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Abstract—Ultra-scale computer clusters with high speed in-
terconnects, such as InfiniBand, are being widely deployed for
their excellent performance and cost effectiveness. However, the
failure rate on these clusters also increases along with their
augmented number of components. Thus, it becomes critical
for such systems to be equipped with fault tolerance capability.
Previous work has been done to enable MPI libraries with
checkpoint/restart support. However, they all focus on thenet-
work channel only, and will not be the best solutions on multi-
core clusters. In multi-core clusters, there exist severallevels
of communication, including intra-CMP, inter-CMP, and int er-
node communication, depending on the positions of the processes.
Many MPI libraries implement multiple channels to achieve
best performance for the different levels of communication.
Since the previous work all focus on the network channel only,
they cannot take advantage of other channels. More specifically,
they cannot utilize the efficient shared memory channel for
intra-node communication. Therefore, application performance
may get hurt with checkpoint/restart support. In this paper,
we design a framework that is able to checkpoint multiple
channels in MPI and provides high performance. In addition,
our design allows flexible process re-distribution after restart. It
can also be easily extended when new channels are added. We
have integrated the design into MVAPICH2, and evaluated the
performance on an Intel Clovertown multi-core cluster connected
by InfiniBand. From the experimental results, we see that our
design has little overhead compared with the native MVAPICH2
performance. Compared with the previous work, our design
reduces intra-node latency from 4.55us to 0.76us, and increases
peak bandwidth from 1510MB/s to 1954MB/s. It improves the
performance of MPI collective operations by up to 90%, and
application performance by up to 6%. Further, our design is
efficient in taking the checkpoint. To the best of our knowledge,
this is the first paper which focuses on designing a multi-channel
enabled MPI checkpoint/restart protocol for multi-core clusters
with Infiniband.

I. I NTRODUCTION

High End Computing systems are quickly gaining in their
speed and size. In particular, adoption of clusters with tens
of thousands of cores has been steadily increasing in the
recent years due to their low price/performance ratio. While
the failure rate of the entire system grows rapidly with the
number of components, few large-scale systems are equipped
with built-in support for fault tolerance. Applications running
over these systems tend to be more prone to error since the
failure of any single component can easily cascade to other

components due to the interaction and dependence among
them.

The Message Passing Interface (MPI) [1] is the de facto
programming model on which parallel applications are typi-
cally written. Most clusters are installed with MPI libraries as
the communication middleware. On large-scale clusters, itis
highly desirable that MPI libraries have the capability of fault
tolerance so that faults occurring during the execution of the
applications can be recovered and do not result in program
abort.

Checkpointing and rollback recovery is one of the com-
monly used techniques for fault recovery. To save valuable
computing resources, the state of the parallel application
is periodically saved so that in the event of a failure, the
application can be restarted from a previous state and continue
execution.

There exist MPI libraries that support checkpoint/restart
(CR) over TCP/IP networks, such as LAM/MPI [2] and
MPICH-V [3]. More recently, InfiniBand [4] has emerged as
the high speed network to design the next generation high-
end clusters. It is being widely deployed for both data centers
and high performance computing. In fact, 121 systems in
the Top500 supercomputer list released in November 2007
use InfiniBand as the interconnect. Realizing the increased
popularity of InfiniBand in large-scale clusters, we have pro-
posed a checkpoint/restart framework in MVAPICH2 (High
Performance MPI over InfiniBand) [5]. The design challenges
in this initial CR design for InfiniBand were mentioned in [6].

On the other hand, as multi-core technologies are becoming
mainstream, more and more clusters are deploying multi-core
processors as the build unit. Multi-core is also referred toas
Chip-level Multi-Processing (CMP). In the latest Top500 [7]
supercomputer list, 77% of the sites use multi-core proces-
sors. Figure 1 shows a typical multi-core cluster setup. In
such a cluster, there exist several levels of communication,
namely intra-CMP, inter-CMP, and inter-node communication,
depending on the positions of the processes. Both intra-CMP
and inter-CMP belong to intra-node communication. Many
MPI libraries implement the different levels of communication
in a multi-channel way so that they can take advantage of
features of each channel and get optimal performance. For
example, MVAPICH2 uses a network channel and a shared



memory channel for inter- and intra-node communication
respectively. The shared memory channel optimizes intra-node
communication performance on multi-core clusters [8]. Fur-
ther, MVAPICH2 employs multi-core aware collective algo-
rithms which utilizes the shared memory channel to optimize
the performance of MPI collective operations [9].
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Fig. 1. Communication in Multi-core clusters [10]

The MPI libraries with CR support mentioned earlier, while
address the fault tolerance issues, will not be the best solu-
tions on multi-core clusters. The main concern is regarding
the performance. The aforementioned work focuses on the
network channel only, and uses network loopback for intra-
node communication. While the speed of network is advancing
rapidly, it is still much slower than the memory speed. The
consequence is that applications performance will get hurtwith
CR support enabled. Therefore, the challenge is:

• Can we design an efficient framework that is able to
checkpoint multiple channels in MPI and achieve best
performance for applications?

In this paper, we take on the challenge and design such
a framework that is able to checkpoint multiple channels in
MPI and provides high performance. In addition, our design al-
lows flexible process re-distribution after restart, i.e. processes
previously on the same node can be restarted on different
nodes or the other way around, and utilizes different channels
dynamically. It can also be easily extended when new channels
are added. We have integrated the design into MVAPICH2,
and evaluated the performance on an Intel Clovertown multi-
core cluster connected by InfiniBand. From the experimental
results, we see that our design has little overhead compared
with the native MVAPICH2 performance. Compared with
the previous work, our design reduces intra-node latency
from 4.55us to 0.76us, and increases peak bandwidth from
1510MB/s to 1954MB/s. It improves the performance of
MPI collective operations by up to 90%, and application
performance by up to 6%. Further, our design is efficient in
taking the checkpoint.

The rest of the paper is organized as follows: We provide an
overview of MPI checkpoint/restart in Section II. The overall
and detailed design issues are illustrated in Section III and IV
respectively. Section V presents the performance of our design

and Section VI discusses related work. Finally, we conclude
this paper and point out future work directions in Section VII.

II. BACKGROUND

Checkpointing and rollback recovery are the most com-
monly used techniques for system-level failure recovery in
distributed systems. While various other techniques using
application-level checkpointing [11], [12], [13] exist, system-
level solutions are still popular because of application trans-
parency. A detailed comparison of various rollback recovery
schemes can be found in [14]. As thede facto standard for
parallel programming, MPI is the ideal place to integrate
many system-level failure recovery mechanisms and hide the
complexity from end user applications. Earlier studies have
targeted both various checkpointing and rollback recovery
schemes including both coordinated [6], [15] and uncoordi-
nated checkpointing [16], [14]. In the context of modern clus-
ter with high speed interconnects, coordinated checkpointing
has its advantage. Uncoordinated checkpointing requires mes-
sage logging, which could impose considerable overhead when
network traffic can be produced in an extremely high rate.
Furthermore, uncoordinated checkpointing is susceptibleto
the domino effect [17] where dependencies between processes
may cause all processes to rollback to the initial state.

As part of our earlier work, we proposed coordinated
checkpoint/restart for MVAPICH2, a MPI-2 library over In-
finiBand. Figure 2 shows the architecture that we proposed. It
consists of several components. A global Checkpoint/Restart
(CR) manager, local CR managers, InfiniBand communication
channel managers and CR library.

Fig. 2. MVAPICH2 C/R architecture over InfiniBand

When the user wants to take a checkpoint, a “checkpoint
request” is generated by the global CR manager and is sent to
the local CR managers which control the local MPI processes.
The local CR managers inform the InfiniBand communication
channel managers which is part of the MPI process. The
InfiniBand communication channel manager then locks down
the all the communication, including drain out and buffer all
in-fly network messages and release the network resources.
After that it gives a callback to the local CR manager to
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indicate that it is safe to take individual checkpoint. The local
CR manager then invokes the CR library to checkpoint the
processes. Our implementation uses Berkley Lab’s Checkpoint
Restart package (BLCR [18]) as the the CR library. Once
the process state has been locally checkpointed, the local
CR manager informs the InfiniBand communication channel
manager to reactivate the network communication. Similarly,
to restart an MPI job, a “restart request” is sent from the global
CR manager to all local CR managers. Upon receiving the
request, the local CR managers launch the local MPI process
through BLCR and reactivates the network by notifying the
InfiniBand communication manager. As it can be seen, apart of
saving local process state, a very important step of coordinated
checkpoint is to handle the communication channels to make
sure all individual checkpoints are taken at a consistent point.

Similar to many other work on coordinated check-
point/restart, including [6], our earlier solution picks aspecific
communication channel (InfiniBand in our case) and assumes
all processes communicate only through this channel. This
is not the case, however, for most state-of-the-art MPI so-
lutions including both MVAPICH [5] and OpenMPI [19]. On
modern multi-core clusters, an efficient MPI implementation
will have at least two communication channels, an intra-
node communication channel, which typically take advantage
of shared memory communication, and an inter-node com-
munication channel over high speed interconnects. Efficient
intra-node communication is not only important for point to
point communication, but can be exploited to design collective
operations in a much more efficient manner [9]. Multiple
communication channels, however, pose more challenges to
handle communication during checkpoint/restart. We describe
these additional design challenges and propose our solution in
the next section.

III. A F RAMEWORK FORCHECKPOINTING

MULTI -CHANNEL MPI

In this section we present a framework for checkpointing
multi-channel MPI library. Our approach is based on the
coordinated checkpoint protocols. In the following, We first
describe several design challenges in addition to checkpoint a
single communication channel MPI, and then we will present
the overall framework.

A. Design Challenges

Although many open-source MPI library including [6],
[15] provide checkpoint/restart support through coordinated
protocols, hardly any of these of have addressed checkpointing
MPI libraries which have multiple communication channels.
To design an efficient checkpoint framework for multi-channel
MPI, we need to achieve the following objectives:

• Abstraction: as we have described in Section II, sus-
pending and resuming communication is one of the key
aspects for coordinated checkpointing. In the case of
multiple communication channels, every communication
channel needs to be suspended and resumed separately.
As a result, not only the code becomes extremely complex

due to handling different channels, it also becomes hard
to extend the checkpoint functionality if new commu-
nication channels are designed. Our aim is to design
a clear abstraction between the general suspend/resume
functionality, which takes care of the coordination among
peer processes, and the channel specific plug-ins, which
provides the necessary functionality to checkpoint/restart
individual communication channel.

• Process re-distribution: checkpoint/restart protocols
achieve fault tolerance by checkpointing the computing
processes and restarting them on new computing nodes if
the old ones are malfunctioned. In this case, it is possible
that the process topology will be changed after restart.
For example, processes located on the same nodes can
be restarted on different ones. Processes communicate
through shared memory, in this case, may have to use
network after restart. Such process re-allocation poses
additional challenges to checkpointing multi-channel
MPI, whereas these design complexities may not be
there if only one communication channel is used.

• Collective Operations: Collective operations optimized
for multiple communication channel may also complicate
the designs. For example, many collective operations
can benefit from the more efficient intra-node shared
memory communication [9] to minimize the inter-node
traffic through network, achieving better performance.
With these designs, however, collective operations are
not simply built on top of point to point communication,
but requires special coordination among peer processes.
Thus, while many existing solutions can ignore additional
complexities on collective operations, a multi-channel en-
abled design must carefully address such co-ordinations.

B. Design Overview

Our framework is illustrated in Figure 3.

Fig. 3. Checkpoint/restart framework for multi-channel MPI

As it can be seen in the figure, we design a CR layer to
perform all the general checkpoint/restart functionality. This
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CR layer will take care of the coordination with other parts of
the system. For example, the CR layer is responsible to receive
the checkpoint request from the job manager, notify each
communication layer to suspend/resume the traffic, decide on
a consistent time to issue local checkpoint operations using CR
library (BLCR in our case). Many of these functionalities have
been discussed in the Section II. Additionally, the CR layer
will keep track of the process location. For example, when two
processes which are originally on the same node are restarted
on different nodes, it is able to detect such topology changes
and switch the communication channel from intra-node shared
memory to network, and vice versa. To ensure in-order mes-
sage delivery while switching the communication channels,the
CR layer keeps two important queues, the outstanding send
queue and temporarily receive queue. Once the checkpoint
stage starts, all later send operations will be queued in the
outstanding send queue. Meanwhile, all the channels drain
in-fly messages and deliver them to the temporarily receive
queue. In this way, no message is kept in any communication
channel during the checkpoint. Thus, it is safe to switch
communication channel after restart.

Every channel that needs to be suspended during the check-
point stage will implement such functionality and provide
suspend/resume hooks to the CR layer through a standard
interface. The CR layer will simply use this interface when
necessary without having to worry about design details specific
to the channel. In the next section, we will address some
detailed design issues to suspend and resume communication
traffic.

IV. D ETAILED DESIGN ISSUES

In this section, we will look at the detailed design of the
checkpoint/restart solution for point-to-point and collective
communication using the checkpoint/restart framework.

A. Point-to-point Communication

The new checkpoint/restart framework provides a method
that enables every communication channel to register callback
functions with the framework. The callback functions of each
of the communication channels are invoked by the framework
during the checkpointing process. The framework allows each
channel to register two callback functions for the purpose of
providing the ability to checkpoint point-to-point communi-
cation. The two functions, namely the “Suspend callback”
function and the “Resume callback” function are discussed
in greater detail in the following sections.

1) Suspend Callback function: The suspend callback func-
tion is invoked by the checkpoint/restart framework during
checkpointing before the CR Library actually takes the check-
point. It is the responsibility of this function to prepare the
channel before a checkpoint. Since coordinated checkpointing
is used, the suspend routine should ensure that no further sends
are issued to this channel and that there are no messages in
flight. This will ensure that all the processes are in a consistent
state.

For the shared memory channel, the suspend callback func-
tion can be implemented to work in two phases.

Initial Synchronization Phase: In the initial synchroniza-
tion phase, the callback function acquires a mutex that the
main thread tries to acquire before every send operation. Once
the callback function acquires the mutex, the main thread
will not be able to issue any sends. Hence, the main thread
is forced to wait on the mutex before proceeding with any
communication.

Pre-checkpoint Coordination Phase: In the pre-
checkpoint coordination phase, a “Suspend” control message
is sent on the shared memory communication channel. Since
the main thread can no longer perform sends and since
the shared memory channel guarantees in order delivery of
packets, reception of the Suspend message indicates that there
are no pending messages on the communication channel.
Hence, the channel can be marked as Suspended. Once all the
processes have marked all their channels as suspended, the
shared memory region that was allocated for the send/receive
buffers are released.

At this point, the CR library can save the state of the process
to a file on the disk in the Local checkpointing Phase.

2) Resume Callback function: The resume callback func-
tion is invoked by the checkpoint/restart framework during
checkpointing after the CR library has taken the checkpoint,
as well as during restart after the CR library has restored the
previously checkpointed process from disk.

For the shared memory channel, the resume callback func-
tion re-initializes the shared memory region and other nec-
essary data structures that were destroyed by the suspend
callback function. Once the data structures are restored, a
“Resume” control message is then sent on the Shared Memory
Channels to mark them as Active. The callback function then
releases the mutex that the suspend callback function had
acquired. Once the mutex is released, the main thread that
was waiting on it now acquires the mutex.

At this point, the state of the system is identical to what
it was before the Suspend callback was invoked. Hence,
communication on all the channels proceed normally.

B. Challenges While Checkpointing Collective Operations

In the previous sections, we have seen how the check-
point/restart framework handles point-to-point communication.
The same designs are not sufficient to gaurantee correctness
of collective communication for the following reasons:

• Collective operations are invoked by multiple processes.
Hence, group synchronization methods are required for
coordination.

• Process skews can easily result in deadlocks as the
checkpoint request may arrive at different phases across
multiple processes making locking/unlocking complex to
handle.

The rest of the section deals with the solution to these issues.
Synchronization and Consistency Mechanisms:It is im-

perative to guarantee consistency across all the processes
taking part in the collective operation. This may not alwaysbe
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straighforward for collectives. For example, a typical shared
memory collective operation consists of the following three
phases:

• Intra-node communication via shared memory
• Inter-node communication via network point-to-point

channels, and
• Intra-node communication for the final part of the algo-

rithm
The point-to-point scheme described in the previous section

is sufficient to ensure consistency of the processes when
a checkpoint request arrives during the inter-node commu-
nication phase of all the processes. However, a different
protocol is necessary when the request arrives during the intra-
node communication phase of one of the processes. This is
described in the following section.

Avoiding Deadlocks Unlike the point-to-point scheme,
where the checkpoint/restart framework just invokes the call-
backs registered by each channel, the collectives explicitly
have to notify the framework when it is all right to pro-
ceed with the checkpointing, after the processes have been
synchronized. Due to this two way communication between
the collectives and the framework, there are posibilities of
deadlock. Hence, special care has to be taken while designing
the locking mechanism to avoid such scenarios.

The following section discusses the framework for check-
pointing collective operations and the specifics of the imple-
mentation for the shared memory collectives.

C. Checkpointing Collective Operations

Figure 4 shows the overall operation of the collectives
checkpointing. Due to the nature of the collective opera-
tions, the semantics of the callback functions necessary to
implement checkpoint/restart are significantly differentfrom
those required for point-to-point communication. To be able
to checkpoint collective operations, two callback functions,
namely the “Request to Checkpoint callback” and the “Check-
point Complete callback” are introduced. These functions are
discussed in detail in the following sections.

1) Request to Checkpoint Callback function: The Request
to Checkpoint callback function (RTC) is invoked by the local
CR manager when a checkpoint is requested to be taken.
This call notifies the collectives about the checkpoint request
and returns immediately. Once the call returns, the local CR
manager waits for a notification from the collectives indicating
that they are ready to be checkpointed.

As discussed in the previous section, a different synchro-
nization protocol is needed during the intra-node communica-
tion phase. We use the following protocol in our implementa-
tion.

The processes involved in the intra-node operation stop their
communication and atomically increment a special field in the
shared memory region. Each process continues to examine
this field after incrementing it. Once the count becomes equal
to the number of processes on local node, it indicates that
all processes have stopped collective communication. At this
point, all the local processes are in a consistent state. A leader

Fig. 4. Checkpointing protocol for Shared Memory Collectives

is now chosen to copy the contents of the shared memory
region to a local buffer and tear down the collectives’ shared
memory region. Once this is done, all the processes on the
node call CTC and wait for checkpoint completion.

The notification is acheived thorough the “Clear to Check-
point” function (CTC) whose pointer is passed down to the
collectives during the RTC Call. The collective calls CTC
when it is ready to be checkpointed. The checkpoint/restart
framework proceeds with the checkpointing after receivingthe
CTC.

The checkpoint/restart framework now invokes the CR
library to take a checkpoint.

2) Checkpoint Complete Callback function: Once the
checkpoint has been taken, or when the processes have been
restarted from a previously taken checkpoint, the framework
invokes the Checkpoint Complete callback function (CC) to
indicate that the checkpoint/restart operation has completed.

When CC is invoked, processes in a collective operation
that were waiting for the checkpoint to complete are activated.
The leader process initializes the collectives’ shared memory
region and restores the data structures that it had saved in its
local buffer. Once the leader completes creating the shared
memory region, all processes return from the callback.

At this point, the state of the system is identical to what it
was before RTC was invoked. Hence, communication on all
the channels proceed normally.

V. PERFORMANCEEVALUATION

In this section, we evaluate and analyze the performance of
the proposed design using point-to-point, collective, andappli-
cation level benchmarks. In Sections V-A, V-B, and V-C, the
experiments were conducted without taking the checkpoints
to examine the basic performance of the proposed design.
Then we show checkpointing overhead and time breakdown in
Section V-D, and process re-distribution effect in SectionV-E.

Testbed: We use an Intel Clovertown cluster. Each node is
equipped with dual quad-core Xeon processor, i.e. 8 cores per
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node, running at 2.0GHz. Each node has 4GB main memory.
The nodes are connected by Mellanox InfiniBand DDR cards.
The operating system is Linux 2.6.18 and the BLCR library
used is version 0.6.5. The file system we use is ext3 on top
of a local SATA disk.

In this section we will use the following acronyms for
different settings:

• NOCR - No Checkpoint/Restart support
• CR-MC - Checkpoint/Restart support with Multi-Channel

enabled (design proposed in this paper)
• CR-NET - Checkpoint/Restart support with only the

Network channel enabled (design proposed in [6])
It is to be noted that the shared memory channel is available

in both NOCR and CR-MC cases (both point-to-point and
collectives), but not available in CR-NET.

A. Impact on Latency and Bandwidth

In this section, we examine the impact of the proposed CR-
MC design on MPI intra-node latency and bandwidth. The
results are shown in Figure 5.

From Figure 5(a) we can see that compared with CR-NET,
CR-MC reduces latency significantly. The 4-byte message
latency is reduced from 4.55us to 0.76us. This is because
memory copy is much faster than network loopback. Similarly,
Figure 5(b) shows that CR-MC increases bandwidth from
1510MB/s to 1954MB/s compared with CR-NET which is
30% improvement.

Comparing with NOCR, we observe that CR-MC adds
little overhead, only around 0.1us on latency and almost no
overhead on bandwidth. The overhead comes from acquiring
and releasing CR locks. This indicates that with CR-MC, users
can always run applications with CR support on and decide
whether to take checkpoints at run time. If the applicationsdo
not take checkpoints, then the performance is not affected.
On the other hand, if using CR-NET, the users need to
make a decision whether to use CR support at compile time,
because with CR-NET the performance may degrade even if
no checkpoints are actually taken.
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B. Impact on Collective Operations

In this section, we use IMB [20] to evaluate the performance
impact of CR-MC on collective operations. The results of
MPI Allgather and MPIAllreduce on 8 cores and 64 cores
are shown in Figures 6 and 7, respectively. It is to be noted
that MPI Allgather in MVAPICH2 is implemented on top
of point-to-point communication. NOCR and CR-MC can
exploit the faster intra-node point-to-point communication
for MPI Allgather while CR-NET cannot. MPIAllreduce in
MVAPICH2 uses the special shared memory aware algorithm
which has optimized performance and is available in NOCR
and CR-MC, but not in CR-NET.

From Figure 6 we see that on a single node, CR-MC
improves MPI Allgather latency over CR-NET by 85% and
37% for 16 byte and 4KB messages, respectively. The corre-
sponding improvements for MPIAllreduce are 90% and 37%.
On 64 cores, CR-MC improves MPIAllgather latency by 50%
and 16% for 16 byte and 4KB messages, respectively, and
improves MPI Allreduce latency by 52% and 29% (Figure 7).
In all cases, CR-MC and NOCR perform comparably.
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C. Impact on Application Performance

In this section, we evaluate the performance of CR-MC
using application level benchmarks, NAS [21], and compare
with NOCR and CR-NET. The normalized execution time on 8
cores and 64 cores are shown in Figures 8 and 9, respectively.
From the figures we can see the improvements in latency,
bandwidth, and collective operations have been translatedinto
applications. With CR-MC the execution time is reduced by
up to 6% compared with CR-NET, which indicates that users
can have both CR support and high performance at the same
time by using the CR-MC design.
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D. Checkpointing Overhead

In this section, we use HPL [22] to measure the checkpoint-
ing overhead. We run HPL on a single node with 8 processes,
and take 1, 2, 4 checkpoints, respectively in 3 runs. The results
are shown in Figure 10. From the results we see that the
overhead of taking one checkpoint is around 2 seconds, which
is less than 1% compared with the total execution time. The
checkpoint file size is shown in Table I.

TABLE I
HPL CHECKPOINTFILE SIZE

Number of Checkpoints File Size (MB)

1 1435
2 2897
4 5823

The checkpointing time breakdown is shown in Figure 11.
There are two parts involved, coordination time and file writing
time. We can see that our implementation of coordination
is very efficient that it only takes a small percentage in
the total checkpointing time. The file writing time is the
dominant factor. As the number of checkpoints increases, the
checkpointing time increases linearly.
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The file writing time can be reduced by using good parallel
file systems (such as Lustre, PVFS2, etc) and high perfor-
mance storage nodes. Since the focus of this paper is not to
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optimize the file writing time with parallel file systems, these
results are not included here.

E. Process Re-distribution

In this section, we present the results of process re-
distribution. When faults occur and applications need to restart
from the previous checkpoint, the processes may need to be re-
distributed, e.g. processes previously on different nodesmay
be re-distributed on the same node or the other way around.
This is because the original distribution may not be available
after restart. In this set of experiments, we run MPI latency
and bandwidth tests with two processes on two different nodes
initially, and after 5 iterations we take a checkpoint, and restart
the processes on the same node. So starting from the 6th
iteration, the processes get re-distributed. The message size is
2KB. The results are shown in Figure 12. From the results we
see that our design allows process re-distribution and utilizes
different channels dynamically.

VI. RELATED WORK

Fault tolerance issues in MPI programs become a very
popular topic recently. There are many research efforts in
this area. Some of these efforts are aimed at tolerate network
faults, including LA-MPI [2], which enables data reliability
checking and uses multiple network devices. Specific to MPI
applications, researchers have proposed multiple schemesto
achieve fault tolerance at application level, including the work
from FT-MPI [23] and from Schulz et al. [11]. Besides these
effort, a lot of work has been proposed for library based
application transparent checkpoint. For example, the MPICH-
V team [3] has developed and/or evaluated several roll-back
recovery protocols. Their work include both uncoordinated
checkpointing with message-logging protocols [16], [24],[25],
and coordinated checkpointing protocols, such as Vcl [26],
which is based on Chandy-Lamport Algorithm [27], and
Pcl [28] based on the blocking coordinated checkpointing
protocol. BLCR is a library that provides single process-
level checkpoint/restart [29]. Many MPI libraries build their
checkpoint functionality on BLCR, including LAM/MPI [15]
and the more recent job pause service [30], which is based
on LAM/MPI’s checkpointing framework and achieve very
efficient failure recovery through process migration. In our
earlier work [6], we have proposed a framework to checkpoint
MPI programs over InfiniBand using a blocking coordinated
checkpointing protocol and BLCR.

Most of the work described above assume single commu-
nication channel. They almost exclusively work on TCP/IP
based MPI except our earlier work is on InfiniBand. In
reality, however, modern clusters are deployed with multi-core
computing nodes connected through high speed interconnects
like InfiniBand. Thus, it is important to design a checkpoint
framework that is able to handle multiple communication
channels including both intra- and inter-node communication.
Our work proposed in this paper exactly addresses this needs
by proposing the multi-channel enabled checkpoint/restart. To
the best of our knowledge, this is the first MPI that provides

the checkpoint/restart functionality on multi-core InfiniBand
clusters.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have designed an efficient framework that
is able to checkpoint multiple channels in MPI and provides
high performance. In addition, our design allows flexible
process re-distribution after restart, i.e. processes previously
on the same node can be restarted on different nodes or the
other way around, and utilizes different channels dynamically.
It can also be easily extended when new channels are added.
We have integrated the design into MVAPICH2, and evaluated
the performance on an Intel Clovertown multi-core cluster
connected by InfiniBand. From the experimental results, we
see that our design has little overhead compared with the native
MVAPICH2 performance. Compared with the previous work,
our design reduces intra-node latency from 4.55us to 0.76us,
and increases peak bandwidth from 1510MB/s to 1954MB/s.
It improves the performance of MPI collective operations by
up to 90%, and application performance by up to 6%. Further,
our design is efficient in taking the checkpoint.

In the future, we plan to study on efficient checkpoint/restart
for MPI one-sided operations. We also would like to carry out
a comprehensive study on the performance and scalability of
our design on large-scale clusters with real world applications
and parallel file systems such as Lustre.

Software Distribution: The design proposed in this paper
will be available for downloading in upcoming MVAPICH2
releases.
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