the transformation function tf

u
e using embedded

pivots without levels dominates, and always provides the best
approximation across the board. Similarly the weakest strategy
is almost always the path based strategy. In the experiments
we have observed the second best strategy is usually a toss up
between embedded pivots with levels and the strategy based on
pq-grams. When level information is used, the transformation
function tf

l

e
behaves similarly to a perfect hash function.

Therefore, even a small change in the tree is likely to be
exaggerated in the the corresponding pivot set leading to a
loss in accuracy in the estimation of the edit distance. Since
pq-grams are induced substructures (with some additional
structural information) they can only capture the local structure
around nodes, they are unable to approximate the actual edit

distance as well as the embedded strategy without levels. We
should also point out that in terms of execution time, the
path-based and basic induced strategies were inexpensive. The
embedded strategies were more expensive but were not far
off. Computing the pq-gram profiles was found to be the most
expensive – on average couple of orders of magnitude more
expensive than the other strategies.

A. Case Study I: De-duplication of XML Documents

For our first case study, we consider the application of
our hashing algorithms for the purpose of detecting duplicate
documents in an XML repository [31], [32]. This problem is
related to finding different representations (i.e. duplicates) of a
same underlying object. Duplicates are possible in real-world
databases due to various reasons like typographical errors,
missing data, inconsistent representations.

We performed a detailed evaluation by adopting an ap-
proach that is commonly used in evaluating deduplication
techniques [32]. We add random noise or artificial duplicates
to the data and then we observe how well our tree signatures
can detect these duplicates. For this purpose, we implemented

 0

 20

 40

 60

 80

 100

403530252015105

A
c
c
u

ra
c
y

% change within a tree (Pc)

Swissprot, K = 1

Pt = 30% With levels
Pt = 30% Without levels
Pt = 50% With levels
Pt = 50% Without levels

 0

 20

 40

 60

 80

 100

87654321

A
c
c
u

ra
c
y

K

Swissprot, Pt = 30%

Pc = 10% With levels
Pc = 40% With levels
Pc = 10% Without levels
Pc = 40% Without levels

 0

 20

 40

 60

 80

 100

403530252015105

A
c
c
u

ra
c
y

% change within a tree (Pc)

Dblp, K = 1

Pt = 30% With levels
Pt = 30% Without levels
Pt = 50% With levels
Pt = 50% Without levels

 0

 20

 40

 60

 80

 100

87654321

A
c
c
u

ra
c
y

K

Dblp, Pt = 30%

Pc = 10% With levels
Pc = 40% With levels
Pc = 10% Without levels
Pc = 40% Without levels

Fig. 9. Accuracy in deduplication: (a & b) Swissprot, (c & d) Dblp

a tool that takes in a data set and generates a data set that
is polluted with duplicate documents. Our tool takes two
main parameters pt and pc where pt is the percentage of
trees that are to be duplicated, and pc is the amount of
change or noise that is added while creating a duplicate. While
pt is denoted as the percentage of the database size, pc is
represented as the percentage of the number of nodes in the
tree selected for duplication. For a given pt and pc values,
the tool carefully generates duplicates by introducing various
forms of errors: node deletions representing missing data,
node modifications denoting typographical errors or corrupted
data; node movements which stand for copy-paste errors; node
insertions which correspond to extra noise. Note that the tool’s
output contains both clean and dirty or noisy documents. For
each duplicate document, we obtain top K-nearest neighbors
and check if the original document is one of the top nearest
neighbor.

Figures 9 & 10 show the evaluation results on Swissprot,
Dblp, and XMark datasets for a variety of pc and pt values.
The y-axis in figures show the percentage of duplicates which
are detected (accuracy) by our algorithms. When K is set
to 1, we compare a duplicate document with its top nearest
neighbor. For such setup, as the amount of change within a
tree pc increases, the accuracy reduces because the duplicate
is no longer “similar” to the original document. For all three
datasets, the accuracy is not affected by the number of trees
that are altered (pt). For a given pc, the accuracy is roughly
the same for all values of pt. Notably, the accuracy obtained
by tf

l
e transformation is less than that of tf

u
e that computes

pivots without level information. The performance difference
between these two transformation functions is roughly the
same for all three data sets. We also show the improvement
in accuracy as K is increased from 1 to 8. When K = 8,
we check whether or not the original document is present in
duplicate’s top 8 nearest neighbors. The accuracy is increased
marginally with K, and it reaches its plateau after K = 4, for
all datasets.

In this case study, induced pivots produced from tfi did
not perform very well. For instance, when pt = 30%, pc =
5%, and K = 1, tfi could detect only 28% of duplicates in
Swissprot and a mere 5% of duplicates in Dblp. In contrast,
embedded pivot transformations tf

u
e and tf

l
e detected 75% and

61% on Swissport, and 81% and 75% on Dblp, respectively.
We also did not consider pq-grams in this evaluation due to

 0

 20

 40

 60

 80

 100

403530252015105

A
c
c
u
ra

c
y

% change within a tree (Pc)

XMark, K = 1

Pt = 30% With levels
Pt = 30% Without levels
Pt = 50% With levels
Pt = 50% Without levels

 0

 20

 40

 60

 80

 100

87654321

A
c
c
u
ra

c
y

K

XMark, Pt = 30%

Pc = 10% With levels
Pc = 40% With levels
Pc = 10% Without levels
Pc = 40% Without levels

Fig. 10. Duplicate detection in XMark

its poor run time performance. We expect their performance
to be similar to that of tfi.

B. Case Study II: Stratified Sample Generation for Frequent
Subtree Mining

For our second case study, we evaluate the use of our algo-
rithms for improving the efficiency of frequent pattern mining
algorithms. Hashing helps in grouping similar data records into
partitions, and subsequently pattern mining algorithms can run
in individual partitions. Such techniques are especially useful
when performing large scale analysis using parallel cluster
systems [33]. Also, by treating each computed partition as
a strata, one can generate stratified samples of the dataset,
which are then used to discover frequent patterns.

Methodology: Here, we consider two popular datasets used
in tree mining – Cslogs and Treebank. For each dataset, we
compute signatures for all trees (embedded without levels) and
then hash similar signatures into K strata (K = 10). We
perform this grouping by comparing the minhash values in
each signature, which is similar to the divide-compute-merge
(DCM) algorithm [15]. We then sample from each strata at a
given sampling rate (here we fix it to be proportional to the size
of the strata), and combine into a single unified sample. We
expect the resulting stratified sample to be more robust than
one using traditional random sampling, since we are taking the
payload into account when sampling over strata. We evaluate
this premise by comparing the generated frequent patterns
with actual set of patterns obtained from the full dataset, one
can compute the precision, recall, and the F-measure. The F-
measure is computed as the fraction 2·recall·precision

recall+precision
.

The first and third charts in Figure 11 compare the ef-
fectiveness of stratified sampling when compared to random

Node label Sequence Name
A CACHIT
B PSTCHIT
C NTACIDCL3
D S66038
E CUSSEQ 1
F CUSSEQ 2
G CUSSEQ 3
H VIRECT
I VURNACH3A
J ATHCHIA
K VURNACH3B
L NTBASICL3

TABLE I

DNA SEQUENCES CONSIDERED IN THE EXPERIMENT FROM SECTION IV-C

sampling in terms of F-measure on Cslogs and Treebank
datasets, respectively 10. The results presented in the figures
are averaged over 5 different runs. As expected, stratified
sampling using our hashing algorithm, outperforms random
sampling from a qualitative perspective across the board for
multiple sample sizes. Additionally, since stratified sampling
acts upon carefully grouped data records using our proposed
hashing schemes, the variance in F-measure is very small
when compared to that of random sampling – see second and
fourth charts in the figure. High accuracy and small variance
of our algorithms make them attractive choices for progressive
sampling, where we can use them to quickly find the nature
of the learning curve (accuracy vs. sample size) and thereby
determine best sample size [34]. The results presented here are
representative, we observed similar results for other support
levels for both the datasets. For example on Cslogs at 1%
support, the variance in F-measure for randomly generated
sample was, on average, about 10 times higher than the
variance observed when our stratified sampling is used.

C. Case Study III: Phylogenetic analysis

For our final case study, a qualitative one, we demonstrate
the use of our algorithms in the context of another application
domain Phylogenetics. In particular here we will leverage
the feature of constrained pivots discussed in Section II-C.
Biologists make use of phylogenetic trees in order to study
and understand the evolutionary relationships present among
given set of organisms. These are usually unordered trees
where the leaf nodes represent the given organisms and the
internal nodes refer to some ancestor organisms. Phylogenetic
analysis often produce a number of candidate trees. Biologists
resolve the conflict among them by computing the consensus
of these trees. They help in summarizing the most common
relationships among output trees [8]. However, the compu-
tational complexity in constructing these trees is very high.
One possible solution is to split the set of all phylogenies into
partitions and construct consensus for each partition. Here,
we empirically show that our algorithms are useful in creating
effective partitions of phylogenies.

10For Treebank, higher support values are chosen due to high associativity present in
the dataset.

Methodology: We consider the case of chitinase (digestive
enzyme) genes in plants. We take 12 aligned protein coding
sequences from these genes 11 (see Table I). From these
sequences, we generate 20 different phylogenies by using
different algorithms from the Phylip 12 toolbox.

Fig. 12. Case study: Analysis of phylogenetic trees

Since most of the phylogenies are only leaf labeled, we
used constrained transformation function tfc to construct node
constrained pivot sets. We compute signatures for these 20
trees, and use them to group similar trees into clusters. A
domain expert manually examining these clusters, found that
the trees in each cluster present very similar evolutionary
relationships. Two such clusters (each with two trees) are
shown in Figure 12. The 12 protein sequences are shown as A,
B, · · · , L for simplicity (see Table I). The trees in cluster #1
are produced by the same algorithm when run with different
parameters. On the other hand, the trees PT3 and PT4 in
cluster #2 are produced from two different algorithms. For
these particular phylogenies, even an induced transformation
function tfi provided good clustering arrangements. However,
in general, constrained embedded pivots are preferable for
domain experts since the trees are leaf labeled. Our algorithms
were thus able to effectively find the similarities present among
different phylogenies. As Stockham et al. recently pointed
out, the consensus trees obtained over such clusters with
similar trees are more resolved than single-tree consensus
trees [8]. Furthermore, computation of consensus trees over
these clusters is cheaper and effective than computing a single,
global, often non-informative consensus tree suggesting that
our hashing methods can be an effective preprocessing step
for such methods.

V. RELATED WORK

Tree similarity has been studied extensively in the context
of tree editing distance [29], [30], which is a natural ex-
tension of string edit distance. Similar to the case of string
comparisons, there exist a number of ways to compare differ-
ent trees – largest common subtree [35], smallest common
super-tree [36], tree alignment [37], to name a few. Exact
computation of conventional tree edit distance is computa-
tionally expensive. The fastest known solution takes at least
O(n3) time for ordered trees [29] and it is NP-hard for
unordered trees [38]. Even for ordered trees, the problem is
NP−hard when the additional “subtree move” operation is

11http://home.cc.umanitoba.ca/˜psgendb/GDE/phylogeny/
parsimony/chitIII.mrtrans.gde

12http://evolution.genetics.washington.edu/phylip.html

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2520151051

F
 m

e
a

s
u

re

Sample size (%)

Cslogs, support = 1.3%

Random sampling
Stratified sampling

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

2520151051

V
a

ri
a

n
c
e

 F
 m

e
a

s
u

re
Sample size (%)

Cslogs, support = 1.3%

Random sampling
Stratified sampling

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2520151051

F
 m

e
a

s
u

re

Sample size (%)

Treebank, support = 75%

Random sampling
Stratified sampling

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

2520151051

V
a

ri
a

n
c
e

 i
n

 F
 m

e
a

s
u

re

Sample size (%)

Treebank, support = 75%

Random sampling
Stratified sampling

Fig. 11. Evaluation of stratified sampling that is powered by our tree hashing methods

introduced [39]. There has been some efforts in developing
approximate algorithms for tree edit distance [18], [19], [20],
[22], [21].

Yang et al. match two ordered trees by using L1 distance
between corresponding vectors of binary branches. Binary
branches are similar to induced pivots produced by our trans-
formation tfi as they capture only parent-child relationships
around a given tree node. Therefore, they are likely to be
ineffective (see Section IV). Augsten et al. use pq-grams to
measure tree similarity [18]. These pq-grams can be thought
of as extensions of binary branches, and they are small
subtrees of specific shape, which is controlled by parameters
p and q. They recently extended pq-grams for unordered trees
by considering different permutations of sibling nodes [19].
However, as we show in Section IV, they do not perform
as well as our transformation functions. Furthermore, the
parameters p and q must be tuned based on the data. Here,
a parameter setting that is suited for tree in the database
may not suit the others, especially because of recursive and
repetitive structure of XML tags. Guha et al. presents a
framework for approximate XML joins based on edit distance
between ordered trees [31]. Garofalakis and Kumar proposed
XML stream processing algorithms for embedding tree edit
distance into L1 space while providing some bounds on the
distortion [22]. However unlike our methods, their algorithms
focus only on ordered trees. In general, approximating edit
distance is a hard problem. Andoni and Krauthgamer recently
proved that the computational hardness of estimating string
edit distance itself is significantly very high when compared
to Hamming distance [40], for which efficient approximate
algorithms are known [25]. Recently, Gollapudi and Panigrahy
proposed sketching techniques for hierarchical data, which are
subsequently leveraged in providing LSH methods under Earth
Mover’s Distance measure [20]. These methods are developed
only for leaf labeled trees. It is not easy to extend them for
general node labeled trees.

VI. CONCLUSIONS

In this article we have presented a simple yet effective
framework for hashing tree structured data. The synopsis of the
proposed approach entailed transforming the tree-structured
datum into a multi-set of pivot structures and subsequently
relying on min-wise hashing to yield a fixed length datum
suitable for standard hashing techniques. We examined the

performance of induced, embedded without levels, embedded
with levels, and constrained pivots from a theoretical per-
spective and proved that one of them can form the basis for
constructing a perfect hash function and also proved lower
bounds connecting these strategies with traditional tree edit
distance operations. To further enhance the efficacy of the
proposed transformations we realized parallel implementations
on modern multicore systems with linear time speedups.
We demonstrated the utility of the hashing framework on
several applications and case studies drawn from the domains
of XML deduplication, frequent tree mining, phylogenetic
data analysis and linguistic data analysis. As part of future
work we are interested in extending this work for a broader
range of structured data (free trees, networks, directed acyclic
graphs). We plan to extend our hash-based sampling methods
to several other applications including anomaly detection in
tree structured data. We are also interested in the applicability
of these ideas for a broad class of problems drawn from the
software engineering community.

REFERENCES

[1] M. Daconta, L. Obrst, and K. Smith, The Semantic Web: a guide to
the future of XML, Web services, and knowledge management. Wiley,
2003.

[2] S. Decker, S. Melnik, F. Van Harmelen, D. Fensel, M. Klein, J. Broek-
stra, M. Erdmann, and I. Horrocks, “The semantic web: The roles of
XML and RDF,” IEEE Internet computing, vol. 4, no. 5, pp. 63–73,
2000.

[3] P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick, A. Doan, and
R. Ramakrishnan, “DBLife: A community information management
platform for the database research community,” demo). In CIDR-07,
2007.

[4] A. Brazma, H. Parkinson, U. Sarkans, M. Shojatalab, J. Vilo, N. Abeygu-
nawardena, E. Holloway, M. Kapushesky, P. Kemmeren, G. Lara, et al.,
“ArrayExpress–a public repository for microarray gene expression data
at the EBI,” Nucleic Acids Research, vol. 31, no. 1, p. 68, 2003.

[5] U. Westermann and W. Klas, “An analysis of XML database solutions
for the management of MPEG-7 media descriptions,” ACM Computing
Surveys, vol. 35, no. 4, pp. 331–373, 2003.

[6] E. Charniak, “Tree-bank grammars,” in Proceedings of the National
Conference on Artificial Intelligence, 1996, pp. 1031–1036.

[7] M. Tsvetovat, J. Reminga, and K. Carley, DyNetML: Interchange format
for rich social network data. Carnegie Mellon University, School of
Computer Science,[Institute for Software Research International], 2004.

[8] C. Stockham, L. Wang, and T. Warnow, “Statistically based postpro-
cessing of phylogenetic analysis by clustering,” Bioinformatics, vol. 18,
no. 3, pp. 465–469, 2002.

[9] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: a system for
keyword-based search over relationaldatabases,” in Proceedings 18th
International Conference on Data Engineering, 2002, pp. 5–16.

[10] A. Elmagarmid, P. Ipeirotis, and V. Verykios, “Duplicate record detec-
tion: A survey,” IEEE Transaction on Knowledge and Data Engineering,
vol. 19, no. 1, pp. 1–16, 2007.

[11] Y. Ke, R. Sukthankar, and L. Huston, “An efficient parts-based near-
duplicate and sub-image retrieval system,” in Proceedings of the 12th
annual ACM international conference on Multimedia, 2004, pp. 869–
876.

[12] G. Buehrer and K. Chellapilla, “A scalable pattern mining approach
to web graph compression with communities,” in Proceedings of the
international conference on Web search and web data mining. ACM
New York, NY, USA, 2008, pp. 95–106.

[13] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher, “Min-wise
independent permutations (extended abstract),” in Proceedings of the
thirtieth annual ACM Symposium on Theory of Computing, 1998, pp.
327–336.

[14] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani,
J. Ullman, and C. Yang, “Finding interesting associations without sup-
port pruning,” IEEE Transactions on Knowledge and Data Engineering,
vol. 13, no. 1, pp. 64–78, 2001.

[15] A. Broder, S. Glassman, M. Manasse, and G. Zweig, “Syntactic clus-
tering of the web,” Computer Networks and ISDN Systems, vol. 29, no.
8-13, pp. 1157–1166, 1997.

[16] A. Aho, R. Sethi, and J. Ullman, Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1986.

[17] H. Wolfson and I. Rigoutsos, “Geometric hashing: An overview,” IEEE
Computational Science & Engineering, vol. 4, no. 4, pp. 10–21, 1997.

[18] N. Augsten, M. Böhlen, and J. Gamper, “Approximate matching of hier-
archical data using pq-grams,” in Proceedings of the 31st international
conference on Very large data bases, 2005, pp. 301–312.

[19] N. Augsten, M. Bohlen, C. Dyreson, and J. Gamper, “Approximate joins
for data-centric XML,” in IEEE 24th International Conference on Data
Engineering, 2008. ICDE 2008, 2008, pp. 814–823.

[20] S. Gollapudi and R. Panigrahy, “The power of two min-hashes for
similarity search among hierarchical data objects,” in Proceedings of the
twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, 2008, pp. 211–220.

[21] R. Yang, P. Kalnis, and A. Tung, “Similarity evaluation on tree-
structured data,” in Proceedings of the 2005 ACM SIGMOD interna-
tional conference on Management of data. ACM New York, NY, USA,
2005, pp. 754–765.

[22] M. Garofalakis and A. Kumar, “XML stream processing using tree-edit
distance embeddings,” ACM Transactions on Database Systems (TODS),
vol. 30, no. 1, pp. 279–332, 2005.

[23] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” Communications of ACM,
vol. 51, no. 1, pp. 117–122, 2008.

[24] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” in Proceedings of 25th International Confererence
on Very Large Data Bases, 1999, pp. 518–529.

[25] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing, 1998, pp. 604–613.

[26] A. Kirsch and M. Mitzenmacher, “Distance-sensitive bloom filters,” in
Proceedings of the Eighth Workshop on Algorithm Engineering and
Experiments and the Third Workshop on Analytic Algorithmics and
Combinatorics. Society for Industrial Mathematics, 1987, p. 41.

[27] R. Karp and M. Rabin, “Efficient randomized pattern-matching algo-
rithms,” IBM Journal of Research and Development, vol. 31, no. 2, pp.
249–260, 1987.

[28] H. Samet, Applications of spatial data structures: Computer Graphics,
Image Processing, and GIS. Addison-Wesley, Reading, MA, 1990.

[29] P. Bille, “A survey on tree edit distance and related problems,” Theo-
retical computer science, vol. 337, no. 1-3, pp. 217–239, 2005.

[30] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM journal on computing,
vol. 18, p. 1245, 1989.

[31] S. Guha, H. Jagadish, N. Koudas, D. Srivastava, and T. Yu, “Approximate
XML joins,” in Proceedings of the 2002 ACM SIGMOD international
conference on Management of data. ACM New York, NY, USA, 2002,
pp. 287–298.

[32] M. Weis and F. Naumann, “DogmatiX tracks down duplicates in XML,”
in Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. ACM New York, NY, USA, 2005, pp. 431–442.

[33] T. Shintani and M. Kitsuregawa, “Parallel mining algorithms for gen-
eralized association rules with classification hierarchy,” in Proceedings
of the 1998 ACM SIGMOD international conference on Management of
data. ACM New York, NY, USA, 1998, pp. 25–36.

[34] S. Parthasarathy, “Efficient progressive sampling for association rules,”
in Proceedings of the 2002 IEEE International Conference on Data
Mining, 2002, pp. 354–361.

[35] T. Akutsu and M. Halldorsson, “On the approximation of largest
common subtrees and largest common point sets,” Theoretical Computer
Science, vol. 233, no. 1-2, pp. 33–50, 2000.

[36] F. Rossello and G. Valiente, “An algebraic view of the relation between
largest common subtrees and smallest common supertrees,” Theoretical
Computer Science, vol. 362, no. 1-3, pp. 33–53, 2006.

[37] T. Jiang, L. Wang, and K. Zhang, “Alignment of treesan alternative to
tree edit,” Theoretical Computer Science, vol. 143, no. 1, pp. 137–148,
1995.

[38] K. Zhang, R. Statman, and D. Shasha, “On the editing distance between
unordered labeled trees,” Information Processing Letters, vol. 42, no. 3,
pp. 133–139, 1992.

[39] D. Shapira and J. Storer, “Distance with Move operations,” in Proceed-
ings of the 13th Annual Symposium on Combinatorial Pattern Matching,
2002, pp. 85–98.

[40] A. Andoni and R. Krauthgamer, “The computational hardness of estimat-
ing edit distance,” in IEEE Symposium on the Foundations of Computer
Science (FOCS). Citeseer, 2007, pp. 724–734.

