
Querying Deep Web Data Sources: A Structured
Keyword Query Approach

Fan Wang 1, Gagan Agrawal 2

Department of Computer Science and Engineering, The Ohio State University
1wangfa@cse.ohio-state.edu

2agrawal@cse.ohio-state.edu

Abstract— A popular trend in data dissemination involves
online data sources that are hidden behind query forms, thus
forming the deep web. Extracting information across multiple
deep web data sources is challenging, but increasingly crucial in
many areas. Keyword search, which is a popular information dis-
covery method, has been studied extensively on the surface web
and relational databases. Keyword-based queries can provide a
powerful yet intuitive means for accessing information from the
deep web as well. However, this involves many difficult challenges.
For example, deep web data sources often contain redundant
and/or incomplete data, there is often inter-dependence among
data sources, and most data sources only support non-predicate
keyword queries on their input interfaces. Thus, it is very hard
to automatically execute complex queries.

In this paper, we present a structured keyword query approach.
We support keyword search over deep web data sources for
complex queries, which can include constraint predicates, ag-
gregation functions, group-by operations, and nested sub-queries.
We have developed three query planning algorithms to generate
query plans for different types of queries. Several optimization
techniques are also used for optimizing the query plans and their
execution.

I. INTRODUCTION

A popular trend in data dissemination involves online data
sources that are hidden behind query forms, thus forming
the deep web. Hundreds of large, complex, and in many
cases, related and/or overlapping, deep web data sources have
become available. The common way of accessing data in deep
web data sources is through standardized input interfaces.
These interfaces, on one hand, provide a very simple interface,
and do not require that the users know any specific query
language and/or the schema(s) of the underlying databases. On
the other hand, these interfaces significantly constrain the types
of queries that could be automatically executed. For example,
in the biological domain, most data sources only have one
text box in their input interfaces. Such text boxes only accept
simple text, i.e., the users cannot specify any constraints,
aggregation functions, or nested queries. Furthermore, many
useful queries involve accessing information from multiple
data sources, and currently, there is no available support for
this class of queries.

Thus, it is clearly desirable to support more complex queries
across multiple deep web data sources. In recent year, a
number of efforts have been attempting to build deep web
systems that can integrate both the query interface and the
query results (structured data) of the deep web-sites within a

specific domain [1], [2], [3], [4]. Some other systems mainly
deal with optimizing the execution of cross-source queries on
the web [5], [6], but do not consider query planning starting
from intuitive queries with high expressive power. The systems
proposed in [7], [8] have query planning algorithms, but they
either ignore complex queries with value constraints or aggre-
gation [8] or can only support constraint predicates that match
the filters supported by data sources locally [7]. The problem
we are considering in this paper also has some similarity to
the work on mediators systems like SIMS [9], Information
Manifold [10], TSIMMIS [11], and MedMaker [12]. However,
in considering the deep web, the data source model and the
cost metric are very distinct, and as a result, the query planning
problem formulation and algorithms are different.

This paper focuses on addressing the problem of supporting
intuitive queries with high expressive power on a set of inte-
grated deep web data sources within a domain. Our premise
is that keyword queries can provide an intuitive yet powerful
means for expressing complex queries over a set of deep
web data sources. Keyword search has been a very popular
information discovery method over the surface web. In recent
years, it has been applied on relational and graph datasets
as well [13], [14], [15], [16]. Recently, a system SOAK [17]
has been developed, which is able to handle keyword queries
with aggregations on relational databases. Our work is driven
by gaining popularity of this query mechanism, but considers
two additional goals. Our first goal is to support keyword
queries, with aggregation, constraints, and the possibility of
nested queries. Second, unlike any of the existing work on
keyword search, we are considering such queries over deep
web data sources. Considering queries with more expressive
power and over a different set of data sources involves a
number of challenges. We consider two motivating examples
to show both the desirability and difficulty of supporting such
queries.
Motivating Example 1: Suppose we are interested in Single
Nucleotide Polymorphisms (SNPs), which are particularly
promising for explaining the genetic contribution to complex
diseases [18]. Biologists have identified that the gene X and
the protein Y are contributors of a disease. Now, they want
to examine the SNPs located in the genes that share the same
functions as either X or Y. Particularly, for all the SNPs located
in each such gene functions similar to either X or Y, and
those that have a heterozygosity value (which is a measure

Fig. 1. SQL Query for the Motivating Example

of the genetic variation in a population) greater than 0.01,
biologists wants to know the maximal allele frequency in the
Asian population.

To understand this example, suppose we have relational
tables SNP and GENE containing all SNPs and Gene (or
Protein) related information. If this is the case, we can express
the above query in an SQL-like fashion, which we show in
Figure 1.

In practice, however, this information is available across
multiple different deep web data sources. Furthermore, this
query requires an aggregation function, a group by operation,
value constraints and even nested sub-queries. Specifically,
we need to take the following steps, which are also shown
graphically through a query plan in Figure 2.
1. The first sub-query: find the genes that have the same
function as the gene X (query-plan part 1, sub-figure (a),
Figure 2).
2. The second sub-query: find the genes that have the same
function as the protein Y (query-plan part 2, sub-figure (a),
Figure 2).
3. The main query: for each gene obtained from the steps 1
and 2, find all the SNPs, filter out the SNPs with Heterozy-
gosity value smaller than 0.01, and find the maximal allele
frequency in Asian population (query plan part 3, sub-figure
(a), Figure 2).

Specifically, NCBI Gene and Human Protein data
source takes gene X and protein Y as input, respectively.
The names of the genes with the same function as X and
Y will be obtained from the GO data source in the query
plan parts 1 and 2. Taking the genes obtained from GO,
and using the SNP500Cancer data source, we can find
the human SNPs located on these genes. Finally, using the
dbSNP data source, we can find the SNP frequency and
heterozygosity information. Then, the maximal allele Asian
frequency of the SNPs in each gene can be found by an
aggregation computation, while filtering out all SNPs that have
heterozygosity value smaller than 0.01.
Motivating Example 2: A travel agent in a mid-west city X
wants to advertise new travel destinations on the west coast.
He is interested in finding the answers to the following query
“find all west cost cities that have an average airfare (from city
X on particular dates) that is lower than the average airfare to
Los Angeles”. To answer this query, we need to perform two
aggregations. Furthermore, X to Los Angeles is a sub-query
that provides a condition value for the main query.

From the above two examples, we observe that to answer
complex queries on deep web data sources, users face the

Fig. 2. Motivating Example: (a) Query Plans for Three Sub Queries, (b)
Final Merged Query Plan

following difficult challenges. First, they need to be familiar
with domain data sources and know which data sources are
relevant to the query. On similar lines, they may even need to
know the inter-dependence between data sources (i.e., when
the output of one data source may be the necessary input
to another one), so as to know the order of querying data
sources. Second, since some data sources may have redundant
data [19], users need to manually rank similar data sources.
Third, they need to manually keep track of all the results
from multiple data sources. Finally, since most deep web data
sources today only accept simple text queries, they need to
filter out data tuples violating constraints and perform group-
by and aggregation functions. Clearly, this requires a great deal
of knowledge, involves a large amount of manual work, and
thus can be a tedious and error-prone process. It is desirable
that a system can automate this process, at least over a set of
deep web data sources within a domain or sub-domain.

In this paper, we have developed a structured keyword
query approach for querying a set of integrated deep web data
sources. In our approach, users can write complex queries by
specifying keywords, with necessary predicates and nesting
structures. Currently, our approach supports the following
SQL-like query features: value constraints, group by opera-
tions, aggregation functions, and nested queries. For example,
the query corresponding to the first motivating example could
be expressed as
“MAX(Asian Allele Frequency),Heterozygosity>0.01,
Gene{Ontology Function,X}OR{Ontology Function,Y}”.

Our approach for supporting these queries is as follows.
For each nested sub-query in the user query, a query plan is
generated. We have query planning algorithms for the three
types of queries we consider. Finally, the query plans for all
sub-queries are combined and/or merged together to form an
entire query plan. For example, the sub-figure (b) in Figure 2
shows the final plan after merging similar data sources NCBI
Gene and GO from two nested query plans. Next, several
optimization techniques that we have developed are applied
to speedup the query plan execution.

While our implementation and the examples used in this
paper are based on the structured keyword queries, our overall
contributions are broader. Our query planning algorithms and
optimizations would still be applicable if a different format
was used. For example, we can easily support the use of SQL
for the same set of queries.

Overall, the main contributions of this paper can be sum-
marized as follows:
1. To the best of our knowledge, our work is the first one
to handle complex queries, including user-defined constraints,
group-by operations, aggregation functions, and nested queries
across multiple deep web data sources.
2. We have developed query planning algorithms to generate
query plans for different types of queries.
3. Several optimization techniques have been developed for
query planning and query execution.

The rest of the paper is organized as follows. In Section II,
we introduce the structured keyword query model used in
our approach. The data model used in our query planning
algorithm is described in Section III. In Section IV, three query
planning algorithms are presented. Several optimization tech-
niques for query planning and query execution are described in
Sections V and VI, respectively. Our techniques are evaluated
in Section VIII. We compare our work with related efforts in
Section IX and conclude in Section X.

II. STRUCTURED KEYWORD QUERY MODEL

In this section, we first describe the basic Structured Key-
word Query (SKQ) model, and then we extend the basic SKQ
model to the full SKQ model.

A. Basic Structured Keyword Query Model

The basic idea that has initiated this work is that a simple
and restricted class of select-from-where queries in SQL can
also be represented as keyword queries. For this, we define
a basic SKQ as Q = {a1, . . . , ak, e1, . . . , em}. Here, each ai

is an attribute keyword, which corresponds to attributes in the
selection clause of the corresponding SQL query. Also, each
ei is an entity keyword, which corresponds to entities or rows
returned in the where clause of an SQL query. The intent of
a basic SKQ query is to obtain the information on entities
e1, . . . , em, specifically, the values of the entities’ attributes
a1, . . . , ak.

For example, the query “find the allele frequency of SNPs
located in Gene ERCC6” can be written as a basic SKQ
“Allele Frequency, ERCC6”, where Allele Frequency is an
attribute keyword and ERCC6 is an entity keyword.

B. Improving Expressive Power

We extend the expressive power of basic SKQ by incorpo-
rating aggregation functions and comparison predicates.
Aggregation Functions: Five aggregation functions are cur-
rently supported, which are AVE(a), SUM(a), COUNT(a),
MAX(a), and MIN(a). a is considered the aggregation at-
tribute.

For example, the query “find the minimal Heterozygosity
among all SNPs located in gene ERCC6” can be expressed as
“MIN(Heterozygosity), ERCC6”.
Comparison Predicates: Standard comparison predicates, =,
>, ≥, <, and ≤ are supported. An attribute associated with a
comparison predicate is considered to be a condition attribute.

As an example, the query “find the alleles of the SNPs with
a heterozygosity value greater than 0.01 and located in gene
ERCC6” can be expressed as “Alleles, Heterozygosity > 0.01,
ERCC6”, with Heterozygosity being the condition attribute.

C. Nested Sub-Queries and Full Model

The basic SKQ is extended to a full SKQ by applying any
comparison predicate or an aggregation function to an attribute
keyword ai in Q and/or by adding nested entity or condition
queries. The former were described in the previous subsection.
We now describe the type of nested sub-queries we allow.
Nested Sub-Queries: We support two types of nested sub-
queries, which are the condition nested and entity nested
queries. A nested query is enclosed by { and }. If a nested
query is a condition nested query, its output is used as a
constraint value in a comparison predicate in the parent query.
If a nested query is an entity nested query, its output is used
to specify an entity keyword in the parent query.

For example, the query “find the alleles of the SNPs located
in ERCC6 and with a heterozygosity value smaller than the
largest heterozygosity value among all SNPs in gene APOE”
can be expressed as
“Alleles, Heterozygosity<{MAX(Heterozygosity), APOE}, ERCC6”

Here “MAX(Heterozygosity), APOE” is a condition nested
query that specifies the value for the condition attribute Het-
erozygosity in the outer (parent) query.

As another example of nested query predicates, the sub-
query “Ontology Function, X” in the motivating example listed
in the previous section is an entity nested query. It finds all
the genes having the same function as X for the outer query.
Nested Query Relation Predicates: We supports two types
of nested query relations, OR and AND. The query in the
example in Section I uses the OR predicate.
Example of Full Model: To consider a more detailed example,
we can revisit the first motivating example in Section I. The
keyword query here is extended from the basic SKQ
(“Asian Allele Frequency, Heterozygosity, Gene”)

by applying the MAX aggregation predicate to the attribute
keyword Asian Allele Frequency, applying the > comparison
predicate to Heterozygosity, and adding two nested entity
queries “Ontolgo Function, X” and “Ontology Function, Y”
to specify the entity keyword Gene.
Tree Representation: We can express an SKQ with a tree
structure, which is denoted as the SKQ tree. If a SKQ Q

does not contain any nested queries, we consider Q to be a
simple query. In this case, the SKQ tree is a tree with a single
node. If Q contains nested sub-queries, according to the nested
query predicates in Q, we partition Q into multiple sub queries
subQ1,. . .,subQn, and a main query mainQ. Then, the node
for mainQ is the root node for the tree. We build a node ni

Fig. 3. SKQ Tree for the Query in the Motivating Example (Section 1)

TABLE I
DATA MODEL FOR Seattle DATA SOURCE

Data
Source

MI OI O C

Seattle1 Gene
Name

Up Base
Down Base

SNP Function
Frequency

Organism=
Human

Seattle2 SNPID Up Base
Down Base

Alleles Dise-
quilibrium

Organism=
Human

for each sub-query subQi, and link ni to the root as its child.
Finally, we build the rest of the SKQ tree for each of the child
node ni recursively. For example, the SKQ tree for the query
in the motivating example in Section I is shown in Figure 3.

III. DATA SOURCE MODEL

Our system is designed to execute the queries described
in the previous section over a set of deep web data sources
from a domain or sub-domain. To enable the planning and
execution of queries, we need to know the schemas for each
of the data sources and the inter-dependence between them.
Formally, this is captured through a data source model, which
we will describe here.

A. Data Source Model for a Single Deep Web Data Source

A deep web data source may have multiple input query
interfaces and each input interface corresponds to a unique
output schema. In our model, we view a data source as a
virtual relational table with a set of data tuples. Each data
tuple is formally defined as R(MI, OI, O, C). MI refers to
the must-fill input attributes which have to be provided to get
the query results. OI refers to the optional input attributes
which can be omitted and only provide extra constraint condi-
tions to narrow down the search space. O refers to the output
attributes returned for the corresponding input. C refers to the
attribute conditions imposed on the data source by its designer.
For example, the model of data source Seattle is shown in
Table I. Seattle has two input interfaces take Gene Name
and SNPID as input respectively, and Seattle only contains
data from human species as shown in the C column of the
table.

B. Data Model for Inter-dependent Data Sources

Data sources are connected by the inter-dependence between
them and form a hyper-graph dependency model. For two
data sources R1 and R2, we define two types of dependence

Fig. 4. Dependence Relations between Five Data Sources

relationships: Type 1) R1 can provide must-fill input for R2,
i.e., O1∩MI2 6= Φ; and Type 2) R1 can provide optional input
for R2, i.e., O1 ∩ OI2 6= Φ. The first type of relation shows
that R1 has to be queried before R2 in order to obtain the
necessary input attributes of R2. The second type of relation
shows that if R1 is queried before R2, using the output from
R1, we can obtain optional attribute of R2 which can be used
to narrow down the search scope of R2 or make the query on
R2 more accurate.

Some data source dependencies are multi-source, i.e. the
input of a data source depends on the output from multiple
data sources, as a result, our dependence graph model is a
hyper-graph. In Figure 4, we can see that dbSNP and Entrez
protein form a hyper-parent node for BLAST, which means
that to be able to query BLAST, one needs to query both
dbSNP and Entrez Protein first.

Somewhat similar to our work, Davulcu et al [20] proposed
a navigation map to capture the link structure between web
pages generated by deep web data sources. The main differ-
ence of our dependence model is that we model the inter data-
source dependencies, but they model the intra-data source web
page dependencies.

IV. QUERY PLANNING PROBLEM: FORMULATION AND
ALGORITHMS

In this section, we first give an overview of the query
planning problem for the structured keyword queries we are
considering. Then, we formally state query planning problem
for the three types of queries, and present the query planning
algorithms for each of these.

A. Query Planing Problem Overview

We have a structured keyword query (SKQ) Q and a
data source dependency hyper-graph DG as described in
Section III-B. We want to find a query plan for Q. Because
there may be multiple nested queries in Q, we propose a
divide-and-conquer approach. We first build a tree for Q as
we had shown earlier. Next, we perform a depth-first traversal
on this tree, and generate a query plan for each node of the
tree, which represents a simple query. The final query plan for
Q is obtained by combining and merging all the query plans
thus generated.

The last of these steps is described in the next section. This
section focuses on the problem of generating query plans for
different types of simple queries.

In our query planning problem, we consider three types
of simple queries. This includes two types of simple queries
that require special treatment, and a third default or ordinary
case. The first type that has a different requirement for query
planning is an aggregation query, which is a query with an
aggregation function. The second type that requires a separate
procedure is a nested entity sub-query. The last type is the
ordinary query, which is a query that is neither an aggregation
query nor a nested entity sub-query. Ordinary SKQ query is
also a basic query, with the possibility of condition predicates.
It can also be a condition nested sub-query, but cannot be a
nested entity sub-query.

For example, consider parts of the example query in Sec-
tion I. “MAX(Asian Allele Frequency), Heterozygosity>0.01,
Gene” is an aggregation query, and “ Ontology Function, X”
and “Ontology Function, Y” are nested entity sub-queries.

Each type of simple query has specific requirements for a
valid query plan. Thus, they need to be treated separately. In
the rest of this section, we will present algorithms for each
of these three types of queries. The overall query planning
algorithm for an entire query tree is based on invoking these
algorithms, and a combine function which will be presented
in the next Section. This overall procedure is shown as
Algorithm IV.1.

Algorithm IV.1: SKQ-Query-Planning(SKQTreeT)

if T.child = null/*T is a simple query*/
if T.query is an ordinary query

Final − P lan = Bidirectional(T.query)
if T.query is an aggregation query

Final − P lan = Center − Spread(T.query)
if T.query is a nested entity query

Final − P lan = Nested − Entity(T.query)
else /*T has nested queries*/
foreach Ti ∈ T.children

P lani = SKQ − Query − P lanning(Ti)
Final − P lan = CombineP lan(P lan1, .., P lann)

B. Query Planning for Simple Ordinary Query: Formulation
and Algorithm

According to the definition of a simple ordinary query, it has
the same format as a basic query introduced in Section II-A,
except that a simple ordinary query could contain attribute
value constraint, such as “Heterozygosity>0.01”. A value
constraint V C can be handled in two ways. First, if the V C

matches any data source constraints specified by the C column
in the data source model, the V C can be used as a condition
for data source ranking. Alternatively, i.e., if V C does not
match any data source constraint, it can be used as a data
tuple filter during the plan execution.

For the rest of this discussion, we do not focus on the
possibility of having to filter data tuples. Thus, given a simple
query Q with n keywords and a data source dependency graph
DG, the query planning problem is as follows. We want to

find a minimal subgraph, or a subgraph with the fewest nodes,
SubG from G, such that the set of all output attributes from
the nodes in SubG covers all attribute keywords in Q, and the
set of all input attributes of the nodes without incoming edges
(the starting nodes) in SubG covers all entity keywords in Q.

The reason why such a subgraph SubG forms a valid query
plan for Q is as follows. For an attribute keyword ka in Q,
we want to obtain its value from certain data sources, so we
at least one node in SubG that outputs (or covers) ka. For an
entity keyword ke, ke helps initiate answering of Q. Thus, we
need the input of the starting nodes in SubG to cover ke.

For example, consider the entity keyword ERCC6 in the
query “SNPID, Gene Function, ERCC6”, where the intent is
to find the SNPs and gene functions of the gene ERCC6. Using
a domain dictionary or ontology, we can know that ERCC6 is
a gene name. As a result, we want a data source node whose
set of input attributes includes the attribute Gene Name.

Further, the reason we choose the sub-graph with the
smallest number of nodes is as follows. In the deep web,
querying each additional data source implies another query
over the network. Thus, using the fewest data sources is the
key goal in query planning.

Unlike a query plan for keyword query in relational
databases[13], [14], a query plan in our case is a subgraph,
but not a tree. The reason is that, for queries defined as in
Section II, our goal is not to connect all attribute keywords as
in relational database keyword search. Instead, our goal is to
connect all attribute keywords with entity keywords through
data sources so as to obtain the values of attribute keywords.
As a result, a query plan in our case can even be a graph with
disconnected components.
Formulation for Ordinary Query: Given an ordinary SKQ
Q that contains n keywords, the query plan of Q is a minimal
(smallest size) subgraph, SubG, as formulated above. We have
established the following result.

Lemma IV.1. The query planning problem for ordinary SKQ
is NP-hard.

Proof. The standard set cover NP-hard problem can be re-
duced to the ordinary SKQ query planning problem. We will
describe how to construct a graph (query plan) from any
instance of the set cover problem. Further, we will show how,
in this graph, any optimal solution for the set cover problem
corresponds to an optimal solution to the ordinary SKQ query
planning problem.

Obviously, given a subgraph (query plan) of a graph G

(dependency graph), we can check whether this subgraph
covers a set in polynomial time. This shows that our problem
belongs to NP. Next we will show it is also NP-hard.

Let C = {C1, C2, . . . , Cm}, be an instance of the set cover
problem. Recall that a solution to the set cover problem is
a minimum subset C

′

⊆ C, such that each element of S =⋃m

i=1 Ci is contained in C ′. Denoting the elements of S by
s1, s2, . . . , sn, the graph G = (V, E) is constructed as follows.

Fig. 5. Graph Example for the Proof of Lemma IV.1

The node set V of G is given by

V = {C1, . . . , Cm}

Here, Ci is a set in the set cover problem. Let each Cj node
covers the elements which are covered by the set Cj in the set
cover problem. The given set T is defined as {s1, . . . , sn}.

The edges in G is constructed as follows. For each pair
of nodes Ci and Cj in G, if the element sets covered by
them have common element(s), the two nodes Ci and Cj

are connected by an edge. Obviously, the graph G can be
constructed in polynomial time. Figure 5 shows an example
for the set cover instance:

{{s1, s3}, {s1}, {s3}, {s2, s3}}

Observe that any subgraph of G that covers all elements
in T = {s1, . . . , sn}, must contain some Cj nodes. A critical
observation is that in order to make the size of the subgraph
minimal, we must use the minimal number of Cj nodes. But,
now, this is equivalent to minimizing the set cover represented
by Cj . This shows that any set of Cj nodes that are contained
in the minimal connected subgraph of G, such that it covers
all elements in T , is a minimal set cover also, and vice-versa.
In Figure 5, the shaded subgraph shows an instance of the
minimal subgraph covering T , which also forms a minimal
set cover.

Bidirectional Query Planning Algorithm: We use a heuristic
bidirectional planning algorithm to find query plans for ordi-
nary SKQ, which is based on the original bidirectional algo-
rithm for keyword search on relational databases by Kacholia
et al. [21].

1) Algorithm Overview:: We consider the data source nodes
that cover attribute keywords as the target nodes and the data
source nodes that cover entity keywords as the starting nodes.
A query plan ultimately connects a subset of target nodes with
a subset of starting nodes, such that that all keywords are
covered. We explore the query plan in a bidirectional manner.
We perform backward exploration from the target nodes to
connect them with starting nodes. To accelerate this process,

we also do forward exploration from the starting nodes. In this
way, the bidirectional exploration can meet mid-way.
Benefit Function and Heuristics: We have a benefit function
defined for data sources to rank similar data sources and
decide which data sources are more relevant to the query.
Intuitively, the benefit function ranks a data source higher if
the data source has the following properties: 1) it can cover
more search terms, 2) it provides data of higher quality, as
determined by an ontology, and/or 3) its underlying constraints
satisfy the value constraints V C in the query. In order to
find the subgraph covering all search terms with the minimal
size, the heuristic we use is the following. The edges that
allow a shorter distance to that nodes that cover keywords are
preferred. The benefit function and the heuristic outlined above
are also used for the other two planning algorithms, which will
be presented in in Sections IV-C and IV-D, respectively.

2) Bidirectional Exploration:: Initially we add all starting
nodes to a forward exploration queue, and all target nodes
to a backward exploration queue. Initially, if a node covers
a search term, the distance of reaching this search term from
the node is 0, otherwise the distance is infinity. For each node,
we use the node ranking function to compute a node score to
indicate the relevance of this data source w.r.t. the query Q.
At each iteration, the planning algorithm selects the highest
ranked nodes, CN , from the two queues. If CN belongs to
the forward queue, all out-going neighbors of CN will be
explored using forward exploration. If CN belongs to the
backward queue, all in-coming parents of CN will be explored
using backward exploration. During the backward or forward
exploration, since new nodes are explored, the distance from
a data source to search terms could be updated. This is done
using edge exploration. Finally, when every search term can
be reached from a starting node with finite distance, a query
plan is found and this query plan is a graph with disconnected
components, each of which is rooted at the corresponding
starting node. The details of forward exploration, backward
exploration and edge exploration are introduced as follows.
Forward and Backward Exploration: Forward exploration ex-
plores the edge e between CN (predecessor) and one of
CN ’s descendants. Backward exploration explores the edge
e between CN (descendant) and one of CN ’s predecessor.
Regardless of the direction of the exploration, for an edge
e, we denote the predecessor node as u and the descendant
node as v. Since our dependency graph is a hyper-graph,
when e is explored, we need to consider two cases. In the
first case, the predecessor u is a single node. We just directly
perform an edge exploration on e. For example, in Figure 4,
suppose we are now on node dbSNP, and we want to do a
forward exploration to Entrez Gene. Since dbSNP is the
single predecessor of Entrez Gene, the exploration can be
done directly. All search terms covered by Entrez Gene
now can be reached from dbSNP via Entrez Gene, so
that the distance from dbSNP to the search terms originally
covered by Entrez Gene should be updated using the edge
exploration function. In the second case, u is involved in a
hyper-node with respect to v. In this case, all nodes in the

hyper-node should be explored previously so that the hyper-
edge between the hyper-node and v can be explored. This is
because the accessibility of the dependent node v depends on
the accessibility of all its predecessors in the hyper-node. As a
result, if any node in the hyper-node is not accessible currently,
we cannot access v. In order to explore edge e, we need all
the unexplored nodes in the hyper-node to be explored. From
this point of view, these unexplored nodes become target nodes
and, therefore, are added to the backward queue. For example,
in Figure 4, suppose we are on dbSNP, and we want to do
a forward exploration to BLAST. Since dbSNP and Entrez
Protein are joint hyper-predecessors for BLAST, we need
both of dbSNP and Entrez Protein been explored so
as to explore BLAST. If Entrez Protein has not been
explored, we can consider Entrez Protein as a new target
node and add it to the backward queue.

The backward exploration is executed in similar way as the
forward exploration. After a backward exploration, suppose
from v to u, we add node v to the forward queue to explore
the frontier of v.
Edge Exploration: The goal of edge exploration is to update
the distance information, i.e. the distance from starting nodes
to search terms, whenever a new node is explored. The
distance of an edge e is computed by our edge ranking
function, which will be introduced in Section VII-E. An edge
with a shorter distance is preferred and the shorter distance is
propagated to the starting nodes. Suppose the two end nodes
of an edge e are u (predecessor) and v (descendant). The edge
exploration is performed in two steps. The first step is the local
distance update on the predecessor node u, and the second step
is distance propagation to u’s ancestors. If u is a single node,
we first locally update the shortest distance from u to any
search term could be reached via v. Then, we propagate the
updated distance to u’s ancestors. This is the standard edge
relaxation in Dijkstra algorithm.

If u is a hyper-node, we use a different strategy. We first
locally update the shortest distance on the hyper-node u. For
the propagation phase, we differentiate u’s ancestors into two
types. The first type of ancestors are the Shared Ancestors or
SA, which are the common ancestors shared by more than
one node in the hyper-node u. The second type of ancestors
are the Unshared Ancestors or UA, which are the ancestors
for a single node in u only. An important feature for a shared
ancestor, sa, is that the shortest distance from sa to a search
term could be reached via u depends on the longest path
among all the paths connecting sa to each node ui in u. As a
result, we perform distance propagation on unshared ancestors
as normal. For shared ancestors, we first compute a batch of
shortest distances from sa to u using every node ui in u.
Then, we propagate the longest one to sa. Taking Figure 4
as an example, suppose all edges have distance of 1 except
for the edge between BLAST and dbSNP having a distance of
2. The search term ORTH BLAST is covered by BLAST and
we want to update the distance information of ORTH BLAST
to Entrez Gene. Because dbSNP and Entrez Protein
are joint predecessors for BLAST, although the distance from

BLAST to Entrez Gene via Entrez Protein is 2, the
final distance should be 3 which is through dbSNP.
Algorithm Termination: When every keyword can be reached
from a starting node with finite distance, a query plan is found.

C. Query Planning for Simple Aggregation Query: Formula-
tion and Algorithm

In an aggregation query, we define an attribute to be an
grouping attribute if it is neither an aggregation attribute
(i.e. an attribute associated with an aggregation function)
nor a condition attribute (i.e. an attribute associated with a
comparison predicate). For our current implementation, we
assume that we have only one grouping attribute for an
aggregation query. We further define a data source whose
output covers any aggregation attribute to be an aggregation
data source. Similarly, a data source whose output covers the
grouping attribute is considered the grouping data source.
In order to perform aggregation functions on the groups
formed by grouping attribute, we must know the mapping
between the grouping attribute and the aggregation attributes.
For example, in the query “MAX(Heterozygosity), Gene Name,
Chromosome10”, we need to group all SNP heterozygosity
values according to gene name and apply the MAX function.
This requires that we know which SNP maps to which gene.
In other words, if SNP and gene information are covered by
two data sources, these two sources must be connected, so that
we can discover the mapping between SNPs and genes.

A correct query plan for this query is shown as sub-figure (a)
in Figure 6. We can see that the data source A, which covers
Gene Name, is connected with the data source C, which covers
Heterozygosity. Sub-figure(b) in Figure 6 shows another query
plan, in which the aggregation data source (F) is not connected
with the grouping data source (E). If this query plan is to be
used, we can obtain the genes data and SNP data located in the
chromosome 10 from E and F , respectively, but we cannot
know which SNP is located in which gene. As a result, we
cannot perform the grouping operation on Gene Name.

Thus, we can state that for a simple aggregation query, a
valid query plan must meet the Node Connection Property,
which requires that the data sources that cover the aggregation
attribute(s) must be directly or indirectly connected with the
data source that covers the grouping attribute in the query plan.
In the query plan of an aggregation query, if the aggregation
data sources are not connected (directly or indirectly) with the
grouping data source, the query plan is considered having an
error. The plan in sub-figure (b) has such an error.
Formulation for Aggregation Query: Given an aggregation
query Q that has an aggregation keyword set AggK and a
grouping keyword groupk, we want to find a minimal sub-
graph, SubG, as formulated in Section IV-B, which also
satisfies the node connection property. We have established
the following result.

Lemma IV.2. The query planning problem for a simple
aggregation SKQ is NP-hard.

Fig. 6. Query Plan Example for Aggregation Query: (a) Correct Plan for
the Example Aggregation Query, (b) Plan with an Error

Proof. The standard set cover NP-hard problem can be re-
duced to the aggregation SKQ query planning problem.

Using the same settings as in the proof of Lemma IV.1,
let C = {C1, C2, . . . , Cm}, be an instance of the set cover
problem. Denoting the elements of S by s1, s2, . . . , sn, the
graph G = (V, E) is constructed as follows. The node set V

of G is given by

V = {s1, . . . , sn, C1, . . . , Cm, W}

Here, Ci is a set in the set cover problem, and W is a new
node added to G. Let each si node in G cover the element
si. Among the n elements, we suppose the element sg is
the grouping attribute and all rest elements are aggregation
attributes. Thus, the node corresponding to element sg is
the grouping node, and all other si node(s) are aggregation
node(s). Let each Cj node covers nothing and the node W

covers a special attribute s∗. The given set T is defined as
{s1, . . . , sn, s∗}.

G contains two sets of edges. First, for each of the Ci nodes,
there is a directed edge connecting the Ci to the W node.
Second, each si node is connected with any node Cj , for
which si ∈ Cj . Obviously, the graph G can be constructed
in polynomial time. Figure 7 shows an example for the set
cover instance:

{{s1, s3}, {s1}, {s3}, {s2, s3}}

Observe that any subgraph of G that covers all elements
in T = {s1, . . . , sn, s∗} and satisfies the node connection
property, i.e., the sg node (grouping node) must be connected
with all other si nodes (aggregation nodes), must contain all
si nodes as well as the W node. This is because the s nodes
need to be connected through the W node. In the example
in Figure 7, we assume the node s1 and s2 are aggregation
nodes, and the node s3 is the grouping node. Given the nature
of the graph, this will only be possible through the inclusion of
some Cj nodes. A critical observation is that in order to make
the size of the subgraph minimal, we must use the minimal
number of Cj nodes. But, now, this is equivalent to minimizing
the set cover represented by Cj . This shows that any set of Cj

Fig. 7. Graph Example for the Proof of Lemma IV.2

nodes that are contained in the minimal connected subgraph of
G, such that it covers all elements in T , is a minimal set cover
also, and vice-versa. In Figure 7, the shaded subgraph shows
an instance of the minimal subgraph covering T satisfying the
node connection property. At the same time, the shaded Cj

nodes form a minimal set cover.

Center-spread Query Planning Algorithm: To ensure the
node connection property in a query plan, we start building
a query plan from the aggregation data sources and gradually
add other data sources to the query plan if they are connected
to the aggregation data sources via some path. This procedure
continues until all keywords are covered by data sources in the
plan. We call this algorithm the center-spread query planning
algorithm. We describe the center-spread algorithm below, and
show the pseudo-code in Algorithm IV.2.
Algorithm Initialization: Same as the bidirectional algorithm,
we have starting nodes and target nodes initialized in this
algorithm (line 1). At the beginning, we add all the aggregation
data sources into the query plan. We also have a center
neighbor queue CNQ containing all the data sources that
are directly connected with at least one data source in the
query plan (initially the CNQ contains the direct neighbors of
aggregation data sources). Here, directly connected neighbors
refers to both the neighbors with incoming and outgoing edges.
Plan Exploration: In each iteration of the algorithm, using
the same benefit function as in the bidirectional algorithm,
we choose the highest ranked data source, ProbeNode, from
the center neighbor queue. We try to add ProbeNode to the
existing query plan and see whether the node connection prop-
erty is respected (lines 4-6). If the node connection property
is violated, we select the second highest ranked node from the
queue to repeat the above procedure. Suppose ProbeNode

respects the node connection property, then ProbeNode and
the edge connecting ProbeNode with its neighbor in the
existing query plan are added to the query plan (lines 7-9). If
there are multiple edges connecting ProbeNode with nodes
in the plan, we always select the edge that gives the shortest
distance between ProbeNode and the connected aggregation
data source (the shortest distance heuristic). After adding

ProbeNode to the query plan, the distance from each node in
the plan to any query keyword is updated based on the shortest
distance heuristic (line 10-11). After the distance updating
phase, if a data source D in the query plan no longer has the
shortest distance to any of the keywords, it should be deleted
from the plan. Since ProbeNode is added to the query plan,
we update the center neighbor queue by adding the direct
neighbors of ProbeNode. If any data source D is deleted
from the query plan, D’s direct neighbors that are in the center
neighbor queue should also be removed (lines 12-15).

Algorithm IV.2: Center-spread(SKQQ)

1 Initialization
2 foreach aggregation data source node AN
3 CNQ.add(Neighbors(AN))
4 while CNQ6= Φ
5 select the node with highest rank from CNQ
6 denot it as ProbeNode
7 if ProbeNode satisfies Node Connection Property
8 add ProbeNode to query plan
9 add Neighbors(ProbeNode) to CNQ
10 foreach keyword∈Q
11 update shortest distance from ProbeNode to keyword
12 foreach node∈query plan
13 if no shortest path to all keywords in Q via node
14 delete node from query plan
15 delete Neighbors(node) from CNQ
16 if find path with finite distance to any keyword
17 from a subset of starting node
18 we find query plan for the query
19 if No nodes in CNQ satisfies Node Connection Property
20 Abort and inform the user

Algorithm Termination: When all query keywords can be
reached from a subset of the starting nodes with a finite
distance, a query plan is obtained (lines 16-18). During the
initialization phase, if no data source in the center neighbor
queue can be added to the query plan without violating the
node connection property, the algorithm will conclude that
the query cannot be answered completely. If this happens, our
system would notify the users, since we cannot generate a
correct plan for this query (line 19-20).

D. Query Planning for Nested Entity Subquery: Formulation
and Algorithm

Consider the query “MAX(Asian Allele Frequency), Gene
{Ontology Function,X}”. The nested entity subquery
“{Ontology Function, X}” implies that we want to find
the Genes that have the same ontology function as X .
More specifically, we need to include the outer query entity
keyword Gene into the nested entity sub-query to make the
query meaningful.

Formally, we could consider a nested entity sub-query to
have a keyword set {b, a, e1, . . . , ek}, where, b is the entity
keyword in the outer query in which this sub-query is enclosed,
a is the original attribute keyword in the nested entity sub-
query, and e1,. . .,ek are the original entity keywords in the
nested entity sub-query. The intent of a nested entity sub-
query is to find the entities specified by the keyword b that
have the same value on the attribute a as the entities that are

Fig. 8. Query Plan Example for Nested Entity Sub-query (a) Correct Plan
for the Example Query, (b) and (c) Plans with Errors

specified by the entity keywords e1,. . .,ek. We can say that
for a nested entity sub-query, the attribute keyword a links the
entities specified by b and the entities specified by e1, . . . , ek.

As a result, in query plan of a nested entity sub-query, we re-
quire the data source covering the linking attribute a (denoted
as linking data source) to be topologically before the data
source covering the entity b. This is denoted as the node linking
property. Let us consider the query “Gene{Ontology Function,
Protein X}”. A valid query plan for this query is shown in sub-
figure (a) in Figure 8. Using this plan, from the data sources A

and B, we can obtain the ontology functions protein X plays.
Next, from the data source C, we can obtain the genes that
have the same ontology functions. Sub-figure (b) in Figure 8
shows a plan with an error, because the linking data source
E is not connected with the data source F covering the outer
query entity (gene). As a result, although we can obtain the
ontology functions protein X plays and genes related with
protein X, but there is no way for us to find the relation
between ontology functions and genes. Sub-figure (c) shows
another plan with an error, as the linking data source J is
topologically after the data source H covering the outer query
entity (gene). From this plan, we can only know the ontology
function that a gene plays and how this gene is related with
the protein X, but we cannot find the expected mapping among
the protein X, the ontology function, and the gene, as required
in the query.
Formulation for Nested Entity Query Planning: Given a
nested entity subquery that has a linking attribute keyword
linkk and an outer query entity keyword outk, we want to
find a minimal (smallest size) sub-graph, SubG, as formulated
in Section IV-B, which also satisfies the node linking property.
We have the following result:

Lemma IV.3. The query planning problem for linkage SKQ
is NP-hard.

Proof. Lemma IV.3 can be proved in a similar fashion as
Lemma IV.2. The detailed proof is omitted.

Query Planning Algorithm: To ensure the Node Linking

Property, we use a variation of the center-spread planning
algorithm. In the linkage planning algorithm, we consider the
linking data source as the center data source in the initial
query plan. We incrementally add data sources to the query
plan to enlarge it. When a data source D that covers the outer
query entity keyword is added to the plan, we will check for
the node linking property. If this property is not respected, the
data source D and the data sources in the plan that connect
D with the linking data source are removed from the plan.
Other parts of the linkage planning algorithm are the same as
the center-spread planning algorithm.

V. QUERY PLAN COMBINATION AND MERGING

In this section, we describe how the complete query plan
of a query is obtained by combining and merging the query
plans of the sub-queries.

A. Plan Combination

In a query Q, if sub-query subQi is the parent of sub-query
subQj , we should combine the plan of subQj with the plan
of subQi. We denote the data source nodes in the plan of
subQj that provide the final output of subQj as the ending
nodes. Similarly, the data source nodes in the plan of subQi

that need the output from subQj as their input are considered
the receiving nodes. During plan combination, we add plan
edges from the ending nodes in subQj to the receiving nodes
in subQi.

In the example in Section I, the only ending node of the
nested entity queries is GO and the only receiving node of
the main query is SNP500Cancer. Thus, we link GO with
SNP500Cancer to obtain the combined query plan.

B. Plan Merging

While plan combination can create a correct query plan,
merging components of two query plans can help achieve
better efficiency. As shown in the example in Figure 2, there
can be data sources in the combined plan that could be merged
due to similarity among the sub-queries. The main purpose of
plan merging is to reduce the transmission cost of a query plan,
where the transmission cost is defined to be the total number
of terms transmitted during a query plan’s execution [7].

Our planing merging approach is based on an adaptation
of an existing planing merging approach developed by Ke-
mentsietsidis et al [7]. In this approach, a plan edge is denoted
as e = {n1, n2}, where n1 and n2 are the two ending data
sources. Two edges e1 = {n1, n2} and e2 = {n3, n4} can
be merged if the following two conditions hold: 1) the two
edges are compatible, i.e., n1 = n3 and n2 = n4, and 2) the
ordering of the two edges are respected, i.e., if edge e1 and e2

are merged, edge e3 and e4 are merged, and e1 topologically
proceeds e3, then e4 should not topologically proceed e2.

Given multiple query plans with a list of mergeable edges,
Kementsietsidis et al used a partial order alignment method to
find the optimal merging (the merging which reduces the most
transmission cost). In the partial order alignment method, a
compatibility graph CG = (V, E) is built. In CG, each node

Fig. 9. Example for Modified Merging Condition

nCG represents a pair of mergeable plan edges e1 and e2.
There is an edge eCG between two nodes nCG1 = (e1, e2)
and nCG2 = (e3, e4) if the two pairs of mergeable plan edges
do not map the same data source node to different data sources
in the query plan. Then, the optimal merging can be obtained
by finding a maximal clique in the compatibility graph CG.
The details of this approach can be found in [7], [22].

In our implementation, we made two modifications to the
existing approach: merging condition modification and merg-
ing algorithm modification, which are described below.
Merging Condition Modification: In the existing method,
two plan edges e1 = {n1, n2} and e2 = {n3, n4} are compat-
ible if each pair of ending data sources must be the same. Con-
sidering different deep web data sources may overlap in terms
of certain attributes (partial redundancy) [19], we define two
edges e1 and e2 to be compatible if the used input and output
attributes of the data sources on the edges are the same. Con-
sider the two edges e1 = (SNP500Cancer, SeattleSNP)
and e2 = (JSNP, dbSNP) in Figure 9. If we require
mergeable edges to have exactly the same ending data sources,
edges e1 and e2 cannot be merged. However, in this ex-
ample, we have data redundancy on e1 and e2, i.e., both
SNP500Cancer and JSNP take gene name as input and
have SNPID as output (although Chromosome is also an
output for JSNP, it is irrelevant to edge e2), and both
SeattleSNP and dbSNP take SNPID as input and have
heterozygosity as output. As a result, the used input and
output of the each pair of ending data sources is the same for
edge e1 and e2. Therefore, e1 and e2 can be merged.
Merging Algorithm Modification: In the existing method,
since only exactly the same data sources can be merged, the
compatibility graph is unweighted, i.e., we give no preference
to different pairs of mergeable edges. But in our case, different
data sources that possibly provide data with different quality,
can also be merged. Thus, we need to assign preferences to
different mergeable edges.
Mergeable Edges Weight: The merge weight of two mergeable
edges e1 = (n1, n2) and e2 = (n3, n4) is Sim(n1, n2) +
Sim(n3, n4), where Sim(n1, n2) = |Benefit(n1) −
Benefit(n2)|. Benefit(ni) is the node score computed by
the benefit function used in the query planning algorithm
introduced in Section IV-B.
Finding Maximal Edge-weighted Clique: With the above
mergeable edge weights, the compatibility graph CG in our

Fig. 10. Example for Illustrating the Two Grouping Optimizations

scenario is an edge weighted graph. Thus, we need to find a
maximal edge-weighted clique from the compatibility graph
to solve the optimal merging. For this purpose, we adopt
the Reactive Local Search (RLS) Algorithm [23], which finds
maximal cliques by stochastically adding and deleting nodes
with the largest edge degree to and from the current clique.
We make the following modification to the original algorithm:
when adding a node to the current clique, among the largest
degree nodes, we prefer the node which can bring in the largest
weighted edge. Similarly, when deleting a node, among the
largest degree nodes, we prefer the node which takes out the
smallest weighted edge.

VI. OPTIMIZATION ON QUERY EXECUTION

In this section, we introduce two optimization techniques
for query plan execution, which are pipelined aggregation and
moving partial grouping-by forward. Recall in Section IV-C,
we defined the aggregation and grouping attributes in a query
and the aggregation and grouping data source in a query plan.

A. Pipelined Aggregation

We define an aggregation query plan to be grouping-
first if the grouping data source topologically proceeds the
aggregation data source(s). The query plan in sub-figure (a)
in Figure 10 is a grouping-first query plan. Here, we want to
form groups using gene name (A is the grouping data source)
and then for each group, perform aggregation function on SNP
frequency (dbSNP is the aggregation data source). Suppose we
have a gene X which contains 20 SNPs. This optimization
will imply that we feed the 20 SNPs to dbSNP in a pipelined
manner and perform the aggregation incrementally. Pipelined
aggregation can reduce the query plan transmission cost by
early pruning if the aggregation is involved in a comparison
predicate. For example, suppose we want to find the gene
group that has a maximal SNP Frequency smaller than 0.6.
If we do not use pipelined aggregation, for gene X , we need
to issue 20 queries on dbSNP to compute the aggregation
function, even if the second SNP in X has a frequency value
large than 0.6. Using pipelined aggregation, we issue only 2
SNP queries, as gene X can be pruned.

B. Move Partial Group-by Forward

We define an aggregation query plan to be aggregation-
first if the aggregation data source topologically proceeds the

grouping data source. The query plan in sub-figure (b) in Fig-
ure 10 is an aggregation-first query plan, in which we want to
form groups using chromosome (NCBI Gene is the grouping
data source). Then, for each group, we perform aggregation
function on SNP frequency (dbSNP is the aggregation data
source). Suppose in this example, we have 20 SNPs from 2
chromosomes. Without optimization, we would issue 20 SNP
queries on dbSNP to find frequency data, next, we will issue
20 SNP queries on NCBI Gene to find the 2 chromosomes,
and finally, we will perform the group-by and aggregation.
There will be a total of 40 queries issued. But, if we know that
dbSNP also provides the gene in which an SNP is located, we
could execute this plan in an alternative way. After issuing 20
queries on dbSNP to find the frequency and gene data, we first
perform a partial group-by for SNPs on genes. Suppose, the
20 SNPs are grouped into 4 gene groups, and further, we know
that the SNPs from the same gene group must map to the same
chromosome. We only need to issue 4 SNP queries on NCBI
Gene (one SNP per gene group) to obtain the chromosome
data. The total plan transmission cost is reduced from 40 to 24.
We refer to this technique as move partial group-by forward.

The idea of moving partial grouping-by forward was origi-
nally proposed in relational database query optimization [24].
Specific to the deep web scenario, we have an aggregation
SKQ, and its query plan is aggregation-first. Suppose the
grouping data source is GD, the grouping attribute is ga,
the aggregation data source is AD, and the input attribute
of AD is aa. We could perform move partial grouping-by
forward method if all the following conditions hold: 1) the
aggregation data source AD covers a term pga, 2) there is a 1
to 1 relationship between the entity specified by pga and the
entity specified by ga, and 3) there is a N to 1 relationship
between the entity specified by aa and the entity specified by
pga.

Under this circumstance, we call the term pga a partial
grouping-by attribute, and we could do a partial grouping-by
operation using pga on data source AD for the aggregation
attribute aa. In the example above, pga is Gene Name and
the input of AD (dbSNP) (aa) is SNPID. Since a gene
contains multiple SNPs (N to 1 relation between SNP and
gene), and a gene must be located in one chromosome (1 to
1 relation between gene and chromosome), we can infer that
the SNPs locates in one gene must from the same chromo-
some. As a result, performing partial group-by could reduce
transmission cost as shown above. The relationship between
terms is captured through the domain ontology introduced in
Section III.

VII. DOMAIN ONTOLOGY AND RANKING BENEFIT
FUNCTION

In this section, we introduce the domain ontology and
benefit functions used in our query planning algorithm.

A. Ontology Overview

Our domain ontology is designed with the following two
goals. First, we want to map search terms to data source

Fig. 11. An Ontology Graph Example

node when search terms query used are alias or synonyms
of the attribute names used in data source schemas. Second,
ontology information could help us rank similar data sources
with respect to the query, and domain ontology is used as a
component of the beneficial functions in our query planning
algorithm introduced in Section IV-B.

Our ontology is a schema level ontology that only contains
attribute terms, but not entity names. For example, Gene Name
is in our ontology, but ERCC6, a specific gene name, is not.
Because the number of attribute terms is likely quite limited in
a domain, our ontology remains small and scalable to a large
number of data sources.

Our ontology is a connected directed graph OG =
(ON, OE). ON is the set of nodes in the ontology graph,
and OE is set of edges. The nodes in ontology graph are the
domain terms and edges are relations between these terms.
Figure 11 shows an ontology graph example, which is specific
to our implementation in the biological context.
Domain Term: There are three types of domain terms in
the ontology: concept terms, attribute terms, and a root
term. Concept terms are high-level conceptual terms, such as
Chromosome and Gene for biological domain, which are not
among the input or output attributes of any data source. In
Figure 11, there are three concept terms (shaded nodes) and
seven attribute terms (unshaded nodes).
Ontology Relation: We define four types of ontology rela-
tions. 1). A type relation. It connects a term with its synonym
(Organism and Specie in the Figure 11). 2). B type relation. It
connects two concept terms, which are related in the domain
a particular implementation is targetting. 3). C type relation.
It captures the class-subclass relationship. In the Figure 11,
SNP can be categorized into two sub-types using the Function
attribute. 4). F type relation. It connects a biological concept
term with its attribute terms or connects a high-level attribute
term with its low-level attribute terms. In the Figure 11, posi-
tion and number are two attributes of Chromosome indicated
by two F relations. Among the four types of relations, A and B
types are undirected and C and F types are directed, as shown
in Figure 11.

B. Data Source Representatives

Within our implementation that targets a specific domain,
each data source is designed to provide information of some

specific sub-domain(s) within that domain. For example, Seat-
tle provides Human SNP data and Entrez Gene provides gene
and protein related data. In our system, for a data source D, we
define the concept terms, which correspond to the sub-domains
that D covers, as the representatives of D. The representative
of Seattle is SNP, and the representatives of Entrez Gene
are Gene and Protein. We can compute the representatives
of a data source D on the ontology graph as follows: if we
reverse-traverse the ontology graph starting from all nodes
corresponding to D’s output attributes through the F or C
links, all the concept terms reached are the representatives of
D. Suppose D has n representatives r1, r2, . . . , rn, then each
representative ri is associated with a weight wi, which is the
percentage of D’s output attributes which finally reach ri.

The representatives associated with their weights can be
used to estimate the relevance of a data source w.r.t. a query
keyword. The larger the weight wi of representative ri, the
more output attributes of D are related to ri, and therefore,
we believe D is more likely to be focusing on providing
information about ri with high quality. Suppose we have two
data sources A and B, in Figure 11, A has Position, Number
and Organism as output attributes, and B has Number and
Function as outputs. Following the F and C links, we know the
representatives of A are Chromosome and Gene with weights
of 2

3 and 1
3 respectively, and the representatives of B are SNP

and Chromosome with weights of 1
2 and 1

2 respectively. If a
query keyword is related to the term Chromosome, we would
predict A is more relevant to the keyword than B given all
other properties of A and B are equal. The detail usage of data
source representatives as a relevance measure is introduced in
Section VII-D.

C. Ranking Strategy Overview

We have two types of ranking function, node ranking
function and edge ranking function. The node ranking function
should give a data source higher node score if the node has
the following properties: 1) it can cover more search terms, 2)
it is closer from the set of starting nodes, because we prefer a
query plan with smaller size, 3) it provides the data with higher
quality and 4) it satisfies the constraints which are specified
in the query. Similarly, an edge has shorter distance if the
exploration of this edge can help to narrow down the search
space or provide more accurate answer to a query. Since the
second type of dependence relation defined in Section III-B is
used for this purpose, we favor the edges with the second type
of dependence over the edges with the first type of dependency
only.

D. Node Ranking Strategy

Given a node ni, we first define the node score of ni w.r.t.
search term kj as NScore(ni, kj) = cij × qij . Here, cij is
the node coverage score, and qij is the node quality score. We
further define the node score of node ni w.r.t. the entire query

Q as NScore(ni) =

P

kj∈Q
NScore(ni,kj)

m
× constraintni

,
where m is the total number of search terms in the query,

and constraintni
is the node constraint match score of ni

w.r.t. query Q.
Node Coverage Score cij: We want the node that covers
more search terms and is closer to the starting nodes to be
ranked higher. Specifically, we defined cij = 1

Level(i)+1 ×

Is Contain(j). Level(i) is the shortest distance in terms of
the number of edges from any of the starting nodes to node
ni. Is Contain(j) is a function that returns 0 if data source
ni does not contain kj as its output, returns 1 otherwise.
Node Quality Score qij: qij measures the relevance of ni

w.r.t. kj . Intuitively, as explained in Section VII-B, the shorter
the distance from kj to ni’s representatives, the higher the
relevance. To compute the relevance score, we follow three
steps. First, we find the representatives of data source ni, as
ri
1, r

i
2, . . . , r

i
m with weights wi

1, w
i
2, . . . , w

i
m. Then, we com-

pute similarity between term kj and representative ri
l using an

ontology based similarity metric defined in [25]. Denoted it as
Sim(ri

l , kj). The final node quality score is the weighted sum
of all relevance scores of each representative w.r.t. keyword
kj , which is denoted as qij =

∑m

l=1 wi
l × Sim(ri

l , kj).
Node Constraint Match Score constraintni

: Some search
terms represent constraints that a user sets on the query. Each
data source has a C attribute which represents its inherent
constraints. We set constraintni

= −∞ if data source ni has
conflicting constraints with the query, and constraintni

=
MC+ε
SC+ε

, if there is no conflicting constraints. MC refers to the
number of matched constraints and SC refers to the number
of superfluous constraints. ε is a small positive number used
to avoid 0 in both numerator and denominator. We prefer
the data source that has a high ratio of matched constraints.
We emphasize that superfluous constraints lead to incomplete
answers but not wrong answers. For example, a query wants
SNPIDs of ERCC6, and a data source providing SNPID has
constraints Het > 0.2 which means that it only has SNPIDs
whose Het value is greater than 0.2. Using this data source
will obtain a subset of the desired answers, but not wrong
answers.

E. Edge Ranking Strategy

The edge score is considered as the distance of the edge
from one node u to its descendant v. Based on the desired
properties of edge score as in Section VII-C, the edge score of
e connecting u and v is defined as EScore(u, v) = 1

num2+1 ,
where num2 is the number of second type dependency on
edge (u,v). A larger value of num2 indicates shorter distance
edge, thus a higher ranked edge.

VIII. EVALUATION

This section describes the experiments we conducted to
evaluate our approach.

A. Experiment Setup

Our evaluation was done using 12 biological deep web
data sources which include NCBI dbSNP1, NCBI Gene1,

1http://www.ncbi.nlm.nih.gov/

NCBI Protein1, NCBI BLAST1, SNP5002, Seattle3,
SIFT4, BIND5, HGNC7, ALFRED8, Human Protein9, and
Uniprot10. The input and output schema of the data sources
were extracted using a previously created wrapper. The depen-
dency graph of the data sources was constructed by analyzing
the correspondence between the output and input attributes
of different data sources. The queries we use for evaluation
throughout this section are based on our collaboration with a
biologist focusing on SNP-related studies [26].

Our evaluation study has two components. The first com-
ponents evaluates the performance of the query planning
algorithms, with focus on scalability and comparison with an
optimal algorithm. The second part illustrates the effectiveness
of the merging and grouping optimization techniques proposed
in Sections V and VI.

B. Query Planning Algorithm Evaluation

First, we evaluate the performance of our heuristic query
planning algorithm. Second, we will examine the scalability
of the query planning algorithm shown in Algorithm IV.1.
Finally, we analyze the overhead of the query planning al-
gorithm.

As we stated in Section IV, the query planning problems we
have considered are NP-hard, and our algorithms are heuristic
in nature. Here, we show the performance of our heuristic
planning algorithms. For each query, we first generate a plan
using our heuristic planning algorithms, and then we generate
an optimal plan using an exhaustive search algorithm. The
comparison between the query plans is shown in Table III.

We can observe that, for 18 out of 20 cases, the size of
the plan, measured as the number of nodes in subgraph, from
our heuristic algorithms is exactly the same as the size of
the optimal plan. At the same time, the query planning times
of the heuristic algorithms are faster by at least two orders
of magnitude. This shows our heuristic algorithms are very
effective. Besides the size, we also compared the actual results
extracted by the plans generated from both algorithms, and the
plans from our heuristic algorithm can always extract the same
results as the optimal plans.

We next evaluate the scalability. In Figure 12, the x-axis
is the number of sub-queries used. The y-axis is the query
planning time (in milli-seconds) of the planning algorithm,
normalized in a logarithmic scale. We observe that with the
increase in the number of sub-queries, the query planning time
increases in a linear fashion. This shows that our planning al-
gorithms have good scalability. While measuring the planning
overhead, we found that for 50 queries, query planning time
is, on the average, only 0.03% of the query execution time.

2http://snp500cancer.nci.nih.gov/home 1.cfm
3http://pga.gs.washington.edu/
4http://blocks.fhcrc.org/sift/SIFT.html
5http://www.bind.ca
7www.genenames.org
8http://alfred.med.yale.edu/alfred/
9http://alfred.med.yale.edu/alfred/
10http://www.uniprot.org/

(a) (b)

Fig. 13. Impact of Optimizations (a) Total Number of Transmitted Terms, (b) Query Execution Speedup

TABLE III
NUMBER OF DATA SOURCES IN QUERY PLAN COMPARISON

Query
ID

of DS
optimal

of DS
heuristic

Query
ID

of DS
optimal

of DS
heuristic

1 2 2 11 8 8
2 4 4 12 5 5
3 2 2 13 6 6
4 3 3 14 2 2
5 6 7 15 6 6
6 4 4 16 6 6
7 5 6 17 8 8
8 4 4 18 9 9
9 6 6 19 7 7
10 8 8 20 4 4

Fig. 12. Planning Algorithm Scalability

C. Optimization Techniques Evaluation

In this section, we evaluate the performance of the proposed
optimization techniques.

In this experiment, we consider four different schemes,
which are No Optimization (NO), Only Merging Optimiza-
tion (Merging), Only Grouping Optimizations (Grouping) and
Merging+Grouping Optimizations (M+G). We used 50 queries
in this experiment. We execute the queries using all four
schemes. We focus on two metrics, which are the total number
of terms transmitted during the execution and the query
execution time. Irrespective of the scheme used, all query
plans are executed in a parallel fashion, i.e., independent data
sources are accessed in parallel.

The results are shown in Figure 13. The x-axis in both
sub-figures shows the scheme used. The y-axis in sub-figure
(a) shows the total number of terms transmitted, whereas in
sub-figure (b), it shows the speedup of the query execution
time normalized with respect to the NO version. From sub-

Fig. 14. Execution Time Speedup Analysis w.r.t. Number of Merged Data
Sources

figure (a), we observe that using the merging and grouping
optimizations independently, the total number of transmitted
terms is decreased by about 25% and 20% , respectively. When
they are combined, we achieved a 40% decrease in the number
of transmitted terms. From sub-figure (b), we observe a similar
trend. The execution speedups achieved using Merging and
Grouping independently are 1.3 and 1.4, respectively. We
achieved a 1.7 time speedup when we combined them. We
can see that although the merging optimization reduces more
transmitted terms, as compared with the grouping, the execu-
tion time speedup of merging is lower than that of grouping.
This is because the merged data sources should be executed
in a synchronized manner, which introduces synchronization
costs.

For the only merging optimization schema, we compare the
execution time speedup with respect to the number of data
sources being merged. The result is shown in Figure 14. The
x-axis is the number of data sources merged , and the y-axis
is the execution time speedup normalized with respect to No
Optimization. We can observe that with the increase in the
number of merged data sources, the execution speedup also
increases, as one would expect.

IX. RELATED WORK

We now compare our work with existing work on related
topics, including query processing and optimization for web
data sources, query mediation systems, keyword search on
relational databases, and deep web integration and crawling
systems.
Query Processing and optimization on Web Data Sources:
Query processing and optimization on web data sources has

been an important topic in recent years [7], [5], [6], [27], [28],
[29]. Kementsietsidis et al [7] have developed a system for
optimizing exploratory queries over biological data sources.
The main optimization they consider is merging data sources
among related exploratory queries. As we had explained ear-
lier, the merge algorithm in our work is closely based on their
work. Srivastava et al [6] presented an algorithm for ordering
data sources in a query plan with the goal of minimizing the
query’s execution time. However, the algorithm is based on
the assumption that only one attribute is provided by a single
data source. Several other query planning algorithms for web
data sources have also been proposed [5], [27], [28]. None
of the above work considers query planning and optimization
for complex queries, i.e., including aggregation, group-by, and
nested queries, which is the focus of our work. Two of these
efforts are based on the Steiner Tree algorithm [27], [28],
where it is assumed that a valid query plan must be a tree.
In comparison, query plans in our case can be disconnected
directed acyclic graphs.
Query Mediation Systems: Use of mediators is one of the
classical approaches for information integration. There have
been several well-developed systems in this area, include
SIMS [9], Information Manifold [10], TSIMMIS [11], and
MedMaker [12], and a bioinformatics mediator platform de-
veloped by Raschid et al [30]. A mediator provides users
with seamless integrated views of the data from heterogeneous
sources and is capable of generating query plans for user
queries. But query plans for the mediator system have been
generated based on pre-specified rules or axioms. For example,
the Mediator Specification (MS) rules are used in TSIMMIS
and MedMaker, and the SIMS Axioms are used in SIMS.
There are two key differences in our approach. First, our
system can handle more complex queries, including the nested
and aggregation queries. Second, our data source model and
the cost metric are very distinct, and as a result, the query
planning formulation and algorithms are different.
Keyword Search on Relational Databases: Recently, key-
word search over relational databases has attracted a lot of
attention [13], [14], [21], [16], [17]. In relational database
keyword search, data tuples are represented as nodes, and
foreign keys are represented as edges. In our case, since we
do not have the access to the database behind deep web data
sources, our graph model is at the metadata level. Furthermore,
except for the work by Tata et al. [17] (SOAK system), the
work on relational database keyword search does not consider
aggregation queries, and infact, none of them has considered
nested queries.
Deep Web Crawling and Integration Systems: Lately, there
has also been much effort on mining useful information from
the deep web [1], [4], [31]. This work has been focused
on database integration, schema matching, and hidden data
crawling. The focus of our work is distinct, i.e. answering
complex cross-source queries over multiple inter-dependent
deep web data sources. Our work assumes that a set of
relevant deep web sources have been found and integrated for
a particular domain.

X. CONCLUSION

This paper has considered the problem of executing complex
queries over a set of integrated deep web data sources. We
have proposed a structured keyword query approach, in which
a user could easily formulate a complex query, including
aggregation, group-by, value constraints, and nested queries.
We have formulated the query planning problem for such
queries over the deep web, with the main consideration being
minimizing the number of geographically distributed data
sources used in answering a query. We have also considered
several optimizations for reducing the query execution time.
Our experiments show that our query planning algorithms are
efficient and effective, and the optimization techniques can
speedup the query execution by an average factor of 1.7.

REFERENCES

[1] B. He, Z. Zhang, and K. C.-C. Chang, “Knocking the door to the deep
web: Integrating web query interfaces,” in Proceedings of the 2004 ACM
SIGMOD international conference on Management of Data, 2004, pp.
913–914.

[2] K. C.-C. Chang and J. Cho, “Accessing the web: From search to
integration,” in Proceedings of the 2006 ACM SIGMOD international
conference on Management of Data, 2006, pp. 804–805.

[3] K. Chang, B. He, and Z. Zhang, “Toward Large Scale Integration:
Building a Metaquerier over Databases on the Web,” 2005.

[4] H. He, W. Meng, C. Yu, and Z. Wu, “Automatic integration of web
search interfaces with wise integrator,” The international Journal on
Very Large Data Bases, vol. 12, pp. 256–273, 2004.

[5] D. Braga, S. Ceri, F. Daniel, and D. Martinenghi, “Optimization of
Multi-domain Queries on the Web,” Proceedings of the VLDB Endow-
ment, vol. 1, pp. 562–673, 2008.

[6] U. Srivastava, K. Munagala, J. Widom, and R. Motwani, “Query opti-
mization over web services,” in Proceedings of the 32nd international
conference on Very Large Data Bases, 2006, pp. 355–366.

[7] A. Kementsietsidis, F. Neven, D. V. de Craen, and S. Vansummeren,
“Scalable multi-query optimization for exploratory queries over feder-
ated scientific databases,” Proceedings of the VLDB Endowment, vol. 1,
pp. 16–27, 2008.

[8] F. Wang, G. Agrawal, and R. Jin, “Query planning for searching inter-
dependent deep-web databases,” in Proceedings of the 20th international
conference on Scientific and Statistical Database Management, 2008, pp.
24–41.

[9] Y. Arens, C. A. Knoblock, and W.-M. Shen, “Query Reformulation for
Dynamic Information Integration,” Journal of Intelligent Information
Systems - Special Issue on Intelligent Information Integration, vol. 6,
no. 2/3, pp. 99–130, 1996.

[10] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava, “The Information Man-
ifold,” in Proceedings of the AAAI 1995 Spring Symp. on Information
Gathering from Heterogeneous, Distributed Enviroments, 1995, pp. 85–
91.

[11] H. Garcia-molina, Y. Papakonstantinou, D. Quass, Y. Sagiv, J. D.
Ullman, V. Vassalos, and J. Widom, “The TSIMMIS Approach to Medi-
ation: Data Models and Languages,” Journal of Intelligent Information
Systems, vol. 8, pp. 117–132, 1997.

[12] Y. Papakonstantinou, H. Garcia-molina, and J. Ullman, “Medmaker: A
mediation system based on declarative specifications,” in Internation
Conference on Data Engineering, 1996, pp. 132–141.

[13] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword search in
relational databases,” in Proceedings of the 28th international conference
on Very Large Data Bases, 2002, pp. 67–681.

[14] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient ir-style
keyword search over reltional databases,” in Proceedings of the 29th
international conference on Very Large Data Bases, 2003.

[15] B.Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, P. Parag,
and S.Sudarshan, “Banks: Browsing and keyword searching in relational
databases,” in Proceedings of the 28th International Conference on Very
Large Data Bases, vol. 28, 2002, pp. 1083–1086.

[16] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou, “Ease: An effective 3-in-
1 keyword search method for unstructured, semi-structured and struc-
tured data,” in Proceedings of the 2008 ACM SIGMOD international
conference, 2008, pp. 903–914.

[17] S. Tata and G. M. Lohman, “Soak: Doing more with keywords,” in
Proceedings of the 2008 ACM SIGMOD, 2008, pp. 889–901.

[18] A.J.Brookes, “The Essence of SNPs,” Gene, vol. 234, pp. 177–186,
1999.

[19] M. K. Bergman, “The Deep Web: Surfacing Hidden Value,” Journal of
Electronic Publishing, vol. 7, 2001.

[20] H. Davulcu, J. Freire, M. Kifer, and I. Ramakrishnan, “A layered
architecture for query dynamic web content,” in Proceedings of the 1999
SIGMOD Conference, 1999, pp. 491–502.

[21] V. Kacholia, S. Pandit, S. Chakrabarti, S.Sudarshan, R. Desai, and
H. Karambelkar, “Bidirectional expansion for keyword search on graph
databases,” in Proceedings of the 31st international conference on Very
Large Data Bases, 2005, pp. 505–516.

[22] N. Moreano, G. Araujo, Z. Huang, and S. Malik, “Datapath Merging and
Interconnection Sharing for Reconfigurable Architecture,” in Proceed-
ings of the 15th international symposium on System Synthesis, 2002, pp.
38–43.

[23] R. Battiti and M. Protasi, “Reactive Local Search for the Maximum
Clique Problem,” ACM Journal of Experimental Algorithmics, vol. 2,
1997.

[24] S. Chaudhuri and K. Shim, “Including Group-By in Query Optimiza-
tion,” in Proceedings of the 20th international conference on very large
data bases, 1994, pp. 354–366.

[25] P. Cimiano, G. Ladwig, and S. Staab, “Gimme’ the context: Context-
driven automatic semantic annotation with c-pankow,” in Proceedings of
the 14th international conference on World Wide Web, 2005, pp. 332–
341.

[26] F. Wang, G. Agrawal, R. Jin, and H. Piontkivska, “Snpminer: A domain-
specific deep web mining tool,” in Proceedings of BIBE 2007, 2007.

[27] P. P. Talukdar, M. Jacob, M. S. Mehmood, K. Crammer, Z. G. Ives,
F. Pereira, and S. Guha, “Learning to create data-integrating queries,”
Proceedings of the VLDB Endowment, vol. 1, pp. 785–796, 2008.

[28] R. Varadarajan, V. Hristidis, and L. Raschid, “Explaining and reformu-
lating authority flow queries,” in Proceedings of the 2008 IEEE ICDE
international conference, 2008, pp. 883–892.

[29] A. Cali and D. Martinenghi, “Querying Data under Access Limitations,”
in Proceedings of the 24th International Conference on Data Engineer-
ing, 2008, pp. 50–59.

[30] B. A. Eckman, T. Gaasterland, Z. Lacroix, L. Raschid, B. Snyder,
and M. E. Vidal, “Implementing a bioinformatics pipeline (bip) on a
mediator platform: Comparing cost and quality of alternate choices,” in
Proceedings of the 22nd International Conference on Data Engineering
Workshops, 2006, p. 67.

[31] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and
A. Halevy, “Google’s Deep Web Crawl,” VLDB Endowment, vol. 1,
pp. 1241–1252, 2008.

