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Abstract

Message Oriented Middleware (MOM) is a key technol-

ogy in financial market data delivery. In this context we

study the Advanced Message Queuing Protocol (AMQP),

an emerging open standard for MOM communication. Our

previous research has found that the centralized architec-

ture of AMQP presents a considerable bottleneck as far

as scalability is concerned. Federating AMQP message

Brokers decentralizes this architecture and can potentially

help to scale performance across large clusters. In this pa-

per, we examine this potential by analyzing basic federation

topologies. We describe a systematic method for configur-

ing Broker federation supported by experiments on a multi-

node cluster with an InfiniBand network. To the best of our

knowledge, this is the first in-depth study for designing scal-

able AMQP architectures with Broker federation and Infini-

Band.

Keywords: AMQP, Message Oriented Middleware, Qpid, Pub-

lish/Subscribe, InfiniBand

1 Introduction

Message Oriented Middleware (MOM) plays a key role

in financial data generation and delivery. The strength of

MOM is that it allows for efficient communication between

applications situated on heterogeneous operating systems

and networks. MOM allows developers to by-pass the

costly process of enabling explicit connections to these var-

ied systems and networks. Instead applications need only

communicate with the MOM. Typical MOM implementa-

tions feature asynchronous message delivery between un-

connected applications via a message queue framework.

However, there are prominent MOM implementations that

operate without a queue framework [19].

Advanced Message Queue Protocol (AMQP) originated

in the financial services industry in 2006 [1] [8] [20].

AMQP is an open standard for MOM communication.

AMQP grew out of the need for interaction between MOM

systems both within, and between, corporate enterprises.
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Due to the proliferation of proprietary, closed-standard,

messaging systems such integration is considered challeng-

ing. As such, the primary goal of AMQP is to enable bet-

ter interoperability between MOM implementations. Since

AMQP’s inception, several, open-source, messaging soft-

ware distributions have emerged.

The three primary components in the AMQP architec-

ture are Publishers (senders), Consumers (receivers), and

Brokers (message routing engines). Our previous research

has found that the centralized Broker architecture of AMQP

presents a considerable bottleneck as far as scalability is

concerned [17]. The Apache Qpid AMQP distribution [2]

includes a Broker federation option that can decentralize

the architecture and share the workload among a group of

Brokers linked with each other. However there is very lit-

tle information available as to how best to set up Broker

Federation. For example, what topological layout of fed-

erated Brokers yields the best performance? Furthermore,

how does expanding or changing a federation topology alter

overall system performance?

In this paper we examine the ability of federation to alle-

viate the centralized broker bottleneck and deliver scalable

messaging performance across large clusters. We devise a

rigorous, systematic method for configuring Qpid’s broker

federation to deliver scalability for a large number of mes-

sage consumers. Our federation methodology focuses on

various bi-nomial and k-nomial tree structures. Using ex-

periments on our cluster, we devise federation topologies

for varying message sizes and measure performance by to-

tal delivered bandwidth, and message rate. Each of our

federation schemes varies a tree topology parameter. The

parameters that may be varied are: the levels of federated

brokers between a Publisher and Consumer, the number of

child Consumers serviced by a leaf Broker, and the number

of child Brokers federated to a tree root Broker. Optimal

values of these parameters may then be used to determine

a scalable Broker federation topology for a large number of

Consumers on the cluster.

This paper’s main contributions are:

• An examination of the variables for Broker federa-

tion topology and how they impact messaging perfor-

mance.

• Recommendations as to how best to setup AMQP Bro-

ker federation based on this examination.



Our performance evaluation shows that Broker federa-

tion indeed helps to alleviate the bottlenecks and provide

a more scalable architecture. For example, a three level

Broker federation supporting 16 consumers delivers 64 byte

messages at a rate of 14,342 msgs/sec as compared to 2,570

msgs/sec by a single Broker supporting 8 consumers. We

also observe that different topology parameters are favor-

able for different message sizes. For small messages, trees

with Broker fanout limited to 2 and Consumer fanout lim-

ited to 2 or 4 give scalable performance while trees with

higher fanouts show higher delivered bandwidth numbers

for large messages.

The remainder of this paper is organized as follows: Sec-

tion 2 gives a brief overview of AMQP, Qpid Federation,

and InfiniBand technologies. In Section 3, we overview the

major variables inherent in constructing a federation topol-

ogy. Section 4 presents the impact of experiments with

these toplogy variables. Using the knowledge gained from

the experiments, Section 5 describes design suggestions for

scaling Broker federation to a large number of consumers.

Section 6 overviews related work. Finally we summarize

our conclusions and possible future work in Section 7.

2 Background

In this section we provide a brief overview of Advanced

Message Queuing Protocol, Broker federation in Qpid, and

InfiniBand.

2.1 Advanced Message Queuing Protocol

Figure 1 shows the general architecture of an AMQP

compliant messaging system. An AMQP messaging sys-

tem consists of three main components: Publisher(s), Con-

sumer(s) and Broker/Server(s). Each component can be

multiple in number and be situated on independent hosts.

Publishers and Consumers communicate with each other

through message queues bound to exchanges within the

Brokers. AMQP provides reliable, guaranteed, in-order

message delivery. We briefly explain the functionality of

each component below.

Broker/Server: A server or daemon program that con-

tains one or more Exchanges and Message Queues.

Consumer: An application that declares one or more

Message Queues on the Broker.

Message Queue: A data structure that stores messages

in memory or on disk, and delivers these in sequence to the

Consumer that declared the queue. Each Message Queue is

entirely independent.

Publisher/Producer: An application that constructs mes-

sages and sends the messages to an Exchange on a Broker.

Exchange: A matching and routing engine which accepts

messages from Publishers and copies the messages into zero

or more Message Queues.

2.2 Qpid Broker Federation

Qpid’s Broker federation [12] is a mechanism to incor-

porate more than one broker into a messaging system. The
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Figure 1. The AMQP Architecture

system administrator uses the ”qpid-route” utility to estab-

lish links between Brokers. The linked Brokers are then

federated. Each Broker may be on an independent comput-

ing node and service its own set of connected Publishers and

Consumers. The destination Broker in the link acts as a spe-

cial Consumer of messages from the source Broker. How-

ever instead of consuming messages, the destination Broker

forwards the messages to its attached Consumers and/or any

destination Broker federated to it. From the perspective of

the connected Publishers and Consumers, a group of fed-

erated Brokers act as one logical Broker, even though each

Broker may be on an independent node. Any message pub-

lished to a federated Broker will be forwarded to all other

Brokers in the federation.

2.3 InfiniBand Architecture

InfiniBand Architecture (IB) [4] is an industry standard

for low latency, high bandwidth, System Area Networks

(SAN). An increasing number of InfiniBand network clus-

ters are being deployed in high performance computing

(HPC) systems as well as in E-Commerce-oriented data

centers. IB supports two types of communication mod-

els: Channel Semantics and Memory Semantics. Chan-

nel Semantics involve discrete send and receive commands.

Memory Semantics involve Remote Direct Memory Ac-

cess (RDMA) [14] operations. RDMA allows processes

to read or write the memory of processes on a remote

computer without interrupting that computer’s CPU. Within

these two communication semantics, various transport ser-

vices are available that combine reliable/unreliable, con-

nected/unconnected, and/or datagram mechanisms.

The popular TCP/IP network protocol stack can be

adapted for use with InfiniBand by the Internet Protocol

over Infiniband (IPoIB) driver [6]. IPoIB is a Linux kernel

module that enables InfiniBand hardware devices to encap-

sulate IP packets into IB datagram or connected transport

services. When IPoIB is applied, an InfiniBand device is

assigned an IP address and accessed just like any regular

TCP/IP hardware device.

3 Major Variables in Federation Topology

In this section we give a high level overview of the con-

cepts involved in building a scalable Broker topology using

a k-nomial tree scheme. Such trees may vary in their depth

(number of levels - l factor) as well as their fanout breadth



(k factor). Below we describe depth and breadth individu-

ally as applied to AMQP Broker federation. Furthermore

we give our general expections as to how each of these vari-

ables will impact the interaction of the messaging system

with both the network and host node resources.

3.1 Multi-Level Broker to Consumer

When an AMQP system places Brokers on nodes inde-

pendent of the Producers and Consumers , a message must

always traverse the Broker host in route to the destination

Consumer. This incorporates at least two network links into

the travel path of any message: one from the Producer (P)

to the Broker (B) and another from the Broker to the Con-

sumer (C). However the use of Broker federation might add

multiple Brokers in the message path. As shown in Fig-

ure 2, multi-level Broker federation has the potential to add

many network hops into the travel path of any message in

the system.

Figure 2. Multi-Level Broker to Consumer

3.2 Single Broker with Consumer Fanout

When a Broker is running on its own host node, a Con-

sumer process must establish a network connection in order

to receive messages from the Broker. This connection re-

sults in a message queue structure being allocated on the

Broker host for each Consumer. Therefore as more Con-

sumers connect to a Broker (Figure 3), there is potentially

greater contention for the Broker node’s resources. The

Broker process must allocate memory for each Consumer’s

message queue, handle network traffic from multiple con-

nections, and use CPU cycles and bus bandwidth to copy

incoming messages to the Consumers’ queues.

Figure 3. Single Broker with Consumer

Fanout

3.3 Federated Brokers Fanout to Con-
sumers

The Broker to Broker links established in federation are

similar in operation to that of Consumers connecting to

a Broker. The destination Broker in the link is allocated

a message queue on the source Broker. In a tree federa-

tion with a single root broker (Figure 4), as the number of

connecting Brokers increases we expect contention for the

source Broker’s computing resources. However is this con-

tention of the same nature as that of Consumers connect-

ing? Will the same resources (memory, CPU, bus traffic) be

stressed in the same amounts?

Figure 4. Federated Brokers Fanout to Con-

sumers

3.4 Designing Scalable Federation Topol-
ogy

In selecting a scalable federation topology the concepts

of AMQP Broker federation described above must be com-

bined as shown in Figure 5. A favorable depth of the tree

must work in unison with a favorable k1 factor of Brokers

fanning out from the root Broker as well as the k2 factor

of Consumers fanning out from the leaf Brokers. In the

next section we describe an experiment-driven methodol-

ogy where we test each tree federation variable and select a

combined toplogy based on the test results.

Figure 5. Designing Scalable Federation

Topology

4 Understanding the Impact of Major Vari-

ables

In this section, we present results of our experiments

with the variables in Broker federation. Our goal is to un-

derstand how altering federation topology will affect mes-

saging system performance. Since message size impacts

performance, we consider the interaction of small (64 bytes

to 4 Kilobytes), and large (64KB to 256 Kilobytes) sized

messages. Mirroring the topology concepts described in

Section 3 we examine how tree dimensions may vary and

how this impacts the performance metrics for a Broker fed-

eration. By observing the performance differences obtained

with controlled, experimental variations, we aim to derive



general trends for delivered bandwidth, and message rate

performance.

4.1 Setup

Our evaluation uses a 64 node cluster consisting of In-

tel Xeon Quad dual-core processor hosts for a cluster wide

total of 512 cores. Each host node has 6GB RAM and is

equipped with a Mellanox Technologies ”MT25208 Infini-

Host III Ex” DDR Host Channel Adapter (HCA). This HCA

uses Open Fabrics Enterprise Distribution (OFED) version

1.3.1 [9] drivers with IPoIB. The operating system for each

node is Red Hat Enterprise Linux Server 5. We conducted

all Qpid operations with the M4 release. Our primary eval-

uation tool was the Qpid benchmarks previously developed

and described in [17]. The SYSSTAT sar utility [18] was

used in parallel with the benchmarks in order to collect sys-

tem resource usage.

4.2 Multi-Level Broker to Consumer

As shown in Figure 2 this set of experiments varies

the number of Brokers in between one Publisher to one

consumer. The goal of these experiments is to determine

the performance impact of increasing the Broker federation

chain. Adding more Broker levels maintains approximately

25,000 to 30,000 constant message rate for small messages

(Figure 16, Table 1). Additional levels beyond 1 Broker ac-

tually enhance bandwidth performance for large messages,

with 2 Broker levels being the best (Figure 7). However 3,

4, and 5 Broker levels also deliver more bandwidth than 1

Broker (Table 2). Examination of sar data (Figure 8) shows

a higher HCA transmission rate for each multi-level Broker

as compared to single Broker case. This increased transmis-

sion rate is perhaps due to a lower page fault rate on the in-

termediate Brokers which have no Producers or Consumers

attached.
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Figure 6. Multi-Level Broker: Small Msg Rate

4.3 Single Broker with Consumer Fanout

As shown in Figure 3 this set of experiments varies the

number of Consumers attaching to single Broker and stud-

ies the impact. The goal of these experiments is to deter-

mine the performance impact of increasing the number of

Consumers attached to a leaf Broker. Fanouts of 1, 2, and
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Figure 7. Multi-Level Broker: Large Delivered

Bandwith

4 Consumers maintain an approximately constant message

rate of about 20,000 to 30,000 for small messages (Figure

9, Table 3). Furthermore large message delivered band-

width increases with an increasing number of consumers

(Figure 10, Table 4). For small messages, sar shows a pro-

gessively increasing transmission rate on the Broker HCA

up to 4 Consumers (Figure 11). Also the page fault rate de-

creases on the Broker with each successive Consumer up to

4. After 4 Consumers transmission is only maintained for

large messages.
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4.4 Federated Brokers Fanout to Con-
sumers

As shown in Figure 4 this set of experiments varies the

number of source Brokers federating with a single tree root

Broker and studies the performance impact. Each lower

level leaf broker has a single Consumer attached to it. A

fanout of 2 federated Brokers is favorable for small mes-

sages (Figure 12, Table 5). At fanouts of 3 and 4 Brokers

sar shows a dramatic increase in context switches and small

message performance decreases. However a fanout of 3 and

4 Brokers maintains delivered bandwith for large messages

(Figure 13, Table 6) and Figure 14 shows a proportional

transmission rate on the Brokers’ HCA for such message

sizes.



Figure 8. (a) Multi-Level Broker:Inbound/Outbound Bytes/Sec-256KB, (b) Multi-Level Broker:Average

Page Faults/Sec -256KB

Table 1. Multi-Level Broker to Consumer: Small Msg Rate (Msgs/Sec)

Model/Msg Size 64B 256B 1KB 4KB

B-C 28,258 28,716 32,628 26,476

B-B-C 28,233 29,046 28,314 25,888

B-B-B-C 27,309 27,510 25,501 22,557

B-B-B-B-C 26,656 26,828 25,589 21,298

B-B-B-B-B-C 23,293 23,296 21,573 18,705

Table 2. Multi-Level Broker to Consumer: Lrg Msg Delivered Bandwidth (MB/Sec)

Model/Msg Size 64KB 128KB 256KB

B-C 262 254 194

B-B-C 268 298 320

B-B-B-C 255 281 295

B-B-B-B-C 259 285 283

B-B-B-B-B-C 231 269 293

Table 3. Single Broker with Consumer Fanout: Small Message Rate

Model/Msg Size 64B 256B 1KB 4KB

B-1C 28,258 28,716 32,628 26,476

B-2C 27,183 28.052 25,991 22,665

B-4C 25,048 27,107 24,854 18,260

B-8C 2,570 2,143 1,925 1,692

Table 4. Single Broker with Consumer Fanout: Lrg Msg Delivered Bandwidth (MB/Sec)

Model/Msg Size 64KB 128KB 256KB

B-1C 262 254 194

B-2C 410 344 264

B-4C 412 300 244

B-8C 532 504 320

Table 5. Federated Brokers Fanout to Consumers: Small Message Rate

Model/Msg Size 64B 256B 1KB 4KB

B-B-C 30,170 28,637 27,812 26,247

B-2B-2C 23,918 25,209 22,595 15,920

B-3B-3C 4,951 4,819 5,321 4,680

B-4B-4C 3,774 3,648 4,058 3,455



Figure 11. (a) Single Broker Fanout: Inbound/Outbound Bytes/Sec-256KB, (b) Single Broker Fanout:

Average Page Faults/Sec -256KB

Table 6. Federated Brokers Fanout to Consumers: Lrg Msg Delivered Bandwidth (MB/Sec)

Model/Msg Size 64KB 128KB 256KB

B-B-C 267 290 292

B-2B-2C 292 282 232

B-3B-3C 474 492 531

B-4B-4C 480 600 464

Figure 14. (a) Federated Brokers Fanout to Consumers: Inbound/Outbound Bytes/Sec-256KB,

(b)Federated Brokers Fanout to Consumers: Average Page Faults/Sec -256KB

Table 7. Federation to Support 16 Consumers: Lrg Msg Delivered Bandwidth (MB/Sec)

Model/Msg Size 64KB 128KB 256KB

B-2B-16C 704 592 560

B-4B-16C 1296 1264 864

B-2B-4B-16C 1200 1120 1056

B-4B-8B-16C 1744 2192 2544

B-2B-4B-8B-16C 1728 1808 1760

Table 8. Federation to Support 16 Consumers: Small Message Rate

Model/Msg Size 64B 256B 1KB 4KB

B-2B-16C 1,152 1,168 1,140 1,094

B-4B-16C 7,251 4,752 4,049 3,265

B-2B-4B-16C 14,342 11,868 10,786 6,591

B-4B-8B-16C 3,642 3,498 3,373 3,254

B-2B-4B-8B-16C 8,291 8,211 7,618 5,769
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5 Designing Scalable Federation Topology

Using the insights gained from the above experiments,

we implemented alternate federation topologies in an at-

tempt to scale performance to 16 Consumers. Table 8 shows

the small message results for each attempted alternative.

The ”B-2B-4B-16C” toplogy yielded the best performance,

with ”B-2B-4B-8B-16C” yielding second best. The param-

eters of the ”B-2B-4B-16C” topology (3 level, binomial tree

with 4 Consumers attached to the leaf brokers) are consisent

with the best performing configurations in the experiments

of Section 4. As shown in Table 1, fewer levels of Brokers

generally produce a higher message rate. Furthermore Ta-

ble 3 shows small message rate was favorable at a fanout of

4 Consumers to a leaf Broker. Finally a federation fanout

of 2 Brokers from a root Broker yields high performance as

shown in Table 5.

Table 7 shows large message delivered bandwidth for

each 16 Consumer alternative. The ”B-4B-8B-16C”

toplogy yielded the best performance, with ”B-2B-4B-8B-

16C” yielding second best. Again the tree parameters the

”B-4B-8B-16C” topology (3 level, 4-nomial tree with 2

Consumers at leafs) are consistent with the better perform-

ing configurations in our experiments. In Table 2, 3 levels

of Brokers maintain better large message performance than

1 or 5 levels. Also a fanout of 2 Consumers to a leaf Broker

has good performance as shown in Table 4. Plus a feder-

ation fanout of 4 brokers yield high large message perfor-

mance as shown in Table 6.

6 Related Work

A number of vendors offer proprietary products to meet

the demand for MOM applications. Examples include

IBM’s Websphere MQ [3], Microsoft Message Queuing

Server [7], TIBCO’s Rendezvous and Enterprise Messaging

Servers [19], and Progress Software Corporation’s Sonic

MQ [11]. Furthermore Sun Microsystems has incorporated

the Java Message Service (JMS) API into the Java Plat-

form Enterprise Edition [5]. The Standard Performance

Evaluation Corporation (SPEC) has also built a standard

MOM benchmark oriented to JMS called SPECjms2007



[16]. Within the AMQP standard, other open source im-

plementations have emerged in addition to Apache Qpid.

These implementations include OpenAMQ [10] and Rab-

bitMQ [13]. Furthermore, RedHat Enterprise MRG uses

Qpid as it’s underlying base [15].

7 Conclusions and Future Work

In this paper we studied the ability of AMQP Broker fed-

eration to scale and improve messaging performance across

multi-node computing clusters. We devised a method-

olgy to determine favorable Broker federation with Apache

Qpid. We designed our methodology around the k-nomial

tree structure used in network broadcast operations. Our ex-

perimental results show that for small message sizes Con-

sumer fanouts of 2 or 4 deliver the best message rate. Simi-

larly for large message sizes, a three level federation with a

4 Broker fanout yields the best delivered bandwidth. As part

of our future work we plan to deploy federation topologies

supporting 32, 64, and 128 Consumers. Furthermore we

would like to study the impact of Quad Data Rate (QDR)

rate HCA’s and the next generation processor platforms

such as Intel Nehalem on AMQP performance.
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