
Veloblock: Efficient and Scalable RDMA Fast Path for
InfiniBand

Matthew J. Koop Ajay P. Sampat Dhabaleswar K. Panda
Network-Based Computing Laboratory

The Ohio State University
Columbus, OH 43210

{koop, sampat, panda}@cse.ohio-state.edu

ABSTRACT
Message Passing Interface (MPI) continues to be the dominant pro-
gramming model for parallel scientific applications. As a result, the
MPI library design is very important for the overall performance of
the system. Additionally, InfiniBand has become a very popular
interconnect for clusters. Over 25% of the Top500 supercomput-
ers are listed as using InfiniBand. As a result, the MPI library
design for InfiniBand clusters is particularly significant. To ob-
tain the lowest latency for message passing over InfiniBand MPI li-
braries include message passing using Remote Direct Memory Ac-
cess (RDMA) Write operations for small messages. This is often
referred to as “RDMA Fast Path” or “Eager RDMA.” This feature,
however, can consume 512 KB of memory for each uni-directional
communication channel. This requirement means that only a few
of these connections can be created.

In this paper we propose Veloblock, a new RDMA Fast Path design,
that uses a unique bottom-fill block-based design. Instead of using
fixed-size buffers we propose methods of allowing variable-sized
buffers. We implement our design and show that it uses an order of
magnitude less memory and performs equal or better to the exist-
ing implementation. In particular, on a 128-core cluster we show
that our design is able to outperform a non-RDMA fast path en-
abled design by 13% for the AMG2006 multigrid physics solver.
Veloblock also outperforms a traditional RDMA fast path design
by 3% on this benchmark, while using 16 times less memory for
these channels.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management; D.4.9
[Operating Systems]: Systems Programs and Utilities; J.0 [Computer
Applications]: General

Keywords
MPI, InfiniBand, Memory Scalability, RDMA Write

1. INTRODUCTION
Large-scale deployments of clusters designed from largely commodity-
based components continue to be a major component of high-performance
computing environments. A significant component of a high-performance
cluster is the compute node interconnect. InfiniBand [7], is an in-
terconnect of such systems that is enjoying wide success due to low
latency (1.0-3.0µsec), high bandwidth and other features.

The Message Passing Interface (MPI) [14] is the dominant pro-
gramming model for parallel scientific applications. As such, the
MPI library design is crucial in supporting high-performance and
scalable communication for applications on these large-scale clus-
ters.

To obtain the lowest latency, MPI library implementations over In-
finiBand generally include support for small message transfer us-
ing Remote Data Memory Access (RDMA) Write operations [13].
This transfer mode is referred to as “RDMA Fast Path” or “Eager
RDMA,” depending on the developer, however, they all follow the
same implementation and design. This basic design is used in other
libraries other than MPI including its usage in some GASNet [3]
implementations.

Although this “Fast Path” design has been shown to improve la-
tency, it requires a large amount of memory to be used within the
implementing library. This is because the design uses fixed-sized
persistent buffers. This means that the sender and the receiver must
both have dedicated memory for each other. This typically means
256 KB of memory is required for both the sender and receiver.
For bi-directional communication using RDMA fast path an addi-
tional 256 KB is required for each side for a total of 1 MB per bi-
directional connection. For a large number of channels, the mem-
ory usage can be significant.

In this paper we propose a new design, Veloblock1, for message
transfer using RDMA Write operations. This novel design elimi-
nates the need for persistent fixed-size buffers. Messages only take
up as much memory as they require and the sender side no longer
needs to have a set of dedicated buffers. Instead of small 32 byte
message taking up a full 8 KB buffer, it can now only consume 32
bytes. This can significantly reduce the memory by a factor of 16
times from 512 KB per pair to 32 KB. We show that our design is
able to outperform a non-RDMA fast path enabled design by 13%
for the AMG2006 multigrid physics solver. We also outperform
a traditional RDMA fast path design by 3%, while using 16 times

1‘Velo-’ is the Latin root for ‘fast’, and ‘block’ refers to the view
of memory in the design.

less memory.

The remaining parts of the paper are organized as follows: In Sec-
tion 2 we provide an overview of InfiniBand. In Section 3 we dis-
cuss the protocols generally used for message transfer over Infini-
Band. Section 4 presents the existing RDMA fast path design. New
design options for RDMA fast path and our proposed Veloblock de-
sign is presented in Section 5. Evaluation and analysis of an imple-
mentation of our design is covered in Section 6. Section 7 discusses
work related to our own. Finally, conclusions and future work are
presented in Section 8.

2. INFINIBAND
InfiniBand is a processor and I/O interconnect based on open stan-
dards [7]. It was conceived as a high-speed, general-purpose I/O in-
terconnect, and in recent years it has become a popular interconnect
for high-performance computing to connect commodity machines
in large clusters.

2.1 Communication Model
Communication in InfiniBand is accomplished using a Queue based
model. Sending and receiving end-points have to establish a Queue
Pair (QP) which consists of Send Queue (SQ) and Receive Queue
(RQ). Send and receive work requests (WR) are then placed onto
these queues for processing by InfiniBand network stack. Comple-
tion of these operations is indicated by InfiniBand lower layers by
placing completed requests in the Completion Queue (CQ). To re-
ceive a message on a QP, a receive buffer must be posted to that QP.
Buffers are consumed in a FIFO ordering.

2.2 Channel and Memory Semantics
There are two types of communication semantics in InfiniBand:
channel and memory semantics. Channel semantics are send and
receive operations that are common in traditional interfaces, such as
sockets, where both sides must be aware of communication. Mem-
ory semantics are one-sided operations where one host can access
memory from a remote node without a posted receive; such oper-
ations are referred to as Remote Direct Memory Access (RDMA).
Remote write and read are both supported in InfiniBand. Note that
completion entries are not added to the CQ on the target for RDMA
Write operations unless a special ‘RDMA Write with Immediate’
operation is needed.

Both communication semantics require communication memory
to be registered with InfiniBand hardware and pinned in memory.
The registration operation involves informing the network-interface
of the virtual to physical address translation of the communica-
tion memory. The pinning operation requires the operating system
to mark the pages corresponding to the communication memory
as non-swappable. Thus, communication memory stays locked in
physical memory, and the network-interface can access it as de-
sired.

2.3 Transports
There are four transport modes defined by the InfiniBand speci-
fication, and one additional transport that is available in the new
HCAs from Mellanox: Reliable Connection (RC), Reliable Data-
gram (RD), Unreliable Connection (UC), Unreliable Datagram (UD),
and eXtended Reliable Connection. Of these, RC and UD are re-
quired to be supported by Host Channel Adapters (HCAs) in the
InfiniBand specification. RD is not required and is not available

with current hardware. All transports provide a checksum verifica-
tion.

Our work is applicable to any transport that provides RDMA Write
support, which are RC, XRC, RD, and UC. Support for UC would
also require reliability support to be built into the upper-level pro-
tocol as well. In this paper we consider RC, however, support for
other transports are minor modifications.

Note that the connection memory we consider in this paper is not
that of communication contexts from creating QPs. The memory
requirements we are reducing in this work is related to buffers.

3. MESSAGE PASSING PROTOCOLS
In this section we describe the two communication modes that MPI
is generally implemented with.

• Eager Protocol: In the eager protocol, the sender task sends
the entire message to the receiver without any knowledge of
the receiver state. In order to achieve this, the receiver must
provide sufficient buffers to handle incoming unexpected mes-
sages. This protocol has minimal startup overhead and is
used to implement low latency message passing for smaller
messages.

• Rendezvous Protocol: The rendezvous protocol negotiates
buffer availability at the receiver side before the message
is sent. This protocol is used for transferring large mes-
sages, when the sender wishes to verify the receiver has the
buffer space to hold the entire message. Using this protocol
also easily facilitates zero-copy transfers when the underly-
ing network transport allows for RDMA operations.

In this paper we are referring only to the Eager Protocol portion.
When mentioning RDMA in Fast Path operations, we refer to RDMA
Write operations for small message transfer due to their lower over-
head. The next section will describe the existing design.

4. RDMA FAST PATH AND EXISTING DE-
SIGN

In this section we describe the existing designs for RDMA Fast
Path. The first RDMA Fast Path design was described in 2003 [13]
and has remained mostly unchanged since then. We first give a
brief overview of what “RDMA Fast Path” means and how current
designs have been implemented.

4.1 What is RDMA Fast Path?
In general RDMA fast path refers to a message passing mode where
small messages are transferred using RDMA Write operations. In-
stead of waiting for completion queue (CQ) message, the receiver
continually polls a memory location waiting for a byte change.

Waiting for a byte change leads to lower latency than waiting for
a completion queue entry. Using any sort of notification negates
the performance benefit. When this mode was originally proposed
the difference in latency on the first-generation InfiniBand cards
between RDMA fast path and the normal channel semantics of In-
finiBand was 6µsec to 7.5µsec [13]. The difference on our fourth-
generation ConnectX InfiniBand is much lower, but there is still a
processing overhead for the card to signal receive completion.

2

This mode can be achieved since some adapters, such as all Mel-
lanox InfiniBand HCAs, guarantee that messages will be written in
order to the destination buffer. The last byte will always be written
last.

4.2 Existing Structure
The structure of existing RDMA fast path designs is to have fixed-
size chunks within a large buffer. Figure 1 shows this structure.

On the sending side, the sender selects the next available send
buffer and copies the message into the buffer and performs an RDMA
Write operation to the corresponding buffer on the receiver. The
receiver polls on the next buffer where it is expecting a message.
Upon detecting the byte change it can process the message. It can
send either an explicit message to the sender to notify it that the
buffer is available again or piggyback that information within mes-
sage headers.

Sender

RDMA Write
Next to
send

Next to
receive

Receiver

Figure 1: Basic structure of paired buffers on sender and re-
ceiver in the RDMA fast path design

4.3 Detecting Message Arrival
To detect the byte change the receiver must set the buffer into a
known state prior to any data being allowed to be placed into it.
Recall that to use this mode the hardware must write data in order,
so the last byte must be changed to know that the entire message has
been received. This traditional mode uses a head and tail flag mode.
As seen in Figure 2, the head flag is first detected. If the head flag
has been changed, then see if the tail flag at base_address+size is
equal to the head value. If it is equal, the data has arrived. To ensure
that the tail flag differs from the previous value at that address the
sender must keep a copy of the data that it previously sent. Thus
the sending side must have the same amount of buffer reserved as
the receiver for this channel. Since the message is filled from the
beginning or “top” of the buffer we refer to this design as “top-fill.”

Size

Head Flag

Data

Tail Flag

1. Poll for
Head != 0

2. Poll for
Tail == Head

-unused-

Zeroed prior to
marking as
available

Figure 2: Message Detection Method for fixed-length segments

5. VELOBLOCK DESIGN
In this section we describe the design issues for our new RDMA
fast path design, Veloblock. First we describe the goals of the de-

sign, followed by our solutions to achieve these goals, the various
options available, and then finally the design that we select.

The broad goal for a new RDMA Fast Path design is to retain the
benefits of lower latency and overhead by using RDMA Write op-
erations for small messages, but reduce the amount of memory re-
quired. Memory usage for the RDMA fast path for each process
comes from:

Nbuffers ×Bsize × (Psend + Precv)

Where Psend and Precv are the number of send and receive fast path
peers,Nbuffers is the number of buffers andBsize is the size of each
buffer. While simply reducing P , N or B can save memory, it can
also reduce the performance.

Our approach to reduce the memory usage is two-fold:

• Remove the sender-side buffer. This will reduce the amount
of memory required by half.

• Use memory as a “block” instead of as fixed 8 KB segments.

5.1 Remove Sender-Side Buffer
The sender-side buffer is a requirement due to the tail flag in the
existing design. The head/tail flag must be selected to be something
other than the current value at the tail buffer location. If the value
at that position the buffer was already set to the head value it would
incorrectly think the message had arrived resulting in invalid data.

To remove the sender-side buffer we propose using a “bottom-fill”
approach. Using such an approach there is only a need for a tail
flag instead of both head and tail flags. Addionally, there is no need
to know the previous value of the tail byte – this byte can just be
zeroed out at the receiver before a message arrives. This design
can be seen in Figure 4(b). Note, an approach of doing a memset
of zeros on the entire receiver buffer could also remove the need
for a sender-side buffer in the top-fill design, but this also incurs a
prohibitively large overhead.

5.2 Supporting Variable-Length Segments
To the best of our knowledge, all current designs of RDMA fast
path use fixed-size buffers. In general these messages blocks are
8 KB or larger. However, as mentioned earlier, using fixed width
buffers can be very inefficient. Clearly a variable width buffer can
increase memory efficiency since a 32 byte message now only con-
sumes 32 bytes rather than an entire 8 KB chunk.

5.2.1 Detecting Arrival
Note that a decision here has an impact on how a message can be
detected. If a message no longer arrives at a pre-established lo-
cation the next arrival bit will still need to be changed to zero via
some method.

In existing designs the arrival bit can be zeroed out since the next
arrival location is always known. Without zeroing out an entire
buffer, it is not possible to always zero out the next byte on the
receiver side without an additional operation.

To achieve the zeroing of the next arrival byte we propose sending
an extra zero byte at either the beginning or the end of the mes-
sage. Figure 3 shows how an extra byte can be sent in the variable
bottom-fill design. In a top-fill design the extra zero byte is sent at

3

Tail Flag

Size

Blank Byte

Data

Poll Tail Flag

Size

Blank Byte

Data

PollTail Flag

Size

Data

Blank Byte

Overlap

First Message Arrival Second Message Arrival

... ...

Figure 3: Message Detection Method for variable-length seg-
ments

the end of the message instead of the beginning. By sending this
extra byte of data we are able to reset the bit where the next section
of data is to arrive.

5.2.2 Flow Control
When using fixed-width segments flow control is generally ‘credit-
based,’ where each buffer is a credit. So after the receiver con-
sumes the message and the receive buffer is free the receiver can
signal the sender that the buffer is available again. When using the
remote memory as a block (variable length) instead fixed-segments
the credit is now based on bytes. When a receiver processes a mes-
sage it can tell the sender the number of additional bytes in the
buffer that are now available. This can be done as a piggyback in
message headers, or an explicit message. This type of notification
is similar to credit control in existing designs.

5.3 Possible Designs
Using these parameters there are four possible design options that
can be created with these parameters. Each of these options is
shown in Figure 4. Table 1 shows the features of each design.

• Fixed Top-fill: In this design fixed buffers are used and filled
from the top. This design requires buffers on the sender and
receiver to be dedicated to each other. This is the most mem-
ory inefficient design. This is the design employed by MVA-
PICH [15], Open MPI [22] and others.

• Fixed Bottom-fill: This method uses fixed buffers, however,
unlike the top-fill design it does not require dedicated buffers
on the send side.

• Variable Top-fill: In this mode only the required amount of
buffer space is used, however, it does require a dedicated
sender-side buffer.

• Variable Bottom-fill / Veloblock: This mode is the most mem-
ory efficient. Messages only take as much memory as re-
quired and does not require a dedicated sender-side buffer.

5.4 Veloblock Design
Given these options, the highest memory efficiency will come from
using the Variable Bottom-fill method. This is the method that we

propose using and give the name Veloblock. Using this method
messages only take as much room as they need rather than an entire
block.

With this design the memory requirements can be described as the
following:

Bnsize × Precv

Note that Psend is eliminated from this equation. Here only the
block size and number of peers that a process is receiving from
are involved. Bnsize here is larger than that of the original case
(Bsize), but since small messages only take up as much space as
required it can be significantly less than Nbuffers × Bsize of the
original case.

The basic MVAPICH implementation allocates 32 buffers, each of
size 8 KB for each connection. This means that a receiver must
allocate 32 × 8 KB = 256 KB of memory and since it is a top-
fill design 256 KB on the sender side as well for a total of 512
KB. With the variable bottom-fill Veloblock design we can instead
allocate one larger buffer and have messages flow in as needed. In
the next section we will run Veloblock with only a 32 KB buffer
and observe the performance.

6. EXPERIMENTAL EVALUATION
In this section we evaluate the design we proposed in the previous
section. We first start with a description of the experimental plat-
form and methodology. Then we evaluate the memory usage and
performance on microbenchmarks and application benchmarks.

6.1 Experimental Platform
Our experimental test bed is a 128-core ConnectX InfiniBand Linux
cluster. Each of the 8 compute nodes a quad socket, quad core
AMD “Barcelona” processors for a total of 16 cores per node.
Each node has a Mellanox ConnectX DDR HCA. InfiniBand soft-
ware support is provided through the OpenFabrics/Gen2 stack [16],
OFED 1.3 release. The proposed designs are integrated into the
MVAPICH-Hybrid [8] communication device of MVAPICH [15].
MVAPICH is a popular open-source MPI implementation over In-
finiBand based on MPICH [6] and MVICH [12].

All of the designs are implemented into the same code base and
the same code flows. As a result, performance differences can be
attributed to our design instead of software differences. All ex-
periments are run using the Reliable Connection (RC) transport of
InfiniBand.

6.2 Methodology
We evaluate three different combinations:

• Original: The existing design described in Section 5 as Fixed
Top-fill. This design consumes 512 KB of memory total per
uni-directional channel (256KB on the receiver and 256KB
on the sender).

• Original-Reduced: This is the same design as Original, how-
ever, we restrict the amount of memory to 32 KB to match
that of our new design. This will show if our proposed de-
sign is necessary or if buffers could simply be reduced in the
basic design.

• Veloblock: This is our new design proposed in Section 5 that
uses memory as a block instead of chunks of pre-determined
size. This uses 32 KB of memory total per channel.

4

Table 1: Comparison of RDMA Fast Path Designs
Characteristics Memory Usage

Top/Bottom Fill Variable/Fixed Sender Buffer Efficiency
Fixed Top-Fill Top Fill Fixed Required Low

Fixed Bottom-Fill Bottom Fill Fixed Not Required Low
Variable Top-Fill Top Fill Variable Required High

Variable Bottom-Fill Bottom Fill Variable Not Required High

Size
Head, Tail Value

Data
Tail

Size
Head

Data

Tail

Unused

Unused

(a) Fixed Top-fill (Origi-
nal)

Data

Tail

Size

Data

Tail

Size

Unused

Unused

(b) Fixed Bottom-fill

Size
Head, Tail Value

Data
Tail
Size
Head

Data

Tail

(c) Variable Top-fill

Size

Data

Tail
Data

Tail
Size

(d) Variable Bottom-fill
(Veloblock)

Figure 4: Fast Path Designs: Each figure shows one of the options available for designing a RDMA fast path. Note that all “top-fill”
designs also need a mirrored sender-side buffer.

We also want to observe the effect of the number of fast path chan-
nels on application performance. In particular, we want to see if
additional channels can increase performance. Due to the memory
usage many implementations limit the number of fast path channels
allowed – Open MPI for example allows only 8 by default. We will
also track the amount of memory required for fast path communi-
cation.

6.3 Application Benchmarks
In this section we evaluate each of our configurations using two
application benchmarks: AMG2006 and LAMMPS.

6.3.1 AMG2006
AMG2006 is a parallel algebraic multigrid solver for unstructured
meshes. It is part of the ASC Benchmark Suite [1]. The bench-
mark and results we show are given using the default driver for the
benchmark. It is very communication intensive and communication
time can be a significant portion of the overall performance [1].

Figure 5 shows the performance of AMG2006 with varied refine-
ment levels. Lower refinement values result in higher degrees of
communication. We can see from the figure that using RDMA
fast path channels clearly increases performance. For a refinement
value of 3 an increase in performance of 13% for 128 Veloblock
channels over the configuration where no RDMA fast path channels
are created is observed. We also note that the Original-Reduced
mode with 128 channels performs only 3% higher than the base
case with no channels created. Additionally, the Veloblock design
outperforms the Original design by 3%, while using significantly

less memory.

Table 2 shows the characteristics of each of the configurations. For
the refinement value of 3, the number of remote peers is on aver-
age 103.92. This average is fractional since some processes have
more peers than others. When allowing up to 128 fast path con-
nections to be created, the Original design will consume 52 MB
of memory per process. By contrast, our new design will use only
3.25 MB/process. Note that fast path connections are created “on
demand,” so only if a process is communicating with a remote pro-
cess will a fast path buffer be allocated.

In Table 2 we also present the percentage of remote messages that
are able to use the RDMA fast path channel. If there is not an avail-
able remote buffer the sender cannot use RDMA fast path. Thus,
for the Original-Reduced configuration which has less buffers we
note that only 50% of remote messages can use the RDMA fast
path, where as for Original and Veloblock nearly 90% take the fast
path. Note that some messages are larger than 8KB and cannot take
the fast path, so 100% is often not possible.

6.3.2 NAMD
NAMD is a fully-featured, production molecular dynamics pro-
gram for high performance simulation of large bimolecular sys-
tems [17]. NAMD is based on Charm++ parallel objects, which is
a machine independent parallel programming system. It is known
to scale to thousands of processors on high-end parallel systems.
Of the standard data sets available for use with NAMD, we use the
apoa1, er-gre, and jac2000 datasets. We evaluate all data

5

Table 2: Communication Characteristics
Application Dataset Remote Peers Configuration Fast Path Memory Remote Messages

(per process) over Fast Path (%)

AMG2006

Refinement 3 103.92
Original 51.95 MB 89.75

Original-Reduced 3.25 MB 49.54
Veloblock 3.25 MB 87.22

Refinement 4 107.16
Original 53.58 MB 90.25

Original-Reduced 3.35 MB 43.49
Veloblock 3.35 MB 89.23

Refinement 5 109.12
Original 54.56 MB 89.99

Original-Reduced 3.41 MB 49.38
Veloblock 3.41 MB 88.36

NAMD

jac 59.13
Original 29.57 MB 83.51

Original-Reduced 1.85 MB 52.79
Veloblock 1.85 MB 83.53

ergre 18.88
Original 9.44 MB 64.69

Original-Reduced 0.59 MB 56.71
Veloblock 0.59 MB 64.75

apoa1 90.16
Original 45.08 MB 72.51

Original-Reduced 2.81 MB 58.26
Veloblock 2.81 MB 72.52

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 8 16 32 64 128

0 8 16 32 64 128
0 8 16 32 64 128

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Original Original-Reduced Veloblock

Refinement (5)Refinement (4)Refinement (3)

Figure 5: AMG2006 Performance (higher bars are better). The “0, 8, . . . , 128” values refer to the number of RDMA fast path
connections allowed to be created per process.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 8 16 32 64 128

0 8 16 32 64 128

0 8 16 32 64 128

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Original Original-Reduced Veloblock

apoa1ergrejac

Figure 6: NAMD Performance (higher bars are better)

6

sets with 128 tasks.

Figure 6 shows the performance of each of these three datasets with
increasing numbers of allowed fast path connections. The first of
the benchmarks, jac, is the Joint-Amber Charmm Benchmark and
is very communication intensive. For this benchmark the Veloblock
design again performs the best with a 14% improvement over the
case with no RDMA fast path. The original configuration is a 12%
improvement, but requires a significant amount of memory. The
Original-Reduced configuration, which uses the same amount of
memory as our new design, shows only a 4% improvement.

From Table 2 we can see that for the jac benchmark nearly 84%
of messages are able to use the fast path for both Original and
Veloblock and only 53% for Original-Reduced. This explains the
performance gap in the results. The new Veloblock design addition-
ally consumes 42 MB of memory less per process than the Original
mode.

For the apoa1 benchmark the Veloblock continues to show bene-
fits with up to a 6% improvement over the base case with no RDMA
fast path connections. We do notice that after 32 connections per-
formance is gets slightly worse. We attribute this to the additional
time to poll for message arrival when additional connections are
added. If not enough messages are transferred over this path then
the polling overhead can exceed the benefit. For example, with
apoa1, increasing from 32 fast path connections to 64 the num-
ber of messages taking the fast path only increases from 36.40% to
47.78%.

The ergre benchmark shows a similar trend where the polling for
the Original designs seems to lower performance. To avoid these
types of problems RDMA fast path implementations can tear down
connections that do not meet a pre-configured message rate.

7. RELATED WORK
Many other works have proposed methods of increasing the effi-
ciency of communication buffers. The work most similiar to ours
is Portals [5], in which buffers are allocated from a block as they
arrive, so space is the limiting factor rather than the number of mes-
sages. This work, however, was not done with the InfiniBand and
had additional NIC features to allow this flow. This style of support
was also suggested for VIA, a predecessor of InfiniBand, but was
never adopted into hardware [4].

Others have also tried to increase communication buffer efficiency
for MPI over InfiniBand. The Shared Receive Queue (SRQ) fea-
ture of InfiniBand allows a single pool of buffers for multiple peers
instead of separate pools per peer [21, 18]. Noticing that the ef-
ficiency of the buffers as was low, as these buffers are fixed size,
Shipman proposed using multiple SRQs, each with a different size [19].
Each of these SRQ-based enhancements, however, are for the chan-
nel semantics of InfiniBand and loses the performance features of
the RDMA fast path.

Additional research has investigated to lower connection memory
in InfiniBand. This has been done with respect to the new eXtended
Reliable Connection transport of InfiniBand [9, 20] and hybrid de-
signs to use multiple InfiniBand transports to reduce connection
memory [10, 11, 8]. This research is complementary to ours and
involves reducing connection context memory. Our research, by
contrast, focuses on the memory used for message buffers.

Balaji also explored the idea of a block-based flow control for In-
finiBand for the Sockets Direct Protocol (SDP) [2]. In this work
RDMA Write with Immediate operations were used, which elimi-
nates the benefit of lower latency. It also does not have to address
the issues to clearing out the arrival bytes since it uses the Comple-
tion Queue (CQ) entry.

8. CONCLUSION AND FUTURE WORK
Both MPI and InfiniBand are important components in many high-
performance computing environments. Existing MPI implementa-
tions for InfiniBand are able to provide the best performance when
they use a “RDMA Fast Path” mode, but this mode can consume
significant amount of memory when used. 512 KB of memory per
communicating peer can be used when this mode is used. Due to
this reason MPIs generally have to severely restrict the number of
these connections allowed to be setup.

In this paper we have designed Veloblock, a new and more efficient
and scalable RDMA Fast Path design. Memory usage is an order
of magnitude less than current designs used in other MPI libraries
over InfiniBand. We performed a performance evaluation using
various application benchmarks and showed performance improve-
ment using RDMA Fast Path techniques. In particular, on a 128-
core cluster we show we show that our design is able to outperform
a non-RDMA fast path enabled design by 13% for the AMG2006
multigrid physics solver. With this result we show RDMA Fast Path
does increase performance. Further, Veloblock also outperform a
traditional RDMA fast path design by 3% on this benchmark, all
while using 16 times less memory for these channels.

In the future we plan to evaluate our designs on larger-scale. We
also plan to evaluate the possibility of variable-sized chunks. Cur-
rently Veloblock allocates a 32 KB block for each channel, but
some applications may benefit from a larger chunk. In particular,
channels between some pairs of processes may be allocated less
(e.g. 16 KB), while others be granted more (e.g. 48 KB) if they are
exchanging more messages.

Acknowledgment
This research is supported in part by U.S. Department of Energy
grants #DE-FC02-06ER25749 and #DE-FC02-06ER25755; National
Science Foundation grants #CNS-0403342, #CCF-0702675, and
#CCF-0833169; grant from Wright Center for Innovation #WCI04-
010-OSU-0. ; grants from Intel, Mellanox, Cisco, and Sun Mi-
crosystems; Equipment donations from Intel, Mellanox, AMD, Ad-
vanced Clustering, IBM, Appro, QLogic, and Sun Microsystems.

9. REFERENCES
[1] ASC. ASC Sequoia Benchmarks.

https://asc.llnl.gov/sequoia/benchmarks/.
[2] P. Balaji, S. Bhagvat, D. K. Panda, R. Thakur, and W. Gropp.

Advanced Flow-control Mechanisms for the Sockets Direct
Protocol over InfiniBand. In ICPP ’07: Proceedings of the
2007 International Conference on Parallel Processing,
page 73, 2007.

[3] D. Bonachea. Gasnet specification, v1.1. Technical report,
Berkeley, CA, USA, 2002.

[4] R. Brightwell and A. B. Maccabe. Scalability Limitations of
VIA-Based Technologies in Supporting MPI. In Fourth MPI
Developer’s and User’s Conference, 2000.

[5] R. Brightwell, A. B. MacCabe, and R. Riesen. Design and
Implementation of MPI on Portals 3.0. In Proceedings of the

7

9th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, pages 331–340. Springer-Verlag, 2002.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
High-Performance, Portable Implementation of the MPI,
Message Passing Interface Standard. Technical report,
Argonne National Laboratory and Mississippi State
University.

[7] InfiniBand Trade Association. InfiniBand Architecture
Specification. http://www.infinibandta.com.

[8] M. Koop, T. Jones, and D. K. Panda. MVAPICH-Aptus:
Scalable High-Performance Multi-Transport MPI over
InfiniBand. In IEEE Int’l Parallel and Distributed
Processing Symposium (IPDPS 2008), April 2008.

[9] M. Koop, J. Sridhar, and D. K. Panda. Scalable MPI Design
over InfiniBand using eXtended Reliable Connection. In
IEEE Int’l Conference on Cluster Computing (Cluster 2008),
September 2008.

[10] M. Koop, S. Sur, Q. Gao, and D. K. Panda. High
Performance MPI Design using Unreliable Datagram for
Ultra-Scale InfiniBand Clusters. In 21st ACM International
Conference on Supercomputing (ICS07), Seattle, WA, June
2007.

[11] M. Koop, S. Sur, and D. K. Panda. Zero-Copy Protocol for
MPI using InfiniBand Unreliable Datagram. In IEEE Int’l
Conference on Cluster Computing (Cluster 2007),
September 2007.

[12] Lawrence Berkeley National Laboratory. MVICH: MPI for
Virtual Interface Architecture.
http://www.nersc.gov/research/FTG/mvich/ index.html,
August 2001.

[13] J. Liu, J. Wu, and D. K. Panda. High Performance
RDMA-based MPI implementation over InfiniBand. Int. J.
Parallel Program., 32(3):167–198, 2004.

[14] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, Mar 1994.

[15] Network-Based Computing Laboratory. MVAPICH: MPI
over InfiniBand and iWARP.
http://mvapich.cse.ohio-state.edu.

[16] OpenFabrics Alliance. OpenFabrics.
http://www.openfabrics.org/.

[17] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD:
Biomolecular Simulation on Thousands of Processors. In
Supercomputing, 2002.

[18] G. Shipman, T. Woodall, R. Graham, and A. Maccabe.
Infiniband Scalability in Open MPI. In International Parallel
and Distributed Processing Symposium (IPDPS), 2006.

[19] G. M. Shipman, R. Brightwell, B. Barrett, J. M. Squyres, and
G. Bloch. Investigations on infiniband: Efficient network
buffer utilization at scale. In Proceedings, Euro PVM/MPI,
Paris, France, October 2007.

[20] G. M. Shipman, S. Poole, P. Shamis, and I. Rabinovitz.
X-SRQ - Improving Scalability and Performance of
Multi-core InfiniBand Clusters. In Proceedings of the 15th
European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, pages 33–42, 2008.

[21] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared Receive
Queue Based Scalable MPI Design for InfiniBand Clusters.
In International Parallel and Distributed Processing
Symposium (IPDPS), 2006.

[22] The Open MPI Team. Open MPI. http://www.open-mpi.org/.

8

