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Abstract

Large scale compute clusters continue to grow to ever-
increasing proportions. However, as clusters and applica-
tions continue to grow, the Mean Time Between Failures
(MTBF) has reduced from days to hours. As a result,
fault tolerance within the cluster has become imperative.

MPI, the de-facto standard for parallel programming,
is widely used on such large clusters. Many MPI imple-
mentations use Checkpoint/Restart schemes using the
Berkeley Lab Checkpoint Restart (BLCR) Library to
achieve some level of fault tolerance. However, the per-
formance of the Checkpoint/Restart mechanism does not
scale well with increasing job size. As a result, the de-
ployment of Checkpoint/Restart mechanisms for large
scale parallel applications is compromised.

In our previous work, we proposed a technique to ag-
gregate certain categories of checkpoint writes to reduce
the checkpointing overhead. However, an application
still experiences slow checkpoint writing because it is
blocked waiting for its checkpoint file writes to complete.
In this paper, we propose the Write Aggregation with
Dynamic Buffer and Interleaving scheme to reduce the
overhead related to checkpoint creation. By aggregat-
ing all checkpoint writes into a dynamic buffer pool and
overlapping the application progress with the file writes,
our design demonstrates a speedup of 2.62 times in terms
of checkpoint creation time when compared to the orig-
inal BLCR design. Our scheme also reduces the impact
of checkpointing on the application execution time from
20% to 6% when 3 checkpoints are taken during an ap-
plication run.

∗This research is supported in part by DOE grants DE-FC02-
06ER25755 and DE-FC02-06ER25749, NSF Grants CNS-0403342
and CCF-0702675; grants from Intel, Sun MicroSystems, Cisco
Systems, and Linux Networks; and equipment donations from In-
tel, AMD, Apple, IBM, Microway, PathScale, SilverStorm, Sun
MicroSystems.

1 Introduction

The trend in the High Performance Computing com-
munity over the past couple of years has been to use
a large number of distributed processing elements, con-
nected together using a high performance network inter-
connect. With this exponential increase in the number
of components in the cluster, the Mean Time Between
Failures (MTBF) has reduced from days to a couple of
hours[12, 10]. As a result, it has become vital for such
clusters to be equipped with fault tolerance capabilities.

MPI is the de facto standard for parallel program-
ming. Many scientific applications written in MPI take
days to complete their computation. Given that the
MTBF of modern clusters is smaller than the average
running time of the application, failures are expected
during the lifetime of a large scale application. Many
MPI libraries have builtin checkpointing capabilities that
allow applications to be checkpointed at regular inter-
vals. Checkpointing saves the complete state of the
MPI process to disk so that in the event of a fail-
ure, the process can be restarted from the saved im-
age. Berkeley Lab Checkpoint/Restart software pack-
age (BLCR)[8] is a popular Checkpoint/Restart solution
that is used by many MPI implementations, including
MVAPICH2[1, 17], OpenMPI[11] and LAM/MPI[18].

Although BLCR has the capability to save and re-
store the MPI process’s execution context, most modern
interconnects store a substantial amount of information
pertaining to the communication endpoint on the inter-
connect hardware itself. BLCR cannot access this infor-
mation and so cannot save/restore the communication
endpoint. Additionally, all the processes that are part of
the MPI job must be in a consistent state before they are
checkpointed. As a result, the process of checkpointing
an MPI application usually involves the following phases.

Phase 1: Suspend communication between all pro-
cesses in the parallel application and tear down the com-
munication end points.

Phase 2: Use a checkpoint library to dump the indi-
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vidual process’s memory image to a checkpoint file.
Phase 3: Re-establish connections among the MPI

processes and continue execution.
At phase 2 a process’s context and memory contents

are stored to a file on a reliable storage medium, usually
a local disk or a parallel file system. Hence, the time
spent in phase 2 dominates the time to create a check-
point. To understand the process of checkpointing, we
profiled the checkpoint writing for several applications
from the NAS Parallel Benchmark suite[22] using BLCR
and MVAPICH2[1]. The profilings provide insights into
the characteristics of checkpoint writing.

Our previous work [23] explored the option of ag-
gregating small and medium writes to a process’s local
buffer to reduce the checkpoint overhead. However, an
application still experiences slow checkpoint writing be-
cause it is blocked waiting for its large checkpoint writes
to complete. On multicore systems, this constraint be-
comes more severe due to many processes concurrently
writing to the VFS layer.

In order to accelerate checkpointing, one has to de-
couple checkpoint writing from the slow file IO. However
the file IO overhead is fixed for given amount of data and
file system capabilities. The choice we make is to hide
the checkpoint IO overhead from the application. Mul-
tiple application processes interleave their operations to
copy their process image to a shared buffer pool, while
a set of dedicated IO threads take care of writing the
buffered data to disk files. In order to exploit the poten-
tials of interleaving checkpoint data into the buffer pool
and overlapping file IO with application progress, several
questions must be addressed.

• How to construct the buffer pool to achieve both
efficient data copy and low memory footprint?

• How should application processes access the buffer
pool in order to improve data copy efficiency?

• What’s the strategy for the IO threads to perform
file write to improve memory utilization efficiency?

In this paper, we propose a Write Aggregation with Dy-
namic Buffer and Interleaving strategy to reduce the
overhead related to checkpoint creation. By aggregat-
ing all checkpoint writes into a dynamic buffer pool and
overlapping the application progress with the file writes,
our design is able to accelerate checkpoint creation by
2.62 times compared to original BLCR. In terms of ap-
plication execution time, our new design brings down the
overhead from 20% to 6% when 3 checkpoints are taken
during the lifetime of the application.

The rest of paper is organized as follows. In section
2, we describe the background of checkpoint and restart.
In section 3, we analyze the profiling information col-
lected for the NAS Parallel Benchmark to characterize
checkpoint writing. In section 4, we present our detailed
designs and discuss our design choices. In section 5, we

conduct experiments evaluating our designs and present
results that indicate improvement. In section 6, we dis-
cuss the related work. Finally we provide our conclusion
and state the direction of the research we intend to con-
duct in future.

2 Background

Checkpointing is the process of saving the state of a pro-
gram, usually to stable storage, at a given point of time
during its execution, so that the program may be recon-
structed at a later point in time. The process of recon-
structing the program from a checkpoint is referred to as
Restart.

2.1 Applications of Checkpoint/Restart

Checkpoint/Restart has many application in the context
of High Performance Computing[9].

Multiuser Scheduling: HPC Clusters usually em-
ploy a job scheduler which enables multiple users to share
the cluster’s resources. Based on the scheduling policy
used by the scheduler, there may be a necessity to pre-
empt a long running job to run a shorter job that arrived
much later. Checkpoint/Restart can be used to achieve
this preemption.

Application Migration: Well designed Check-
point/Restart schemes allow processes to be check-
pointed on one node and be restarted on another. This
feature can be exploited to achieve process migration on
computing clusters.

Application Backup: Checkpointing provides the
backbone for fault tolerance through rollback recovery.
An application maybe checkpointed periodically so that
only the computation performed after the most recent
checkpoint is lost in the event of a failure. The rest
of the discussion focuses on this application of Check-
point/Restart.

2.2 Checkpoint/Restart in MVAPICH2

MVAPICH2 is a MPI library with native support for In-
finiBand and 10GigE/iWARP [1]. It supports applica-
tion initiated and system initiated checkpointing [17, 16]
using the BLCR Library for Checkpoint/Restart [14].
Checkpointing in MVAPICH2 involves the following 3
steps.
• Draining the communication channels of all pend-

ing messages and tearing down the communication
endpoints on each process.

• Using the BLCR Library to independently request
the checkpoint of every process that is part of the
MPI job. The checkpoint is taken by BLCR in a
blocking manner with the data being written to one
file per process.
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• Re-establishing the communication endpoints on ev-
ery process.

The application continues its execution after the
checkpoint is taken.

3 Profiling Checkpoint Creation

To understand the characteristics of checkpoint file IO,
we run NAS parallel benchmarks LU, BT and SP using
the MVAPICH2 C/R framework with BLCR modified to
provide profiling information. We choose Class C with
64 processes. The applications are run on a 64 node
cluster. Each node has 8 processor cores on 2 Intel Xeon
2.33 GHz Quad-core CPUs. Each application runs on 8
nodes with one process per core. An application process
writes its checkpoint data to a separate checkpoint file
on a local ext3 file system.

First, we measure the execution time of the application
without checkpoints and with three checkpoints evenly
distributed during the lifetime of the application. The
results are displayed in Figure 1(a). The numbers above
the bars indicate the overhead in execution time caused
by the checkpoints. For example, BT.C.64 takes 169.9s
to complete without any checkpoints. With the check-
points, it takes 205.19s. This translates to an overhead
of 20.77%. For larger scale application with thousands of
processes, we expect the checkpoint overhead to be more
adverse. Our observation is consistent with the results
reported in [12].

Figure 1(b) decomposes the time required for one
checkpoint into phases 1, 2 and 3. In phase 1, commu-
nication is suspended and the end points are torn down.
The time taken for phase 1 to complete is negligible com-
pared to the other two phases. In phase 2, the process
image is written to a checkpoint file, which is the major
portion of the checkpoint time. In phase 3, communica-
tion channels are reestablished among all processes. The
cost of phase 3 is relatively constant for a given number
of processes. Table 1 indicates some basic information
pertaining to the number of VFS writes and the size of
the checkpoint data.

The information above indicates that phase 2 domi-
nates the checkpoint overhead. In this phase, BLCR per-
forms a lot of VFS writes to dump the process image to
disk. We further profiled phase 2 of the checkpoint pro-
cess and categorized all VFS writes into different classes
based on the size of data written in each write. Figure
2 depicts this information. The first bar indicates the
percentage of the total number of VFS writes that fall in
the indicated range. The second bar indicates the per-
centage of the total data amount in the indicated range.
The third bar indicates the percentage of the total time
spent in doing the VFS write in the indicated range. We
can see some interesting trend in this figure.

(a) Decomposition of Checkpoint Time
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Figure 1: NAS Parallel Benchmark Checkpoint

Table 1: Basic Checkpoint Information
LU.C.64 BT.C.64 SP.C.64

Checkpoint file size(MB)
per process

23 40.0 39.5

Total data size(MB) per
node

184 320.0 316.0

Number of VFS write per
process

975 1057 1156

Total VFS write per node 7800 8456 9248

Firstly, a large portion of the VFS writes write very
small amounts of data. For example in LU.C.64, more
than 50% of VFS writes write less than 64 bytes. Such
writes account for less than 0.5% out of the total check-
point data. These small writes are initiated by BLCR
to save the process’s open file table, CPU register set,
timers, process/group/session id, signal handler table,
metadata of virtual memory regions and other data
structures that are small in size. Since these writes are
buffered by VFS layer, the time spent in this category is
less than 0.2% of total time cost.

Secondly, there are a lot of writes in the range of 4KB
to 64KB. These medium writes correspond to consecu-
tive pages in a process’s virtual memory area. For LU,
about 37% of the VFS writes fall within the range of 4KB
to 64KB. These account for about 12% of total check-
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point data. However, these writes account for about 50%
of total write time. BT and SP also show a similar trend.

Thirdly, we find a few large writes that correspond to
large blocks of consecutive pages in the process’s VM
area. In LU, for example, only 1% of the VFS writes are
larger than 512 KB. However, 86% of checkpoint data is
dumped by these large writes. They contribute to about
35% of the total checkpoint time.
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(b) BT.C.64
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Figure 2: Profilings of Time Spent in Phase 2

In our previous work [23], we made initial attempts to
aggregate small and medium VFS writes to a node’s lo-
cal buffer to reduce checkpoint overhead. By coalescing
these writes and performing large VFS writes directly to
the checkpoint file, we demonstrated that the checkpoint
time could be significantly reduced. However, the previ-

ous work has a few drawbacks. Firstly, large VFS writes
are directly performed to disk files. Since these account
for the majority of data, a large part of the checkpoint
time is wasted in waiting for the VFS layer to complete
the writes. In a multicore system, this problem becomes
more severe due to many processes concurrently writ-
ing to the VFS layer. Secondly, medium writes are ag-
gregated to a buffer shared by all application processes.
Although this marginally reduces the memory footprint,
each write incurs additional overhead to synchronize ac-
cess to the shared buffer.

In the following section, we propose new designs that
can achieve better performances by overcoming these
limitations.

4 Reduce Checkpoint Time by

Write-Aggregation and Inter-
leaving

In this section we present two improved design strate-
gies to accelerate checkpointing parallel applications on
multicore systems.

4.1 Write Aggregation (WAG)

Through the profiling data collected in section 3, we find
that medium VFS writes constitute a significant portion
of checkpoint write time. We also find that a large por-
tion of VFS writes are of very small size. Therefore we
propose a basic Write Aggregation(WAG) design to co-
alesce all small and medium writes to a process-specific
buffer, which is illustrated by figure 3(a).

This strategy differs from our previous work [23] in
two important places. (1) In [23] all processes in a node
send their medium writes to a shared buffer. This causes
additional synchronization overhead for each write. In
WAG, each process copies its medium writes to its own
buffer. Therefore no inter-process synchronization is re-
quired. (2) In WAG, small writes are also absorbed into
the same process-specific buffer to achieve a simplified
buffer design. As a comparison, [23] allocates a separate
local buffer for each process to aggregate small writes,
which complicates the buffer management.

4.1.1 Design Strategy

Figure 3(a) illustrates our Write Aggregation (WAG)
design. A parallel job has many application processes
(APs) running on one node. When a checkpoint of a AP
is requested, a buffer is allocated by BLCR and the VM
area of the AP is copied to the allocated buffer, based
on the following policy.

(1) If the write size is smaller than some threshold, it is
copied to the local buffer till the buffer is filled. When the
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(a) Write Aggregation (WAG) Design

Data sizeProcess Rank Original Offset Data

(b) Format of a Chunk

Figure 3: Node-level Write Aggregation Design

buffer is filled, it is written to a separate file on disk. The
procedure is repeated as long as there is data available.
Before the copy can happen, a header is prepended to
the data. The structure of the header is shown in Figure
3(b). The header records the rank of the process, the
size of data and the offset within the checkpoint file. The
“original offset” is used to reconstruct the checkpoint file
from the individual file fragments.

(2) If the data is greater than or equal to the thresh-
old, it will not be aggregated. It will instead be directly
written to a file. At the same time, a header will be
prepended to this data to record the location of this
chunk within the checkpoint file. This is again neces-
sary to construct the checkpoint file.

4.1.2 Design Choices

The choice of the threshold plays an important role in
the Write Aggregation design. It determines which VFS
writes are copied to the local buffer, and which ones are
directly written to disk. It also decides the amount of
data that will be coalesced. In section 5, we evaluate
WAG design performance for different thresholds.

4.1.3 Restart with WAG

The restart process of our design follows the BLCR
framework. Since we have altered the file organization,
we have to reconstruct the checkpoint file to a format
that can be interpreted by BLCR. We have designed
an offline tool to construct checkpoint files by parsing
the headers in the data files created by WAG. Once the
checkpoint file is rebuilt for each process, the parallel job
can be restarted from the checkpoint files.

4.2 Write Aggregation with Dynamic
Buffer and Interleaving (WAG-DBI)

Although Write Aggregation effectively reduces the
checkpointing overhead for small and medium writes, our

previous design in [23] still shows a large delay in writ-
ing the checkpoint. Further investigation reveals that an
AP spends a lot of time waiting for large VFS writes
to complete before it can proceed to handle next chunk
of data. Moreover, the wait time is worse for multicore
systems where a lot of the APs on a same node, compete
for IO. For a given amount of data, traditional check-
point writing semantics that serialize VFS writes cannot
do well.

To speed up checkpoint creation, we have to decouple
checkpoint progress and the slow file IO. We propose to
aggressively use the residual local memory to buffer all
checkpoint writes. While an AP proceeds to buffer all
checkpoint data in local memory, a set of IO threads
write the buffered data to disk. All APs interleave their
data copy into the shared buffer pool. By overlapping
the file writing with checkpoint data copy, we expect
a significant reduction in checkpoint write time at the
cost of additional memory usage. On the other hand, a
recent study [2] suggests that even large scale parallel
jobs seldom use all available local memory. Therefore we
feel it is reasonable to allocate part of the available local
memory to the buffer pool to accommodate checkpoint
data writing.
4.2.1 Design Strategy

Figure 4 illustrates our Write Aggregation with Dy-
namic Buffer and Interleaving (WAG-DBI) design. The
most prominent difference of this design from the previ-
ous one is the use of a buffer pool that is shared by all
processes on the node. When a checkpoint is requested,
certain amount of memory is reserved for the buffer pool.
When a process needs to write its checkpoint data, it first
grabs a free chunk of buffer from the pool. All its data is
copied to this chunk of buffer. If the chunk is filled, the
process returns it to buffer pool, and requests for a new
free chunk from the pool. This process is repeated by all
APs till they finish writing all their checkpoint data.

Figure 4: Write Aggregation with Dynamic Buffer and
Interleaving (WAG-DBI)

A set of IO threads constantly monitor the usage of

5



the buffer pool. Once a free chunk is filled with data and
returned to the buffer pool, an IO thread is activated to
write this chunk to a separate file. The rank information
and the offset of the data is encoded within the file. This
information is used to rebuild the original checkpoint
files. After the file write is finished, the IO thread returns
this chunk to the buffer pool as a free chunk.

4.2.2 Overlapping Between Application Pro-

cesses and IO Threads

The benefit of WAG-DBI comes from its ability to hide
the checkpoint write delay from the application. This is
illustrated in Figure 5. At time t1, a checkpoint is re-
quested. All the APs enter phase 1 to suspend commu-
nications. They then enter phase 2 to store their process
images using WAG-DBI. In this phase an AP repeatedly
grabs free chunks from the buffer pool, copies data to
the buffer chunk, and returns full chunks to the buffer
pool. As full chunks are returned to pool, IO threads are
woken up to write these chunks to disk. When an AP
finishes copying its checkpoint data, it enters phase 3 to
reestablish the communication channels with other pro-
cesses. At some time t2, all APs return from phase 3. At
this point of time, the parallel job resumes its computa-
tion. From an application’s point of view, the “perceived
checkpoint time” is t2−t1. However, the checkpoint data
is not completely written to disk till time t3. Hence, the
“actual checkpoint time” is t3−t1. The checkpoint delay
experienced by an application is only t2 − t1.

Figure 5: How the APs and IO Threads Overlap

WAG-DBI effectively relaxes the file IO semantics. In-
stead of waiting for the data to be written to stable stor-
age, a process returns from checkpoint writing once it has
copied all its data to the buffer pool. In doing so we risk
the possibility to lose a checkpoint if a failure happens

during the period t2 to t3. In situations where high data
reliability is desired, we also provide an interface for an
application process to poll the IO threads for the com-
pletion of all file writes. In the next section we measure
the overlapping time t3− t2 for different applications.

4.2.3 Design Choices

Several parameters play important roles in WAG-DBI
design.

1. Buffer pool size. This parameter determines the de-
gree of overlap between APs and IO threads. Large
buffer pools provide higher opportunities to overlap,
since more data can be held in the buffer pools. We
measure the impact of this parameter in checkpoint
creation in next section.

2. Chunk size. For a given size of the buffer pool, the
chunk size determines the number of chunks in the
buffer pool, and therefore impacts the waiting time
of an AP to grab a free chunk. We intend to study
the effect of this parameter in our future work.

5 Experimental Results

We have implemented WAG and WAG-DBI designs
into BLCR-0.8.0. We have also integrated the modi-
fied BLCR into MVAPICH2 1.2 [1] checkpoint/restart
framework. In this section, we conduct various experi-
ments to evaluate the performance of our design. A 64
nodes RedHat Enterprise Linux 5 cluster is used in the
evaluation. Each node has 8 processor cores on 2 Intel
Xeon 2.33 GHz Quad-core CPUs. All our experiments
are based on MVAPICH2 1.2 as the MPI library with
modified BLCR 0.8.0. In all the experiments conducted,
the checkpoint files are written to the local ext3 file sys-
tem. However our design is generic and can be applied
to any file system.

5.1 Performance of WAG

In this section we measure the checkpointing perfor-
mance of the WAG scheme using the LU and BT applica-
tions from the NAS Parallel Benchmark suite 3.2.1 [22].
Each application is evaluated with class C and 64 pro-
cesses. Each application process runs on a separate core,
so 8 nodes(8 cores per node) are used in this experiment.

Figure 6(a) compares the time to make one checkpoint
at different aggregation thresholds. The checkpoint time
has been categorized into 3 phases as described in sec-
tion 1. “Phase 1” and “Phase 3” are the time spent by
the MPI library to tear down and reestablish the com-
munication end points. “Phase 2” is the time spent by
MPI processes within the BLCR library to take a lo-
cal checkpoint. “Original” refers to the current BLCR
design without any optimization. The rest of the bars
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in the figure refer to the WAG design suggested in this
work. The numbers below these bars indicate the value
of the aggregation threshold.

From Figure 6(a), it can be seen that WAG can con-
sistently reduce the checkpoint time. Furthermore, it
is observed that the checkpoint time decreases with in-
creasing values of aggregation threshold. In the exam-
ple of LU.C.64, a threshold value of 16 KB reduces the
checkpoint time by 10.18%. Larger threshold values 64
KB, 256 KB and 512 KB reduces checkpoint time by
14.84%, 33.41% and 35.20%, respectively. For BT.C.64,
the corresponding numbers are 9.8%,12.30%, 18.21% and
32.75%. This is due to the fact that more writes are co-
alesced for larger thresholds.

We have also measured the overall application exe-
cution time, which is depicted in Figure 6(b). “No
Checkpoint” represents the application execution time
in the absence of checkpoints as the baseline for compar-
ison. The rest of the bars indicate the application execu-
tion time with three checkpoints taken at equal intervals.
Original BLCR produces an overhead of 13.86% and
20.77% for LU.C.64 and BT.C.64, respectively. WAG
can reduce the corresponding overheads to 9.21% and
13.64% at threshold value 512 KB.
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Figure 6: Evaluation of WAG

As the aggregation threshold is increased, the mem-

ory required to perform the aggregation also increases as
shown in Table 2. In this experiment with WAG, we
let each process allocate a sufficiently large buffer at the
beginning of a checkpoint, and report the actual amount
of usage at different aggregation threshold. This sim-
plifies the test, but doesn’t affect the characteristics of
our study. This table can be related to Figure 2. Fig-
ure 2 shows the profiling of an process’s virtual memory
size distribution, which is a snapshot of a process’s mem-
ory usage pattern at the moment when a checkpoint is
taken. A process’s virtual memory usage pattern evolves
over time, and Table 2 captures the total memory us-
age at certain threshold values after 3 checkpoints have
completed. We can find that different applications re-
quire varied amount of memory for a given aggregation
threshold, while increasing the threshold value always
enlarges memory usage. On a multicore system where a
lot of processes run on a same node, a large threshold
can quickly exhaust local available memory. This makes
using very large thresholds impractical for large parallel
applications on multicore systems.

Table 2: Memory Usage per Node(in MB)
16 KB 64 KB 256 KB 512 KB

LU.C.64 42.6 50.0 78.2 80

BT.C.64 33.6 44.8 81.2 160.5

5.2 Performance of WAG-DBI

In this section we measure the checkpointing perfor-
mance of the WAG-DBI scheme using 64 processes class
C LU and BT applications from the NAS Parallel Bench-
mark suite. Since each process runs on a separate pro-
cessor core, 8 nodes (8 cores per node) are used.

Figure 7(a) shows the breakdown of the time to do one
checkpoint. The overhead is categorized into 3 phases as
described in section 1. Phase 2 is further divided into
3 parts. “Buffer” denotes the time spent by a process
to acquire/return buffers. “Memcpy” denotes the time
for a process to copy its memory image to the acquired
buffers. “Other” denotes the time spent on the rest of
the operations in phase 2, such as freezing threads, etc.

The values below each bar indicate the buffer pool
sizes. A chunk size of 4 MB is used in each case. From
this figure, it can be seen that WAG-DBI significantly
reduces the time cost to make a checkpoint. WAG-DBI
does a very good job in reducing the time spent in phase
2 to write checkpoint data. Although time spent in phase
1 and phase 3 remains constant, the total checkpoint
time drops significantly as phase 2 dominates the over-
head of a checkpoint. In the test with BT.C.64, origi-
nal BLCR incurs an overhead of 11.2 seconds to make a
checkpoint (indicated in Figure 1(b)), while WAG-DBI
reduces this overhead to only 4.27 seconds when a 64
MB buffer pool is used. This leads to a speedup of 2.62
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times. Faster checkpoint creation can be achieved when
the buffer pool is enlarged, as can be seen in Figure 7(a).

Figure 7(b) reports the overall application execution
time at different buffer pool sizes. Take BT.C.64 for
example. Without any checkpoints the application com-
pletes in 169.9 seconds. When 3 checkpoints are taken at
equal intervals using original BLCR, the execution time
is prolonged to 204.9 seconds, which implies the check-
point overhead to be 20.77%. When WAG-DBI with 64
MB buffer pool is used to take 3 checkpoints, the ap-
plication completes in 181.5 seconds. The overhead is
driven down to only 6.86%.

Using large buffer pool can further reduce check-
point time, but the improvement flattens beyond cer-
tain amount of buffer. This is because the IO threads
and application processes are totally overlapped at cer-
tain buffer pool size. Increasing buffer pool beyond this
level isn’t able to yield additional benefits. This “critical
level” depends on an application’s virtual memory usage
pattern. We plan to investigate along this direction in
future work.
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Figure 7: Evaluation of WAG-DBI

5.3 Comparing WAG and WAG-DBI

In this section we compare the performance of WAG and
WAG-DBI at similar memory usage. We set the aggrega-

tion threshold of WAG to be 256 KB. With this setting,
78.2 MB and 81.2 MB memories are used at each node for
one checkpoint by LU.C.64 and BT.C.64 respectively(as
indicated in Table 2). The buffer pool size is set to be
64 MB for WAG-DBI at each node.

Figure 8(a) shows the breakdown of the time to do one
checkpoint. “Original” refers to the current BLCR de-
sign without any optimization. The numbers above each
bar indicate the speedup achieved by different strategies
compared to original BLCR. For application LU.C.64,
WAG can speed up checkpoint creation by 1.5 times at
memory usage of 78.2 MB. As a comparison, WAG-DBI
yields a speedup of 2.23 times at 64 MB buffer pool.
For BT.C.64, WAG can accelerate checkpointing by 1.22
times at memory usage of 81.2 MB, while WAG-DBI ac-
celerates checkpointing by 2.62 times with 64 MB buffer
pool.

(a) Decomposition of Checkpoint Time

(b) Application Execution Time

Figure 8: Comparing WAG and WAG-DBI

WAG-DBI outperforms WAG in terms of checkpoint
creation time with less amount of memory usage. The
reason behind is that, WAG forces a process to wait for
its large VFS write to complete before handling the next
chunk of data, while WAG-DBI allows a process to pro-
ceed once it has handed over its checkpoint data to the
buffer pool.
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Figure 8(b) compares the application execution time
with different strategies when 3 checkpoints are taken at
equal intervals during the application run. “No Check-
point” represents the execution time without any check-
points. The numbers above each bar represent the over-
head caused by 3 checkpoints with different checkpoint
strategies. We can observe that WAG performs better
than original BLCR. We also observe that WAG-DBI
consistently outperforms WAG. At BT.C.64, WAG re-
duces the overhead in execution time from 20.77% to
15.77%. WAG-DBI can further drive this overhead down
to 6.86%.

5.4 WAG-DBI: Overlapping

WAG-DBI effectively overlaps IO and computation. In
this experiment we measure WAG-DBI’s overlapping
time between IO threads and application processes at
different buffer pool sizes. Figure 5 illustrates how IO
threads are overlapped with application by WAG-DBI.
After copying checkpoint data to the buffer pool, a check-
point is regarded as completed at time t2 when commu-
nication end points are reestablished between all pro-
cesses. But IO threads haven’t finished writing check-
point data to disk files until time t3. The period be-
tween t2 and t3 is overlapping between IO and compu-
tation. Figure 9 reports this time at varied buffer pool
sizes. The legend “N MB” represents the buffer pool
size of N MB. Table 1 indicates that LU.C.64 gener-
ates 184 MB of data per node in one checkpoint, while
BT.C.64 generates 320 MB data per node in one check-
point. Therefore IO threads need longer time to write
BT.C.64’s checkpoint data to disk files, which leads to
a longer overlapping time than LU.C.64. We also find
this overlapping time tends to be shorter for a smaller
buffer pool size. This is because an application process
spends longer time in phase 2 to acquire free buffers at
a smaller buffer pool(as can be seen in Figure 7(a)). IO
threads start writing to files at phase 2. A longer phase
2 hides part of IO time. As a result, the remaining IO
time after phase 2 becomes shorter leading to a shorter
overlapping time.

5.5 WAG-DBI: Restart

In WAG-DBI, an IO thread writes each chunk of buffer
to a separate file. The file name encodes the process id
which generates this data, and the offset of this chunk
in original checkpoint file. We have designed an offline
tool to rebuild checkpoint files from these segments of
checkpoint data. After recovering the checkpoint files, an
application can be restarted using BLCR as usual. Table
3 measures the time cost to rebuild the checkpoint file
for one application process. It also reports the time cost
to restart an application. Take LU.C.64 for example. It
takes 1.59 seconds to rebuild a checkpoint file for one
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Figure 9: IO Threads Overlapping with Application

process of LU.C.64. 9.25 seconds are required to restart
the application LU.C.64. Cost to rebuild a checkpoint
file is 17.19% of the restart cost. However the checkpoint
data is read only at restart after a failure. Therefor the
cost of rebuilding checkpoint files is largely amortized in
the lifespan of an application run.

Table 3: Overhead at Restart (seconds)
Time to rebuild
one checkpoint

Restart time percentage

LU.C.64 1.59 9.25 17.19

BT.C.64 3.18 9.52 33.40

6 Related Work

Checkpointing an application and restarting it from the
last checkpoint is a widely adopted mechanism for serve
fault tolerance. Many works have been done to pro-
vide checkpoint/restart facilities for standalone appli-
cations [13, 8, 24, 15, 5]. Checkpoint/restart mecha-
nisms have been incorporated into MPI libraries such
as LAM/MPI [18], MVAPICH2 C/R [17], MPICH-V [6]
and OpenMPI [11].

The overhead of checkpoint/restart on file IO has been
studied by [12]. Milo etc. [3] propose the use of log-
based file structures at the server side to serialize all file
writing requests for checkpoint. This structure is opti-
mized for a checkpoint writing pattern where multiple
processes write to a single file. The server has to be
altered to adopt this file structure which makes it infea-
sible for many existing applications. Stdchk [4] tries to
scavenge spare storage resources from all participating
nodes to form a dedicated storage space for checkpoint
data. Our work differs from it in that we focus on uti-
lizing local residual memory as a buffer pool.

Another direction for fault tolerance is to proactively
migrate the processes on a failing node to a spare node
before the failure actually happens. [21, 20] propose to
migrate a process while the parallel application is active.
However, the effectiveness of this scheme heavily relies
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on the accuracy to predict a pending failure. If it fails to
predict a failure, or if the prediction comes too late, the
migration itself can fail, in which case, the entire system
has to rollback to the previous checkpoint. Hence, a
complete checkpoint is still mandatory, in which case,
our design is still relevant.

7 Conclusion and Future Work

In this paper we propose a Write Aggregation with Dy-
namic Buffer and Interleaving (WAG-DBI) strategy to
reduce the overhead related to checkpoint creation. By
aggregating all checkpoint writes into a dynamic buffer
pool and overlapping the application progress with the
file writes, our design is able to accelerate checkpoint
writing significantly.

As part of the future work, we plan to study the effect
of varying chunk sizes on the WAG-DBI scheme. We also
intend conducting experiments on the Lustre File System
[7]. Additionally, we plan to explore the use of I/O AT
to copy a process’s memory contents to the buffer pool.
Furthermore, we intend to perform collective IO [19] to
aggregate data from multiple nodes.
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