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Abstract. MPI has become the de-facto standard for parallel programming
model for distributed memory systems. The MPI-2 standard improved upon the
MPI-1 by introducing the remote memory access (RMA) semantics. The remote
memory access or one-sided communication in MPI parlance provides applica-
tions with more capability for communication-computation overlap. The passive
synchronization semantics defined by MPI-2 allows for overlap as the target pro-
cess is unaware of the communication. However, several interconnects (such as
QLogic InfiniPath, naive 1/10 Gigabit Ethernet) still lack direct remote memory
access interfaces and utilize two-sided primitives to emulate the one-sided inter-
face. In such designs the overlap possible is limited by the inherent limitation of
the two-sided designs requiring remote process involvement.

In this paper we aim to improve the design of the MPI-2 one-sided commu-
nication to provide better communication overlap on interconnects that have
limited or no RMA capabilities. In particular we focus on: (i) designing the
one-sided passive synchronization using helper thread to provide faster commu-
nication progress and (ii) offloading CPU intensive memory copy operations to
the DMA hardware to achieve memory copy-computation overlap. We demon-
strate the benefits of our designs using microbenchmarks. Our results show an
improvement in communication overlap of up to 25%, lower large message la-
tency and and improved cache utilization.
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1 Introduction

Scientific computing has seen unprecedented growth in recent years. The demand for
computation power is ever on the increase as the scientists try to solve the grand
challenge problems. At the same time, the supercomputing field has seen an explosive
growth to meet the demands for more and more computational power. The emergence
of multi-core processors and growth of high performance interconnects offering very
low latency and high bandwidth being the primary contributors to this trend.
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MPI has become the de-facto programming model for these distributed memory
machines. MPI-1 defined the message passing standard with support for point to point
and collective communications. The send/receive messaging model is also called the
two-sided model. The MPI-2 standard provided further extensions and introduced the
remote memory access (RMA) programming models. The RMA model is also known
as the one-sided model in MPI terms. In the one-sided model, as the name suggests,
ideally only one side is involved in data communication. MPI-2 defined two mechanisms
of using the one-sided interface. An (i) active mode: in which the target and source
processes synchronize explicitly and (ii) passive mode: in which the target process
is unaware of the communication. On modern interconnects such as InfiniBand the
one-sided models can be implemented efficiently using Remote Memory Direct Access
(RDMA) mechanisms. The passive mode can provide a truly one-sided interface to
the application writers. Designing the passive mechanism requires hardware support
from the network to perform the operations in a truly one-sided manner inside the
middleware library.

However, the RDMA feature is not available in all networking hardware. For in-
stance, the QLogic Infinipath[1] adapters which is used in this work does not support
RDMA semantics. In these cases the one-sided interface is designed over a two-sided
communication interface internally. In this approach the remote/receiver process has
to be involved in moving the data on the destination process. There are two main issues
involved in this approach: (i) Since there are no communication calls made on the tar-
get process in the passive model, the data movement and synchronizations operations
are delayed till a later MPI call invokes the progress engine and (ii) Since the receiver
CPU is involved in the data communication, the capability to overlap computation and
communication is drastically reduced.

As mentioned above, in such scenarios, the remote CPU is involved in copying
or moving the data leading to an inefficient use of the compute cycles. In addition,
such operations also affect the caching hierarchy since the CPU fetches the data into
cache, thereby evicting other valuable cache entries. The problem gets even worse
with the introduction of multi-core systems since several cores can concurrently access
the memory leading to memory contention issues, CPU stalling issues, etc. Recently,
Intel’s I/O Acceleration Technology (I/OAT) [6, 9, 11] introduced an Asynchronous
DMA Copy Engine (ADCE) in kernel space that has direct access to main memory.

This leads to the following challenges:

1. What kind of designs can improve asynchronous progress and overlap capabilties?
2. Can the I/OAT mechanisms be used to supplement the lack of network hardware

capabilities to reduce the remote processor involvement for one-sided communica-
tion operations?

In this work we aim to address all the above issues. To address the first issue
we provide a helper-thread based design to ensure quick communication progress. We
also provide a copy-offload based design to overlap message copies and computation.
Our copy-offload design utilizes the I/OAT technology to provide asychronous data
movement on the target process. This reduces the remote processor involvement leading
to improved overlap. Finally, we perform an in-depth analysis of our designs with
latency, bandwidth, computation-copy overlap benchmarks as well as L2 cache misses
and demonstrate the effectiveness of our I/OAT offloaded designs.

The rest of the paper is organized as follows. Section 2 provides a background for
this work. Section 3 presents our designs. In Section 4 we present our evaluations.



Finally we look at some related work in Section 5 and provide a conclusion in Section
6.

2 Background

In this section we provide a background of the MPI one-sided communication model
and the I/OAT DMA engine.

2.1 MPI one-sided communication

In MPI one-sided communication (also referred to as remote memory access or RMA),
the origin process (the process that issues the RMA operation) can access a target
process’ memory address space directly. The origin process provides all the parame-
ters such as target rank, target memory address, target datatype, etc. The memory
area operated on is known as the window in MPI parlance. MPI defines three one-
sided operations: MPI Put, MPI Get and MPI Accumulate. The completion of the
one-sided operations is ensured by using synchronization primitives. MPI semantics
allows one-sided operations only within an epoch, which is the period between two
synchronization events. MPI provides three ways of synchronization of which two are
active synchronizations i.e. they require both origin and target to synchronize via a
collective operation. It also provides a passive synchronization by which the origin pro-
cess can lock a target window, perform one-sided operations and unlock the window. In
the passive synchronization mode, the origin process alone makes the synchronization
and issues data transfer operations. The remote process is not involved at all. This
type of synchronization is very effective on large scale systems as it can minimize the
coordination between the origin and target process. This kind of synchronization gives
greater potential for computation/communication overlap. In this paper, we primarily
concentrate on the passive mode of synchronization.

In this work, we mainly focus on designing MPI one-sided communication for net-
works that do not support one-sided RDMA semantics. As a case study for this work,
we use the Infinipath [1] network that doesn’t expose an RDMA (Remote Direct Mem-
ory Access) interface, unlike traditional verbs that support both send/receive as well
as RDMA semantics.

2.2 Interconnect

InfiniBand overview The InfiniBand architecture (IBA) defines a switched network
fabric for interconecting processor and I/O nodes. An InfiniBand network is made up
of switches, InfiniBand adapters (called Host Channel Adapters) and media for com-
munication. InfiniBand defines multiple transport classes: Reliable Connection (RC),
Unreliable Connection (UC), Reliable Datagram (RD), Unreliable Datagram (UD).

Infinipath HCA overview Infinipath HCA provides a light-weight communication
layer (called the PSM API layer) for designing the MPI interface. Infinipath uses a
connectionless model for communication. Infinipath HCA’s do not use DMA engines
to send/receive data and thus do not require memory pinning.

Infinipath HCA’s do not contain an embedded processor and all protocol operations
are performed by the host processor. This additional burden means the host processor
is not available for application processing. Our design explores ways by which we can
alleviate the load on the host processor by offloading the copy operations specific to
one-sided communications.



2.3 I/OAT

Intel I/O Acceleration Technology (I/OAT) is an I/O acceleration technology developed
by Intel and available in most modern Intel Chipset. The technology provides a DMA
engine to offload data-movement and reduce CPU overhead. On chipsets with this
feature, the I/OAT device is a PCI resource with a respective I/OAT DMA driver.
The I/OAT DMA engine can be used as copy-offload engine, allowing the processors
to perform useful tasks.

As mentioned in [10], using a copy-offload engine provides a reduction in CPU
usage and yields better performance. Copy engines can move data in blocks larger
than word-size and hence can provide higher performance on larger data sets. Also,
since the memory copy progresses asynchronously with computation using the offload
engine, it provides copy-communication and also reduces cache pollution.

3 Designs

In this section we discuss the challenges and design issues for implementing passive
synchronization based MPI one-sided interface over an interconnect that provides two-
sided send/recv primitives.

First we describe a basic design that is very commonly used to support MPI over
Ethernet networks. For instance, the MPICH2 [3] implementation uses a similar two-
sided approach as a generic solution for all interconnects.

3.1 Basic Design

The basic design for the passive one-sided interface using a two-sided model requires
active involvement of the target process. Since some interconnects lack RDMA and
remote atomic locking capabilities, designs on such interconnects use a a two-sided
protocol. Figure 1(a) shows a one-sided operation being performed from rank 0 to
rank 1. Rank 0 initiates the passive one-sided operations by issuing the window lock
operation. A lock message is sent to rank 1 and rank 0 waits for the lock to be granted.
Once the lock is granted, rank 0 performs the MPI Put’s followed by the unlocking of
the window. MPI semantics ensures that only after all the Put’s are complete, the lock
is released. All the one-sided messages are received into pre-posted buffers and then
copied to the actual location in the target window.

Figure 1(a) clearly shows the problem with this design. The target rank is per-
forming computation and only when it enters the MPI library does it respond to the
lock protocol. This causes a large sender latency and also provides zero overlap of
computation-communication on the receiver side.

3.2 Design with Helper Thread Mechanism

The basic design presented in Section 3.1 does not provide any communication-computation
overlap and has a high sender overhead. The target rank does not enter the MPI library
and hence the origin rank does not progress with the one-sided communication. One
solution to alleviate this issue is shown in 1(b). In this design we have an additional
helper thread running in the MPI library. With this design, if the main thread is not
in the MPI library, the helper thread can ensure progress. This enables the one-sided
communication to progress immediately. Like the basic design, the lock message is first
received into pre-posted buffers. But due to helper thread, the lock is granted immedi-
atly. Subsequently the Put’s and the unlock operations are also handled by the helper
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Fig. 1. Basic One-sided Passive Design & Optimization

thread. The helper thread copies out the received Put’s from pre-posted buffers into
target memory windows. In our threaded design we also address the following design
issues:

– One major demerit of this approach is the CPU contention between the main
thread and the helper thread. We resolve this by cancelling the helper thread
(pthread cancel) if the main thread enters the MPI library. When the main thread
exits the MPI library the helper thread is re-created. This ensures no lock or CPU
contention, the relatively cheap cost of creating a new thread makes this approach
feasible.

– The helper thread actively polls for communication progress. This would cause
CPU contention with the main thread. To resolve this we keep the completion
polling less aggresive in the helper thread. The helper thread sleeps intermittently
if no completion event is detected. If a completion event is detected, we aggressively
complete the processing of the polled event.

– One issue with this design is that if the amount of data transferred is very large, the
helper thread will spend a lot of time performing memory copies. The memory copy
is unavoidable without RDMA support. We try to solve this by using the I/OAT
copy offloading. Using the I/OAT engine for copying large data also prevents the
cache from being polluted thus enabling the foreground computation to proceed
without cache effects.

3.3 Design with I/OAT

We improve upon our design in Section 3.2 using the I/OAT offload engine.

I/OAT Copy offload: The architecture of the copy offload is shown in Figure 2(a).
The copy offload engine is implemented as a Linux kernel module. User space appli-
cations can issue copy requests to the module via an ioctl call. The kernel queues
the requests unless an explicit issue is performed, allowing multiple requests to be
batch issued. On issueing a copy, the dma-engine provides a cookie that can be polled
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Fig. 2. I/OAT Based Design

for completion. The ioat copy module locks the user memory space using the ker-
nel API get user pages and issues one DMA operation per page. The I/OAT DMA
kernel interface exposes the dma async memcpy pg to pg interface which issues one
copy request per page. The cookies returned by the DMA engine are stored for future
polling. Completion of all the issued copies are ensured by a single system call similar
to MPI Waitall, which returns only when all outstanding copies are complete.

One-sided with I/OAT offload: Figure 2(b) shows the design of the one-sided
interface with the I/OAT copy offload. In this design, the one-sided operations are not
issued by the origin at the time of the lock operation. Instead the origin rank queues
all the issued one-sided requests and delays issue until the unlock. At the unlock stage,
the origin process knows the exact size and number of operations in the queue. The
lock request now performs two tasks: (i) it requests for a lock from the target rank and
(ii) it informs the target rank the exact number of operations it will issue. Prescence
of the helper thread enables us to process the lock request immediately. Additionally,
the helper thread maintains the count of the incoming one-sided requests. Incoming
Put’s and Accumulate’s are issued for memory copy to the I/OAT module. Knowing
the count of the one-sided operations allows us to batch multiple DMA issues in a
single system call. Once all the one-sided operations from our origin rank is processed,
the I/OAT engine is polled for completion and the lock is released.

Currently, I/OAT does not expose an interrupt driven completion semantic. Thus
we need to perform active polling to check for completion, however, polling is not
required for progress. Since polling is done only to detect completion, the operation is
kept lightweight. I/OAT completion semantics provides us the last completed cookie.
Since we internally maintain the list of pendings requests we can use this informatio
to calculate the number of outstanding DMA requests. If any pending requests exist,
the polling is suspended and the thread is put to sleep for a small time interval. Upon
waking the thread again checks for pending requests and iterates until it finds all
requests to have completed. Once all the DMA requests are completed the lock is
released and the origin rank is informed. Since, most of the data movement is handled
by the I/OAT engine and completion polling requires only a single system call by the
helper thread, the main thread can proceed with computation with minimal overhead.



4 Performance Evaluation
In this section we present the experimental evaluation of our designs. The testbed used
is an Intel cluster. Each node is a dual processor (2.33 GHz quad-core) system running
an Intel 5000X Chipset with I/OAT support. Each node has 4 GB main memory. The
CPUs support the EM64T technology and run in 64 bit mode. The nodes support 8x
PCI Express interfaces and are InfiniPath QLE7140 HCAs with PCI Express interfaces.
The operating system used is RedHat Linux 2.6.18-92. We implement our designs in
the MVAPICH2 [5] library.

4.1 I/OAT Microbenchmarks

In this section we present the basic I/OAT performance figures. Figure 3(a) shows the
I/OAT memory copy latencies for small sizes. The I/OAT copy offload has an initial
overhead which leads to sub-optimal performance for small copies. However, as seen in
3(b) the performance of the copy offload is better for large data sizes. For data sizes of
4MB and above the I/OAT provides a better latency. We believe this is due to the fact
that I/OAT is able to move data in blocks while memcpy can move data only word
size at a time.
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4.2 MPI Benchmarks

Figures 4(a) and 4(b) show the MPI Put latency with the three designs discussed. The
MPI Put latency measurement was done without any computation on the receiver side.
The basic design and the design with helper thread perform very similarly. We do not
see any significant overhead incurred due to the thread cancellation in the helper thread
based design. With the I/OAT design, small messages suffer from a higher latency due
to the higher cost of issueing and completing the DMA request. However, since multiple
DMA requests can be issued for a copy the overall latency per Put operation starts
to improve with our I/OAT design. For large message sizes, Figure 4(b) clearly shows
significantly lower latencies. At 4MB message sizes, the I/OAT provides upto 30% lower
latency than the basic design.

We measure the MPI Put messaging bandwidth using passive synchronization. Fig-
ure 5(a) shows the bandwidth achieved by the three designs. For small messages the
basic design and the helper thread design perform well. The I/OAT design has a lower
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bandwidth due to higher overhead incurred due to the system call and the DMA polling.
However, for larger messages (> 32k) we can see the benefits of the new design. The
benefits start as low as 32K because multiple Put operations are concurrently issued
for DMA. The I/OAT DMA engine can assure progress of multiple DMA requests and
this allows concurrent copy operation corresponding to the Puts, as opposed to the
serialized copy of all the Puts in the other two designs.

4.3 Computation-Communication Overlap

In this section we measure the communication-computation overlap obtained by our
designs. In our design, the helper thread is always assigned to the same CPU as the
main thread. However, using other CPU’s in the multi-core systems to run the helper
thread is not a realistic solution, hence this limits the overlap achievable. The overlap
experiment, considered the time spent by the receiver without computation as the
basic communication time. We introduce a comparable amount of computation in the
receiver process in the overlap test. If the overall latency of the receiver does not
change it signifies a 100% overlap of the computation and the communication. As seen
in Figure 5(b), with the basic design, there is zero overlap and this is expected.

With the helper thread based design, due to low transmission time of small mes-
sages, the overlap achieved is minimal. But for higher message sizes (> 128K), because
the helper thread ensures progress the lock is acquired quickly and the sender can



initiate all the data transmissions. This transmission time is now overlapped with com-
putation time. With the I/OAT based design, the tranmission time is overlapped with
computation time as in the previous case. Additionally, the copy operations progress
concurrently with the computation, thus giving a significantly higher overlap value. We
see upto 25% with 4MB message sizes using the I/OAT design.

4.4 Effect on Caches

To evaluate the effect of our designs on the caches we designed an experiment to mea-
sure the L2 caches misses incurred. The experiment performs passive synchronization
based one-sided operations to a target rank, while the target rank performs a compu-
tation. We measure the L2 cache misses seen by the computation loop. At the end of
each loop of the computation the two ranks synchronize and repeat the computation
and one-sided communication. We use the oprofile Linux profiler to measure the L2
cache misses incurred.

As seen in Table 1 we see that the basic design has a high L2 cache miss rate. Due
to the iterative nature of the test we see that the program suffers from the compulsary
misses during the computation loop. However, completing the one-sided communication
at the synchronization point pollutes the cache and some of the compulsary misses
reoccur for next iteration. The helper thread based design, has a high cache miss rate
due to the same L2 cache being shared by two threads. Each thread brings in data to
the cache that is evicted by the other thread. The third column shows the lowest cache
miss numbers, for the design with I/OAT offload. The primary reason being I/OAT
moves data from memory to memory and hence the CPU caches remain unaffected.
The computation loop alone without any communication suffers from a total of 358,000
L2 misses. This experiment clearly demonstrates the efficiency of the I/OAT offload
design with respect to CPU caches.

Table 1. L2 Cache misses

Message size Basic design Design with helper thread Design with I/OAT

32K 591,500 889,000 376,000

256K 467,500 849,500 396,500

1M 692,500 668,000 374,000

4M 799,500 555,500 366,000

5 Related Work

Several MPI-2 implementations support the one-sided communication model, MPICH2
[3], MVAPICH2 [5], OpenMPI [4], are some of the open-source implementations of MPI-
2. Thread based design of passive synchronization have been proposed in [9], however
their designs do not solve the CPU contention issue when the main progress thread
executes the communication progress. Also, the naive usage of an helper thread, leads
to the helper thread consuming CPU even when no one-sided communication exists.
Our approach defines the helper thread as a generic progress thread that can progress
any communication event seen on the network. Asychronous progress for rendezvous
communication using a thread based approach has been studied in [2].

I/OAT feature has been used to achieve asynchronous memory copy in the con-
text of data-centers [8, 6, 7]. The Linux TCP/IP receive stack introduced the Network
DMA feature using I/OAT to reduce server overheads. Our work differs in the aspect



that we use I/OAT to offload data movement on the target side in MPI-2 one-sided
communication.

6 Conclusions
The one-sided (RMA) communication model in MPI provides one-sided semantics to
the application writers. The passive one-sided communication mode can minimize the
coordination between the origin and target process and can ideally provide good com-
putation communication overlap. However, this requires hardware support from the
networks in the form of RDMA read/write and remote locking capabilities. When the
network cannot provide such capabilities, the implementation is usually done on top
of two-sided semantics leading to sub-optimal performance.

Thus efficient designs of the one-sided interface needs to be explored on RDMA-
incapable networks. In this paper, we present a common basic design of implementing
the one-sided interface over two-sided communications. We extended the basic design
by proposing a new helper thread based design to ensure quick communication progress
in passive one-sided models and an I/OAT copy offload based design to alleviate CPU
consumption. The experimental evaluations showed significant performance benefits for
large messages when I/OAT offloading is used. Using the I/OAT engine provided the
added benefit of keeping the caches unpolluted, a major side-effect in memcpy based
designs. In this work we use Infinipath network as a case-study, however the designs
presented are generic and are applicable to other RDMA-incapable interconnects (such
as naive 1/10 Gigabit Ethernet) and systems with DMA based copy support.

For future work we plan to extend our design to utilize an interrupt driven I/OAT
completion semantics (which current I/OAT drivers do not support). Such an exten-
sion will further reduce CPU consumption. We also plan to evaluate the effectiveness
of our designs on applications by developing one-sided versions of common scientific
applications.
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