
Designing and Evaluating MPI-2 Dynamic Process Management Support for
InfiniBand ∗

Tejus Gangadharappa, Matthew Koop, Dhabaleswar K. Panda
Department of Computer Science and Engineering, The Ohio State University

{gangadha, koop, panda}@cse.ohio-state.edu

Abstract

Dynamic process management is a feature of MPI-2 that

allows an MPI process to create new processes and man-

age communication with these processes. The dynamic cre-
ation of processes allows application writers to develop mul-

tiscale applications or master/worker based programs. Al-
though several MPI implementations support this feature we

are not aware of any studies on the issues in designing the dy-

namic process management interface and benchmarking of
dynamic process framework. In this paper we design a MPI-

2 dynamic process management interface over InfiniBand.

We consider two alternative designs using Unreliable Data-
gram (UD) and Reliable Connection (RC) transport modes of

InfiniBand with two job startup models. In our evaluations

we found that having an UD based-design allows for much
higher spawns rates with existing job launch frameworks. We

also design a set of micro-benchmarks to evaluate the per-

formance of our design and other MPI libraries. Finally, we
provide an evaluation of the dynamic process framework us-

ing a re-designed ray-tracing application.

Keywords: MPI-2, Dynamic Process Management, InfiniBand

1 Introduction

Large-scale deployments of clusters continue to achieve
new heights in performance and scale. Two major compo-
nents that affect performance are the interconnect between
compute nodes and the application programming interface
and implementation.

The Message Passing Interface (MPI) is currently the
most dominant model for programming parallel computers
today. The MPI standard was first defined in 1994 and was
designed to include the attractive features of existing mes-
sage passing systems such as PVM [4]. The MPI specifica-
tion defined a standard interface for communication, provid-
ing both point-to-point and collective communication primi-
tives in a static runtime environment.

∗This research is supported in part by U.S. Department of Energy
grants #DE-FC02-06ER25749 and #DE-FC02-06ER25755; National Sci-
ence Foundation grants #CNS-0403342 and #CCF-0833169; Wright Cen-
ter for Innovation grant #WCI04-010-OSU-0; grants from Intel, Mellanox,
Cisco, and Sun Microsystems; Equipment donations from Intel, Mellanox,
AMD, Advanced Clustering, IBM, Appro, QLogic, and Sun Microsystems.

The static model of MPI-1 means the number of tasks is
fixed at job launch time. This restriction restricts the applica-
tion ability to spawn additional tasks for portions of the ap-
plication or to expand and contract with compute node avail-
ability. As a result, the MPI-2 specification added support
for dynamic process management support. This allows MPI
applications to create and communicate with new processes,
thus providing a new paradigm for programming MPI appli-
cations. Unfortunately, unlike many other MPI operations,
there are no standard mechanisms for determining the perfor-
mance of implementations of dynamic process management.

Several popular MPI implementations (OpenMPI,
MPICH2) currently support dynamic processes, however
there had not been any investigation on efficient design of
the MPI dynamic process interface and the benchmarking of
the dynamic process interface. Our work explores the design
issues of the dynamic process interface, introduces new
microbenchmarks to evaluate performance of the dynamic
process interface and finally presents an evaluation of our
design on InfiniBand.

In this paper we design MPI-2 dynamic process support
for MPI over InfiniBand. Unlike traditional Ethernet mod-
els, additional setup requirements are required for Infini-
Band. Efficient design of dynamic process management over
InfiniBand is important as it is a very popular interconnect
in commodity clusters. Our designs were implemented in
MVAPICH2: [11] a MPI library for InfiniBand and iWARP.
We also address the lack of standardized metrics for deter-
mining the performance of dynamic process management by
proposing a new set of benchmarks. We evaluate our de-
sign and the design of the OpenMPI dynamic management
framework using these benchmarks. Dynamic process man-
agement is being used in grid application design and multi-
scale applications[13]. To model a real-world application,
we evaluate a ray-tracing application that was re-designed to
use the dynamic process model versus the traditional MPI
ray-tracing application.

The rest of the paper is organized as follows: In Sec-
tion 2 we present an overview of the dynamic process man-
agement interface. An introduction to InfiniBand and its ca-
pabilities are presented in Section 3. Section 4 presents the
various issues involved with designing a high-performance
dynamic process management solution. In Section 5 we pro-
pose a number of new benchmarks to evaluate the perfor-
mance of dynamic process management implementations. In

1

Section 7 provides an evaluation of the various design op-
tions proposed using benchmarks and Section 8 provides an
application evaluation. Section 9 cites work related to dy-
namic process management and finally Section 10 provides
conclusions and offers future work in this area.

2 MPI and Dynamic Process Management

This section provides a brief overview of MPI commu-
nicators and the MPI-2 dynamic process management inter-
face. We also discuss an application use-case that uses the
MPI dynamic process interface.

2.1 MPI Communicators

An MPI process is described by a (rank, process group)
pair. An MPI communicator encapsulates the ranks and the
process group for which the ranks are described. All MPI
communications are described in the context of some com-
municator. A communicator is a software construct that
defines a group of processes and an context (tag/identifier)
for communication within that group. MPI operations
use the rank and communicator context information to
decide the target rank within the process group. The
MPI COMM WORLD is a pre-defined communicator that
allows for communication between all processes of the job.
MPI allows programs to create new communicators to ad-
dress a specific sets of processes. The above type of com-
municator is called intra-communicator: intra because they
handle communication within the process group.
MPI defines another type of communicator called the

inter-communicator. Inter-communicators have a local pro-
cess group and a remote process group and all communica-
tion is always between a process in the local group and a
process in the remote group. Figure 1 illustrates the working
of an inter-communicator. The data is being sent from rank
0 on the left group to the rank 0 on the right group.

Figure 1. Inter-communicator

The dynamic process interface in MPI-2 uses inter-
communicators to connect together two existing intra-
communicators and facilitate communication between the lo-
cal and remote process groups. This allows an existing MPI
application with a local process group to spawn a new set
of processes; which now forms the remote group. The local
and remote groups form an inter-communicator and both the
groups can now exchange messages. Further, MPI allows
us to create a new intra-communicator that includes all the
running processes (local and remote).

2.2 Dynamic Process API

The MPI standard defines three ways of creating or join-
ing new processes into existing MPI jobs. In our description
of the interface we call the spawning process the parent-root
and the root of the spawns as the child-root.

• MPI Comm spawn

int MPI_Comm_spawn(char *command, char *argv[],

int maxprocs, MPI_Info info,

int root, MPI_Comm comm, MPI_Comm *intercomm,

int array_of_errcodes[])

The function starts maxprocs copies of command pro-
cess. The function is collective over the communi-
cator comm, i.e. the function does not complete un-
til all processes in the communicator have created the
inter-communicator and the root process performs the
role of the parent-root. The newly created set of pro-
cesses form an MPI COMM WORLD of their own.
The root of the spawned process group uses the function
MPI Comm get parent to discover if it was spawned
from an existing MPI process. The API uses the
accept/connect interface between the parent-root and
child-root to exchange rank and process group infor-
mation. The function returns intercomm, an inter-
communicator which contains the spawns in the re-
mote group. The MPI application can now exchange
messages with the newly created processes using inter-
comm. The MPI standard does not specify where and
how the processes were started and leaves it to the job
scheduling infrastructure to manage. It only provides a
information structure info to propagate any hints to the
job scheduling framework.

• MPI Comm accept / MPI Comm connect:

int MPI_Comm_accept(char *port_name,

MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_connect(char *port_name,

MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

This API facilitates a client-server computing model
to MPI processes with the server process using the
MPI Comm accept to wait for incoming connection
on port name. The client uses MPI Comm connect
to connect to the port name. port name is an imple-
mentation and interconnect specific string that identi-
fies a process. The resulting inter-communicator in-
tercomm now allows the client process group to ex-
change messages with the server process group. As
with MPI Comm spawn, the accept/connect calls are
collective over the communicator comm and the root
act as the root ranks in the connection establishment.
Once the connection is created, both process groups can
communicate with the remote groups using the inter-
communicator.

• MPI Comm Join:

2

int MPI_Comm_join(int fd, MPI_Comm *intercomm)

Using this interface, two processes with an existing
TCP/IP connection described by the socket sockfd es-
tablish an inter-communicator and start MPI message
exchange. The inter-communicator describes a single-
ton local group and a remote group in this case. The
socket is used to exchange MPI port information, fol-
lowed by an MPI connection creation using the ac-
cept/connect interface. The socket is never used forMPI
communication.

3 InfiniBand

InfiniBand is a popular processor and I/O interconnect
that has become popular and is enjoying wide success due
to low latency (1.0-3.0µsec), high bandwidth and other fea-
tures. Over 25% of the Top500 [1] fastest supercomputers
show InfiniBand as the interconnect being used. The In-
finiBand network device is also referred to as Host Channel
Adapter (HCA).

3.1 Communication Model

The InfiniBand communication model uses two queues
called the send queue and the receive queue, together called
a queue pair (QP). Send and receive work requests (WRs)
are posted in these queues and the completion of the request
is indicated by putting a completion entry in the completion
queue (CQ). Completion can be detected by polling the CQ.
InfiniBand also supports an event-based completion model
that can be used for asynchronous completion.

3.2 Transport Services

InfiniBand defines four transport modes: Reliable Con-
nection (RC), Unreliable Datagram (UD), Reliable Datagram
(RD) and Unreliable Connection (UC). Of these, RC and UD
are required to be implemented in any InfiniBand-compliant
HCA. RD is not required and is not implemented in any cur-
rently available devices.
The RC model is a connected reliable model and the most

popular service. An RC QP can be used to communicate with
another dedicated RC QP. Thus using RC for n peers requires
each peer create at least n-1 QPs to be fully-connected. RC
provides most of the InfiniBand features such as RDMA and
atomic operations.
The UD transport service is unconnected and unreliable.

No message delivery guarantees exist. The main advantage
of UD is that a single UD QP can communicate with any
other UD QP in the system. They are not explicitly con-
nected as in RC. Instead, to address a message to another QP
in the system the Local Identifier (LID) and the QP Number
(QPN) can be used. The LID can roughly be thought of as an
IP address and QPN a port in InfiniBand terminology. The
downsides of UD are that reliability must be taken care of

in the application and only a single Maximum Tranfer Unit
(MTU) of data (2KB on most HCAs) can be sent at a time.
Thus, the software must perform the packetization. Despite
these downsides, previous work has shown that MPI applica-
tions benefit from UD transports due to lower overheads [7].

4 Design

In this section we describe our design for the dynamic
process management framework. Figure 2 shows the archi-
tecture of theMPI-2 dynamic processmanagement. TheMPI

Figure 2. Dynamic Process Management
framework

application uses the API described in Section 2 to spawn new
tasks. An MPI design has to handle the startup of the new
tasks and the three parts of the startup are the spawn phase,
scheduling phase and the communication phase.

4.1 Spawn phase

The spawn design requires the MPI application talk to the
job manager. This is accomplished using a common proto-
col between the dynamic process management API and the
job launcher. In our designs, we consider two job launch
schemes, the Multi-Purpose Daemon (MPD), which is the
default scheme in MPICH2 [10] and mpirun rsh, a MVA-
PICH2 specific startup manager based on the ScELA [12]
architecture. The job launcher interface defines a protocol
that is used to propagate the parent’s port information, size
of the new job, command and arguments.

4.2 Scheduling the tasks

MPI-2 standard does not define a way to do task place-
ment. The task scheduling is performed by the startup agent
or a job management system. Scheduling of dynamic tasks
requires the job manager to maintain global history of dy-
namic tasks and place tasks based on this history. Our imple-
mentation uses MPD or mpirun rsh to schedule tasks. Both
tools place tasks in a round-robin manner, but suffer from

3

the drawback that multiple spawns are scheduled to the same
nodes resulting in imbalance. The studies in [2] have ad-
dressed this issue in LAM-MPI by suggesting various task
placement mechanisms to maintain load balance.

4.3 Communication phase

To design the spawn interface we require the parent to re-
quest a spawn and wait in the MPI Comm accept interface to
establish the inter-communicator. The communication phase
begins with the child-root of the spawned process group con-
necting back to the parent to exchange process group infor-
mation. To establish the inter-communicator the processes
need to know the process group ID, the size of the remote
process group and the context ID to be used. Additionally,
implementations may require a way to identify each remote
rank independently to exchange messages. In our design
each rank is uniquely identified by their UD queue pair num-
bers and the LID. This information is exchanged between the
root processes and broadcast within their local groups. Fig-
ure 3 shows the flow of information required to implement
the spawn interface.

Figure 3. Flowchart of spawn

4.3.1 Communication methods

Every spawn requests results in the child-root connecting
to the parent process to exchange information. An appli-
cation that spawns tasks frequently will incur the overhead
of this connection establishment and communication for ev-
ery spawn. Thus, to efficiently design the spawn interface
we need lightweight connection establishment protocols and
as noted in Section 3 there are different transport modes for
InfiniBand that we can use for this designing this phase:

• Reliable Connection (RC): Reliable but connection-
oriented. There is significant overhead to communicate
with a new process.

• Unreliable Datagram (UD): Unreliable and connection-
less. There is a very low overhead to communicate with
a new process. Software must perform segmentation of
messages over the MTU (often 2KB).

If the amount of data to be exchanged between the lo-
cal and remote roots is small then using UD provides ben-
efits. Since the data size is small providing segmentation is
cheap and there is no connection overhead. As the number
of spawned process in a group goes up, the data size will
increase. In this case using the RC may provide a benefit.

4.3.2 MPI Comm spawn

To perform the spawn, we first create the connection infor-
mation of the parent that is passed to environment of the
spawned children. This is managed via environment vari-
ables and propagated by the job manager. The parent process
advertises a port in the form of an LID and two UD queue
pair numbers. One of the UD queue pair numbers is utilized
for the accept/connect interface. The other UD queue pair
number is used for RC QP connection establishment [14].
Once the processes are spawned, the parent process waits for
the child-root of the remote group to connect back.

4.3.3 MPI Comm connect

The spawned process group collectively performs the con-
nect. Only the child-root connects to the parent process,
while the other ranks wait for remote group information. We
have two possible designs at this point, using RC for message
exchange versus using UD.

• UD: If the amount of data to be exchanged with remote
root is small then it is more efficient to use a direct UD
exchange. In this mode, the child-root sends the pro-
cess group size, process group ID and context ID for
the communicator in a single UD message. The parent-
root acknowledges the exchange and sends its process
group ID, group size and context ID. Both the ranks
broadcast the remote group information within their
own MPI COMM WORLD. In the next step, both root
processes exchange the connection information within
their local groups. In our design the connection infor-
mation consists of the LID and UD QPN. In applica-
tions that spawn often and spawn few processes the UD
direct exchangemodel is more scalable and quicker than
creating short-lived RC connections.

• RC: If an application spawns large jobs and spawns are
infrequent, the connect API uses the second UD QP
number to establish an RC connection with the remote
root. This connection establishment is according to the
algorithm defined in [14]. Following the message ex-
change, the two root ranks establish a RC connection
that is used to exchange process group information.

4

At the end of the above stage each process has the
information required to independently create the inter-
communicator to communicate with the remote group. The
inter-communicator can now use regular MPI communica-
tion using the point-to-point, remote memory access (RMA)
or collectives.

5 Designing Benchmarks for Dynamic Pro-
cess Management

To the best of our knowledge, there are currently no met-
rics or standard applications to benchmark various designs
and implementations of MPI-2 dynamic process manage-
ment. To address this need we design a set of benchmarks
that are useful to measure performance of a MPI-2 library.
The benchmarks are similar to the existing OSU Benchmark
suite [9] released with the MVAPICH/MVAPICH2 software.

5.1 Spawn Latency

The spawn latency benchmark measures the time taken to
perform the MPI Comm spawn routine. We time the exe-
cution of this function in the parent-root process. The time
to spawn is an important metric as it is the measure of the
overhead in using dynamic process management. Minimiz-
ing this overhead is vital if dynamic processes are to be used
in MPI applications. Due to involvement of system resources
and job manager framework, the measured values of the la-
tency has significant variation. The benchmark averages the
latency over a large number of runs.

5.2 Spawn Rate

The spawn rate benchmark measures the rate at which
an implementation is able to perform the MPI Comm spawn
routine. It is calculated by spawning jobs continuously and
finding the rate at which the implementation is able to create
new MPI jobs. The benchmark does not consider the time
for disconnecting of the inter-communicator. Spawn Rate is
an important metric as it can estimate the scalability of our
design. To minimize the effect of spawned jobs on the spawn
rate we put the spawned process to sleep until the benchmark
is complete. This is required as multiple jobs will be sched-
uled to the same cores as the benchmark progresses.

5.3 Intercommunicator pointtopoint latency

Sending point-to-point MPI data across an inter-
communicator requires us to send data from a local group to
a remote group. This inter-group message latency is an im-
portant metric as designs may have better optimizations for
intra-communicators than inter-communicators. With inter-
communicators, message delivery has an additional overhead
of mapping from the (local process group, rank) to the (re-
mote process group, rank). In some designs, such as ours, no
connections are setup between ranks of the local and remote

process groups. Connections are setup on-demand, when the
ranks really need to communicate. The benchmark thus mea-
sures the effective latency due to the connection establish-
ment and the data transfer. The inter-group latency calcu-
lates an average latency for a range of data sizes, between
two ranks.

6 Distributed Rendering with Dynamic Pro-
cess Management

Graphics rendering is a highly parallelizable activity. Dis-
tributed renderingworks by distributing each frame to be ren-
dered to the compute nodes of a cluster. A frame can usually
be rendered independently of other frames and the only com-
munications involved are the initial frame data distribution
and final collection of rendered images. Rendering can pro-
grammed easily using a master-slave model. Render farms
are common in Computer Graphics Imagery (CGI) industry,
with the farms hosting several render servers that can be used
by clients.

To demonstrate the feasibility and real-world application
of the dynamic process interface we designed a dynamic pro-
cess version of POV-Ray, a popular, open-source ray-tracing
application. Using our design, a graphics programmer can
decide at execution time the optimal number of compute
nodes required for the job and spawn the rendering on the
nodes. There have been MPI parallelization efforts on POV-
Ray [3], but these implementations use a static runtime envi-
ronment.The dynamic process interface can be programmed
to have an changing environment in which we can expand or
contract the available slave resources. This is similar in con-
cept to a render farm and this paradigm can be programmed
using the MPI-2 interface.

We will present our evaluations with POV-Ray in Section
8.

7 Performance Evaluation

We use a 64-node Xeon cluster with each node having 8
cores and 6 GB RAM. The nodes are equipped with Infini-
Band DDRHCAs and 1 GigE NICs. We present results using
a 64x8 layout, which uses all 512 cores, with cyclic alloca-
tion of ranks. We also present a result with block allocation
of ranks. Our designs were implemented in the MVAPICH-
2 library. We evaluate our design in MVAPICH2 as well as
OpenMPI, another popular MPI library.

7.1 Spawn Latency

Figure 4 shows the results of running the spawn latency
benchmark. We present five results in the graph, mvapich2-
MPD-RC: which uses only RC connections and MPD for
startup, mvapich2-mpirun rsh-RC: which uses RC connec-
tions andmpirun rsh for startup,mvapich2-MPD-UD, which
uses UD for initial information exchange and MPD for

5

startup andmvapich2-mpirun rsh-UDwhich uses UD for ini-
tial information exchange, mpirun rsh for startup and Open-
MPI: which shows the latency results for the OpenMPI li-
brary. As seen in Figure 4, the RC and UD implementations
perform almost equally when MPD is used for very small job
sizes. For job size of 32 and beyond the UD design shows a
slight benefit. With mpirun rsh we see a that the UD design
provides a lower spawn latency. The mvapich2-mpirun rsh-
RC and OpenMPI perform similarly (up to 128 processors)
as both use a connection based startup model with similar job
launch mechanism. However, for 512 processes, mvapich2-
mpirun rsh designs perform better than OpenMPI. On the
job startup angle, we find the MPD startup mechanism is
faster than mpirun rsh for small job size, however for larger
jobs mpirun rsh is more scalable. This is due to the fact that
MPD maintains a ring-of-daemons on all nodes, spawning a
new job on a node just requires a TCP/IP message to be sent
to the daemon. MPD, however has higher startup latency as
number of ranks grows. mpirun rsh is a daemon-less startup
manager based on ScELA architecture[12]. It incurs higher
overhead for small job launches, but it is highly scalable and
provides very low latency for higher job sizes.

The second set of results we present in Figure 5 are the
the spawn latency with block allocation of ranks. This is an
important result as it shows the effect of HCA contention on
the spawn time. As seen in the graph, when there are multiple
jobs per node, the UD spawn design performs better than the
RC design, as the UD model has lesser startup overhead. The
UD design is more relevant here as job allocation is generally
block distributed. The UD design is simpler and lightweight.
OpenMPI performs very similar tomvapich2-mpirun rsh-RC
in this benchmark for up to 256 processes. However, for 512
processes mvapich2-mpirun rsh designs perform the best.

7.2 Spawn Rate

The spawn rate benchmark is evaluated with 16-nodes of
the cluster, for a total of 128 cores. The benchmark mea-
sures the rate of sustained spawn supported by our design.
The reported value is the number of spawns/second with in-
creasing job sizes. Figure 6 shows the results of the bench-
mark running on our design. We see that the UD design us-
ing MPD job manager provides the best spawn rate. The
relatively higher cost of creating and destroying RC queue
pairs leads to a slower spawn rate with RC. As we have seen
mpirun rsh startup has a higher initial overhead and results
in a lower spawn rate, however it scales very well and main-
tains a steady spawn rate with increasing job size. OpenMPI
performs similar to mpirun rsh and has a low spawn rate for
small jobs. Only mvapich2-MPD designs are able to provide
a high spawn rate for small jobs. The spawn rate is an impor-
tant metric to consider when designing an MPI application
with frequent job spawns. The benchmark clearly shows that
to have a high spawn rate we need a low-overhead connec-
tion mode (like UD) and an MPD-like startup framework.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 512 256 128 64 32 16 8 4 2 1

T
im

e
 t

a
k
e

n
 (

s
)

No. of processes spawned

mvapich2-MPD-RC
mvapich2-MPD-UD

mvapich2-mpirun-rsh-RC
mvapich2-mpirun-rsh-UD

OpenMPI

Figure 4. 512 cores: Cyclic rank allocation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 512 256 128 64 32 16 8 4 2 1

T
im

e
 t

a
k
e

n
 (

s
)

No. of processes spawned

mvapich2-MPD-RC
mvapich2-MPD-UD

mvapich2-mpirun-rsh-RC
mvapich2-mpirun-rsh-UD

OpenMPI

Figure 5. 512 cores: Block rank allocation

7.3 Intergroup Latency

The inter-group latency is a basic latency test to measure
the difference between intra-communicator latency and inter-
communicator latency. As we see in Figure 7 for small mes-
sage sizes, the mvapich2 inter-communicator exchange has a
slightly higher latency. This higher latency is due to search-
ing of process group and managing the translation from local
group to remote group. For large messages, the latency of
both the message exchanges are almost equal with very lit-
tle variation and the data transfer component dominates and
the process group translation cost does not affect overall la-
tency. OpenMPI does not show any difference between inter-
communicator and intra-communiators. However, OpenMPI
does perform slightly better thanMVAPICH2 for larger mes-
sages. This is due to the higher rendezvous threshold utilized
by the OpenMPI library compared to MVAPICH2.

6

 0

 2

 4

 6

 8

 10

 12

 128 64 32 16 8 4 2 1

S
p

a
w

n
 r

a
te

 (
s
p

a
w

n
/s

e
c
o

n
d

)

No. of processes spawned

mvapich2-MPD-RC
mvapich2-MPD-UD

mvapich2-rsh-RC
mvapich2-rsh-UD

OpenMPI

Figure 6. Spawn rate

 0

 5

 10

 15

 20

 25

 30

 35

 1 4 16 64 256 1024 4096 16384 65536

T
im

e
 (

u
s
)

Message size

mvapich2-Intra-communicator latency
mvapihc2-Inter-communicator latency
OpenMPI-Intra-communicator latency
OpenMPI-Inter-communicator latency

Figure 7. Inter-group latency

8 Application-Level Evaluation

The final results we present are the evaluations of a dy-
namic process POV-Ray derived ray-tracing application. We
implemented a parallel version of POV-Ray to use the MPI-2
dynamic process interface. We compare the results of using
our RC design, UD design and traditional static runtime par-
allel POV-Ray. For our evaluation we render a 3000x3000
glass chess board with global illumination. Figure 8 shows
the results of our evaluation.

As seen in the graph, the dynamic process framework
adds very little overhead to the overall execution of the ap-
plication. Until 32 processors the speedup factor is almost
the same for all three designs. Beyond 32 processors, the
cost of startup and parallelization starts to accumulate and
the dynamic version incurs some slowdown.

Evaluating real-world problems clearly shows the feasi-

 1

 4

 16

 64

 256

 1024

 4096

 64 32 16 8 4 2

T
im

e
 t

a
k
e

n
 (

s
)

No. of processors used

mvapich2-MPD-RC
mvapich2-MPD-UD

mvapich2-mpirun-rsh-RC
mvapich2-mpirun-rsh-UD

Traditional MPI (mvapich2)

Figure 8. Parallel POV-Ray evaluation

bility of the dynamic process framework. Moreover, using
dynamic processes gives more control to the application pro-
grammerwho can intelligently decide the parallelization fac-
tor and placement of the jobs at run-time. Additionally, us-
ing the dynamic process framework applications can dynam-
ically change size and scale of the application which is a key
benefit.

9 Related Work

The architecture of a dynamic process creation framework
for MPI was described by Gropp and Lusk [5]. The MPI-2
standard [4] defined the process creation andmanagement in-
terface. The standard defined only the process creation inter-
face leaving the job scheduling to the MPI implementation.
Marcia Cera et al [2] have explored the issue of improving

scheduling of dynamic processes. Their solutions are aimed
at load balancing jobs across nodes of a cluster and providing
novel ways of scheduling dynamic processes across a cluster.
Several researchers have explored using dynamic pro-

cesses for fault-tolerance in MPI applications [8]. Kim
et al. [6] explored the design and implementation of dy-
namic process management for grid-enabled MPICH. How-
ever, their work did not explore the design of the MPI-2 dy-
namic process interface, but implemented a new MPI inter-
face MPI Rejoin that allows processes to join existing pro-
cess groups.

10 Conclusions

With increasing clusters andmulti-cores, MPI has become
the dominant parallel programmingmodel. However, several
large applications have traditionally used the master/slave
programming model. The MPI-2 dynamic process interface
can be used in the master/slave model. Additionally, MPI-
2 dynamic process primitives provide a client-server API as

7

well.

In this paper we have addressed the design perspective of
an efficient dynamic process interface. We implemented our
designs and evaluated them on MVAPICH2, a popular MPI
implementation for InfiniBand. The lack of benchmarks in
this area was addressed and we designed new benchmarks
to evaluate our designs. Our study draws the following con-
clusions on designing and evaluating the dynamic process
framework.

• An MPD-like daemon based startup model is required
for supporting frequent task spawning. The spawn rate
benchmark clearly shows the superiority of the daemon-
based startup model.

• MPD suffers from very high latency for large job sizes.
For very large job launches, the ScELA [12] architec-
ture has proved to be highly scalable and reliable. Thus,
mpirun rsh based startup models are required for man-
aging large jobs.

• Lightweight communication primitives are better for
the task startup phase. The benchmarks show the ad-
vantage of using a UD model for InfiniBand. Similar
lightweight transport schemes (such as UDP) should ap-
ply in other environments (such as 10GigE).

• MPI Applications don’t incur heavy overhead in using
the dynamic process framework. The evaluation of the
ray-tracing application clearly demonstrates the feasi-
bility of the dynamic process paradigmwith the benefits
of dynamically growing or shrinking jobs.

In the future we hope to explore designing applica-
tions with non-static job sizes using the MPI-2 inter-
communicator merge operations. We also hope to explore
the area of job scheduling for dynamic tasks in more detail.

11 Software Distribution

The dynamic process management designs, discussed in
this paper, will be available with the upcoming MVAPICH2
release. The new benchmarks designed for evaluating dy-
namic process management interface of MPI-2 libraries will
be integrated with the standard OSU benchmarks [9] and
made available to the community in the near future.

References

[1] TOP 500 Supercomputer Sites. http://www.top500.org.

[2] Márcia C. Cera, Guilherme P. Pezzi, Elton N. Math-
ias, Nicolas Maillard, and Philippe Olivier Alexandre
Navaux. Improving The Dynamic Creation of Pro-
cesses in MPI-2. In PVM/MPI, pages 247–255, 2006.

[3] Alessandro Fava, Emanuele Fava, and Massimo
Bertozzi. MPIPOV: A Parallel Implementation of POV-
Ray Based on MPI. In Proceedings of the 6th European
PVM/MPI Users’ Group Meeting on Recent Advances

in Parallel Virtual Machine and Message Passing In-
terface, pages 426–433, London, UK, 1999. Springer-
Verlag.

[4] MPI Forum. MPI: A Message Passing Interface. In
Proceedings of Supercomputing, 1993.

[5] W. Gropp and E. Lusk. Dynamic process management
in an MPI setting. In SPDP ’95: Proceedings of the
7th IEEE Symposium on Parallel and Distributeed Pro-

cessing, page 530, Washington, DC, USA, 1995. IEEE
Computer Society.

[6] SangbumKim, NamyoonWoo, and Heon Y. Yeom. De-
sign and Implementation of Dynamic Process Manage-
ment for Grid-Enabled MPICH.

[7] M. Koop, T. Jones, and D. K. Panda. MVAPICH-Aptus:
Scalable High-Performance Multi-Transport MPI over
InfiniBand. In IEEE Int’l Parallel and Distributed Pro-
cessing Symposium (IPDPS 2008), April 2008.

[8] Ewing Lusk. Fault Tolerance in MPI Programs. Spe-
cial issue of the Journal High Performance Computing

Applications, 18:363–372, 2002.

[9] OSU Microbenchmarks. http://mvapich.cse.ohio-
state.edu/benchmarks/.

[10] MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/.

[11] MVAPICH2: High Performance MPI over InfiniBand
and iWARP. http://mvapich.cse.ohio-state.edu/.

[12] J. Sridhar, M. Koop, J. Perkins, and D. K. Panda.
ScELA: Scalable and Extensible Launching Architec-
ture for Clusters. In International Conference in High
Performance Computing (HiPC08), December 2008.

[13] Angela Violi and Gregory A. Voth. AMulti-scale Com-
putational Approach for Nanoparticle Growth in Com-
bustion Environments. InHPCC, pages 938–947, 2005.

[14] Weikuan Yu, Qi Gao, and D.K. Panda. Adaptive con-
nection management for scalable MPI over InfiniBand.
Parallel and Distributed Processing Symposium, Inter-

national, 0:81, 2006.

8

