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Abstract

Recently several types of complexes have been proposed for topological analysis of data
lying on a manifold in a high dimensional space. The effectiveness of the method in practice
surely depends on the computational costs of constructing these complexes. The com-
plexes such as restricted Delaunay, alpha complex, Čech and witness complex are difficult
to compute in high dimensions. As an alternative, Rips complex, a well known structure in
algebraic topology, has been proposed for computing homological information. While their
computations are easy, their size tends to be large. We propose a Rips-like complex called
geodesic complex which has smaller size than the standard Rips complex. The gain in size
results from the fact that a geodesic complex is built by approximating intrinsic distances
on the embedded manifold whereas a Rips complex is built with extrinsic distances in the
embedding space. In the course of the development, we connect among various existing
results which may find further use in topological analysis of data.
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1 Introduction

A considerable amount of interest has been generated recently in applying geometric and topo-
logical techniques to data analysis in high dimensional spaces. Assuming that the data is
sampled from a low dimensional manifold lying in a high dimensional space, algorithms that
‘learn’ different properties of the manifold are the focus of these works. We are specifically
interested in extracting the topology (homological information) of the manifold from its point
data.

The low dimensional version of the problem known as curve and surface reconstruction in
two and three dimensions have been studied vigorously in the past decade. Many concepts and
techniques that ensure topological and geometric guarantees for the output have resulted from
this endeavor, see e.g. [1, 2, 3, 8, 13]. This line of research also got extended to high dimensional
space to the manifold learning problem [7, 8, 12]. These extensions are theoretically sound but
are not practical mainly because they dwell on data structures such as Delaunay triangulations
and alpha shapes that have impractically high computational cost in large dimensions. This is
why alternative data structures such as witness complex, Čech complex, and Rips complexes
have been suggested very recently [10, 22]. Among them it appears that Rips complex is an
attractive choice as it can be computed more easily than the others. Taking this view point,
Chazal and Oudot [10] show how one can build a hierarchy of Rips complexes from a point cloud
data to compute the homology of the sampled manifold with topological persistence [15, 24].
Our work is motivated by this development.

Given a point data P sampled from a manifold M ⊂ R
d, a Rips complex of P is computed by

collecting all simplices whose edges have lengths less than an input parameter. The metric used
for calculating lengths is taken as the metric of the embedding space which is the Euclidean
space R

d here. We propose to replace this extrinsic metric with the intrinsic metric of the
manifold M . The reason is that, the Rips complex, with the intrinsic metric is lighter in size
than the one computed with the extrinsic metric; see Table 1. Unfortunately, it is not possible
to compute lengths with the intrinsic metric since M is not given. We circumvent this problem
by computing a graph connecting points in P that allows approximation of geodesic distances
in M . A complex which we call geodesic complex is built using these approximate geodesic
distances. We show that, geodesic complexes are interleaved with geodesic Čech complexes
allowing computations of the homological ranks of M as in [10].

One of our main departures from the earlier methods is that we consider intrinsic metric of
the manifold which has not been studied very closely in the context of topology detection in
high dimensions. It has been used for other related problems in data analysis. We name a few.
Tenenbaum et al. used intrinsic metric in their well known multidimensional scaling technique
for dimensionality reduction [23]. Gao et al. [16] consider extracting topological information
using complexes that use intrinsic metric but their study is restricted to two dimensional do-
mains. Clarkson [6] presents several results that connect Riemannian geometry with various
strategies of sampling manifolds in high dimensional spaces. In our case, we are not concerned
with the sampling of the manifold but with deciphering topological properties of the manifold
from a given sample. Nevertheless, concepts from Riemannian geometry play a key role in both
cases.

Geodesics and some of their properties are essential for developing our algorithm. In sec-
tion 2 we present these concepts and justify why a sampling condition defined via intrinsic
metric is not too restrictive compared to a standard sampling condition with an extrinsic met-
ric. In section 3 we introduce geodesic complex and their properties. In particular, we show
that it interleaves with the Čech complex giving us an interleaved homology sequence from

1



which the homology of M can be derived by persistence. Following Chazal and Oudot [10],
we build a sequence of subsamples of increasing size. This allows us to approximate the true
geodesic distances at least for a range of scale. The algorithm and its justification is described
in section 4. We conclude with a discussion in section 5 which alludes to possible extensions
and future research.

2 Geodesics

Let M ⊂ R
d be a compact, smooth manifold without boundary. Assume that the metric in M

is induced by the scalar product < ·, · > in R
d. A curve γ: I ⊂ R → M is a geodesic if the

vector representing the rate of change of the tangent γ ′(t) has no component along M for all
t ∈ I. More formally, the covariant derivative (defined by Riemannian connection) D

dt
(γ′(t))

is 0 for all t ∈ I. Given a vector u in the tangent space TMp at a point p ∈ M , there is a
geodesic γ(t) where γ(0) = p and γ ′(0) = u/||u||. We denote this geodesic as γ(t, p, u). Notice
that any two points p and q in M may have multiple geodesics between them. Among them,
the ones minimizing the length(if they exist) are called the minimizing geodesics between p
and q. Since M is compact, it is geodesically complete meaning that any two points admit a
minimizing geodesic. One can define a distance metric dM :M × M → R where dM (p, q) is the
length of a minimizing geodesic between p and q in M . The usual Euclidean distance metric
d: Rd × R

d → R satisfies d(p, q) 6 dM (p, q) for any p, q ∈ M ⊂ R
d.

2.1 Geodesic radii

We will deal with geodesic balls that are counterpart of Euclidean balls defined with Euclidean
metric. A geodesic ball B(p, r) of radius r centered at point p ∈ M is the union of all points
x ∈ M so that dM (p, x) < r. Notice that geodesic balls are open in M . The exponential map
expp:TMp → M is defined as expp(u) = γ(||u||, p, u). This map projects an Euclidean ball
B(0, r) centered at p = 0 in TMp with radius r to a geodesic ball B(p, r) ⊂ M if r is sufficiently
small. In fact, this defines a well known intrinsic quantity ρi(M) for M called injectivity
radius. The injectivity radius ρi(p) at p ∈ M is the supremum of r so that the restriction
expp: (B(0, r) ⊂ TMp) → (B(p, r) ⊂ M) is a diffeomorphism. Define ρi(M) = infp∈M{ρi(p)}.

We are interested in geodesic balls centered at p that have an additional property similar
to the convexity property of the Euclidean balls. A set X ⊂ M is convex if for any two points
p, q ∈ X, there is a unique minimizing geodesic γpq between p and q and γpq is contained in
X. We can define the convexity radius ρc(p) at p ∈ M as the supremum of r where B(p, r) is
convex. Extending we define the convexity radius ρc(M) = infp∈M{ρc(p)}.

For our results we will need that the input data is a dense sample of a smooth, compact,
manifold M ⊂ R

d without boundary. In earlier works, this density is measured relative to an
extrinsic distance such as local feature size [1, 2], reach [21], weak feature size [9] and other
variants [8]. Here we will define density relative to the convexity radius, an intrinsic distance.
A natural question is how are the two quantities related. Specifically, can the convexity radius
be too small requiring a large number of samples to satisfy the density condition?

We find out that the convexity radius of M is not much smaller than the reach of M . Let
A(M) denote the medial axis of M . The reach ρ(M) is infx∈M,y∈A(M){d(x, y)}. The relation
between the convexity radius ρc(M) and the reach ρ(M) is derived via sectional curvature of
M . Skipping a formal definition of sectional curvature (available in any standard Riemannian
geometry book, e.g. [14]), we only mention that for a point p ∈ M , and two vectors u, v ∈ TMp,
the sectional curvature κp(u, v) measures the Gaussian curvature of the surface formed by the
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geodesics going through p and being tangent to the plane spanned by u and v. Let κ(M) =
supp,u,v{|κp(u, v)|}. The following result connects sectional curvature and reach.

Proposition 2.1 For a smooth compact manifold M ⊂ R
d without boundary, κ(M) 6

2
ρ(M)2

.

Proof. We use some of the concepts from Riemannian geometry and a result from [21] to
prove this claim. Given two vectors u, v ∈ TMp from two vector fields on M , one has a bilinear
symmetric form B:TMp × TMp → TM⊥

p that maps u, v to a vector in the normal space

TM⊥
p . Let η be any unit vector in the normal space TM⊥

p and u, v be any two unit vectors in
the tangent space TMp. It is known that there exists (see [21]) a linear self-adjoint operator
Lη:TMp → TMp so that

< η,B(u, v) >=< u,Lηv > and ||Lη|| 6
1

ρ(M)
. (1)

We claim that |B(u, v)| 6
1

ρ(M) . Indeed, for η = B(u, v)/||B(u, v)||

||B(u, v)|| =< η,B(u, v) >=< u,Lηv >6 ||u||.||Lη ||.||v|| 6
1

ρ(M)
. (2)

We extract another result from Riemannian geometry (see do Carmo [14], Theorem 2.5)
which is due to Gauss.

κp(u, v) = κ̄p(u, v)+ < B(u, u), B(v, v) > −||B(u, v)||2. (3)

where κ̄p(u, v) is the sectional curvature of the embedding space containing M . Since R
d has

zero sectional curvature at all points, we have κ̄p(u, v) = 0. Applying the inequality of 2 we get

|κp(u, v)| 6 | < B(u, u), B(v, v) > |+ ||B(u, v)||2 6 ||B(u, u)||.||B(v, v)||+ ||B(u, v)||2 6
2

ρ(M)2
.

The claim of the proposition follows since κp(u, v) is independent of the choice of the two vectors
u, v for the plane spanned by u and v.

The above proposition with a result in [11] provide a lower bound on the convexity radius.

Theorem 2.1 For a smooth compact manifold M ⊂ R
d, ρc(M) > min{ρi

2 , πρ(M)√
2

}.

Proof. We extract from Chavel [11] that ρc(M) > min{ρi(M)
2 , π√

κ(M)
}. This relation in combi-

nation with Proposition 2.1 gives the desired bound.

The injectivity radius ρi(M) is one of the fundamental intrinsic quantities of M and various
lower bounds have been derived for different classes of M . We collect the following result from
standard sources in Riemannian geometry [14, 19].

Proposition 2.2 Let M ⊂ R
d be a compact, smooth manifold with positive sectional curvature

κ(M). Then, ρi(M) > min{ π√
κ(M)

, `(M)
2 } where `(M) is the length of the shortest non-trivial

geodesic loop in M . In particular,

• if M is not simply connected, ρi(M) > π

2
√

κ(M)
.

• if M is even dimensional and simply connected, ρi(M) >
π√

κ(M)
.

• if M is odd dimensional, simply connected, and κ(M)/4 6 κp(u, v) 6 κ(M), ρi(M) >
π√

κ(M)
.
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2.2 Čech complex and homology

Let P be a discrete subset of M . Our plan is to form a sequence of simplicial complexes using
the points in P and compute the homology of M from the homology of these complexes. We
will build a sequence of complexes called geodesic complexes out of the data points which we
will show interleave with a sequence of geodesic Čech complexes. Then, applying an approach
of Chazal and Oudot [10], we will be able to show how the homology of M can be computed
from a pair of geodesic complexes. For this result, we need that the geodesic Čech complexes
capture the topology of M . The use of geodesic balls and convexity radius play a key role in
this respect as Lemma 2.1 and the discussion afterward show.

We are interested in convex geodesic balls. An useful property of these balls is that they
intersect in convex sets. Let ∩Xi denote the intersection of sets {Xi}.

Proposition 2.3 The set ∩B(pi, ri), i = 1, .., k, is either empty or convex if ri 6 ρc(pi).

Proof. Let x, y ∈ M be any two points in ∩B(pi, ri) if it is not empty. Since ri 6 ρc(pi), the
ball B(pi, ri) is convex. It follows that the unique minimizing geodesic between x and y in M
belongs to each B(pi, ri) for i = 1, ..., k. Therefore, this geodesic also belongs to ∩B(pi, ri).

Lemma 2.1 The set ∩B(pi, ri), i = 1, ..., k, is either empty or contractible if ri 6 ρc(pi).

Proof. Let X = ∩B(pi, ri). If X is not empty, consider a point p ∈ X. Since X is convex
by Proposition 2.3, the unique minimizing geodesic connecting p and any point x ∈ X lies
within X. This property of X makes it a subset of B(p, ρi(p)) by a standard result on geodesics
(Corollary to Proposition 2.2 in [14]). Then, by definition of injectivity radius ρi(p), there is
W = exp−1

p (X) where the restriction of expp on W is a diffeomorphism. The set W ⊂ TMp has
the property that, for any u ∈ W , tu ∈ W where 0 6 t 6 1. This is because if γ(||u||, p, u) ∈ X,
so is γ(t||u||, p, tu) by the convexity of X. But, then W being a star of p in TMp is contractible.
Then, by diffeomorphism, X is contractible.

Lemma 2.1 is the basis of our claim that the geodesic Čech complexes built with appropriate
parameters capture the topology of M . For a set of balls ∪B = {B(pi, ri)}, defined with any
metric at {pi ∈ P}, one has a natural simplicial complex given by the intersection pattern
of these balls. The Čech complex C(P,∪B) is defined by the collection of simplices {σ =
[pi1 , pi2 , ..., pik ]} where ∩B(pij , rij ) is non-empty. The well known Nerve Theorem of Leray
states that C(P,∪B) is homotopy equivalent to ∪B if each nonempty intersection ∩B(pij , rij ) is
contractible [20]. If the metric is Euclidean, ∩B(pij , rij ) is convex since a set of Euclidean balls
may intersect only in a convex set. Lemma 2.1 allows us to apply Nerve Theorem to geodesic
balls with radii smaller than the convexity radius. The corresponding geodesic Čech complex
becomes homotopy equivalent to M if the union of balls cover M .

The observation above could be the basis of an algorithm that could compute a geodesic
Čech complex with an appropriate parameter and obtain the homology of M from it. However,
there are two main difficulties in applying this idea. First, it is impossible to compute whether
two geodesic balls intersect or not if M is not given. Second, determining the appropriate radii
of the geodesic balls is nontrivial. For the first, we resort to the geodesic complex as defined
later. For the second, we adopt a technique of interleaving complexes and hence homology
groups for a range of radii as proposed in [10].

The homology groups of topological spaces are invariants under topological equivalence.
We refer the reader to Hatcher [17] for definitions of homology groups. For a topological space
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T , we denote its kth homology group by Hk(T ). Assume that the coefficient ring over which
homology is defined is a field so that Hk(T ) is a vector space. The dimension of Hk(T ) is the
kth Betti number of T . A continuous map f :T → T ′ between two spaces T and T ′ induces a
homomorphism f ∗:Hk(T ) → Hk(T

′) between their homology groups. In our case, f will be the
inclusion map i:T ⊆ T ′ which will induce a homomorphism i∗:Hk(T ) → Hk(T

′).
Consider a set of geodesic balls Bε

i = B(pi, ε) for a discrete set P = {pi ∈ M} where
∪Bε

i = M . Then, if ε 6 ρc(M), each non-empty intersection Bε
i1
∩ ... ∩ Bε

ij
is contractible

according to Lemma 2.1. Applying Nerve Theorem, we obtain that C(P,∪Bε
i ) is homotopy

equivalent to M . Writing Cε(P ) = C(P,∪Bε
i ) we get that Cε(P ) is homotopy equivalent to M

if ε 6 ρc(M).
The condition that ∪Bε

i = M is fulfilled if P is dense in M . We define the density of P as
follows.

Definition 1 A discrete set P ⊂ M is an ε-sample of M if each closed geodesic ball B(x, ε),
x ∈ M , contains at least one point in P . We say P is a tight ε-sample if P is an ε-sample and
there is a x ∈ M so that B(x, ε) ∩ P = ∅ but B(x, ε) ∩ P 6= ∅.

Clearly, if P is an ε-sample of M , ∪B(pi, α) = M for α > ε. Since the homotopy equivalence
translates to isomorphism at the homology levels, we have the following lemma.

Lemma 2.2 Let P be an ε-sample of M . Then, Hk(Cα(P )) is isomorphic to Hk(M) for ε <
α 6 ρc(M).

3 Geodesic complex

We cannot compute Cα(P ) since we do not know M . To overcome this difficulty, we propose a
new complex called geodesic complex that interleaves the Čech complexes when parameterized
by the density of P . The geodesic complex is built using an approximation of the geodesic
distances with the Euclidean distances since we have no way of computing exact geodesic
distances.

Let Gδ(P ) denote a graph with the vertex set in P where any two points p, q ∈ P are joined
by an edge if and only if d(p, q) 6 δ. The discrete geodesic distance dGδ (p, q) is defined as the
shortest path distance between p and q in Gδ.

Definition 2 Given two positive reals α, δ, a geodesic complex, Gα
δ (P ), is a collection of sim-

plices with vertices in P where a simplex σ is in Gα
δ (P ) if and only if each edge pq of σ satisfies

dGδ (p, q) 6 α.

Notice that Gα
δ (P ) differs from the usual Rips complex in measuring the edge lengths which

are given by the discrete geodesic distance metric dGδ instead of the Euclidean metric d.
Discrete geodesic distances approximate true geodesic distances in M if P samples M ade-

quately. Consequently, the complex Gα
δ (P ) captures topological information of M only if P is

a dense sample of M , and α and δ are chosen appropriately. Before we establish an approxi-
mation of the geodesic distance dM with the discrete geodesic distance dGδ , we need a result on
approximating the geodesic distance dM (p, q) between two points p, q ∈ M with the Euclidean
distance d(p, q). We use the following result of Bernstein et. al [4]. Let 1

r0
= maxγ,t{‖γ̈(t)‖}

where γ varies over all unit speed geodesics in M and t ∈ R.

Proposition 3.1 For any two points p, q ∈ M , if dM (p, q) 6 πr0, then d(p, q) > 2r0 sin(dM (p,q)
2r0

).
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Lemma 3.1 For any two points p, q ∈ M , if dM (p, q) 6 ρ(M)/2, then d(p, q) > 9
10dM (p, q).

Proof. First, we observe that r0 is at least ρ(M). Recall the definition of η and B(·, ·) from
the proof of Proposition 2.1. For any point γ(t) on a geodesic γ one has

< η,B(γ̇(t), γ̇(t)) >=< η, γ̈(t) >6
1

ρ(M)

which implies ||γ̈(t)|| 6
1

ρ(M) . The claim follows.

Second, sin(t) > t − t3/6 for t > 0. Plugging this into the bound given by Proposition 3.1
and writing ` = dM (p, q), we get

d(p, q) > (1 − `2

24r2
0

)` > (1 − `2

24ρ(M)2
)`.

Since ` 6 ρ(M)/2, we have

d(p, q) > (1 − 1

96
)` >

9

10
dM (p, q).

Notice that the choice of the factor 9
10 is a little arbitrary. We could have taken the factor 95

96
which would tighten other constants slightly. In approximating exact geodesic distances with
the discrete geodesic distances we need both a lower and an upper bound on the approximation.
For the lower bound we use Lemma 3.1 and a result of Niyogi et al. [21]. For the upper bound
we use a result of Bernstein et al. [4] directly.

Lemma 3.2 If P is an ε-sample of M , then 9
10dM (p, q) 6 dGδ (p, q) 6 (1 + 4ε

δ
)dM (p, q) for any

p, q ∈ P and 4ε 6 δ 6
ρ(M)

4 .

Proof. Let p = p0, p1, ..., pk = q be the sequence of vertices on the shortest path between p
and q in Gδ(P ). We have dGδ (p, q) = Σk−1

i=0 d(pi, pi+1). To obtain a lower bound on dGδ (p, q), we
need a lower bound on d(pi, pi+1) for each i. We could apply Lemma 3.1 only if dM (pi, pi+1) is
at most ρ(M)/2. However, the assumption of the lemma puts an upper bound of ρ(M)/4 only
on d(pi, pi+1) but not on dM (pi, pi+1). To circumvent this difficulty, we apply a result Niyogi
et al. [21]. It says that

dM (x, y) 6 ρ(M) − ρ(M)

√

1 − 2d(x, y)

ρ(M)
if d(x, y) 6 ρ(M)/2.

We can apply the above result since d(pi, pi+1) 6 δ 6 ρ(M)/4 6 ρ(M)/2 by assumption.
Therefore, for each i,

dM (pi, pi+1) 6 ρ(M) − ρ(M)

√

1 − 2d(pi, pi+1)

ρ(M)
6 2d(pi, pi+1) 6 ρ(M)/2.

Now applying Corollary 3.1, we get

dGδ (p, q) = Σk−1
i=0 d(pi, pi+1) > Σk−1

i=0

9

10
dM (pi, pi+1) >

9

10
dM (p, q).
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The upper bound on dGδ(p, q) follows directly from Theorem 2 in [4]. This theorem requires
that, P is an ε-sample of M , δ > 4ε, and Gδ(P ) contains all edges pq for which dM (p, q) 6 δ.
All these conditions are satisfied here.

Our strategy will be to construct a graph Gδ(P ) and hence Gα
δ (P ) with δ > 4ε where P is

an ε-sample. By appealing to Lemma 3.2, we show that this complex is sandwiched between
two Čech complexes.

Lemma 3.3 Let P be an ε-sample of M where 4ε 6 δ 6
ρ(M)

4 . Following inclusions hold:

C α
4 (P ) ⊆ Gα

δ (P ) ⊆ C 10α
9 (P ).

Proof. The geodesic complex Gα
δ (P ) connects any two p, q ∈ P where dGδ (p, q) 6 α. It follows

from Lemma 3.2 that dM (p, q) 6
10
9 α. Consider a simplex [p0, p1, .., pk] in Gα

δ (P ). For each
pi ∈ {p0, .., pk}, the geodesic ball B(pi,

10
9 α) contains all points in {p0, ..., pk} since dM (pi, pj) is

at most 10
9 α for all j ∈ {0, .., k}. Hence Gα

δ (P ) ⊆ C 10α
9 (P ).

To show the other inclusion, consider a simplex σ ∈ C α
4 (P ). Any edge pq of this simplex

satisfies dM (p, q) 6
α
2 . Therefore, this simplex appears in Gα

δ (P ) since dGδ (p, q) 6 2dM (p, q) for
δ > 4ε according to the right inequality in Lemma 3.2.

Lemma 3.4 Let P be an ε-sample of M where 4ε 6 δ 6
ρ(M)

4 . Following sequence of homo-
morphisms between homology groups is induced by inclusions:

Hk(C
α
4 (P )) → Hk(Gα

δ (P )) → Hk(C
10α
9 (P )) → Hk(G

40α
9

δ (P )) → Hk(C
400α
81 (P )) (4)

Furthermore, if 4ε 6 α 6
81
400ρc, and i∗:Hk(Gα

δ (P )) → Hk(G
40α
9

δ (P )), then (image i∗) is isomor-
phic to Hk(M) written as (image i∗) ≈ Hk(M).

Proof. The sequence of homomorphisms is induced by inclusions in the respective complexes
which is asserted by Lemma 3.3. Furthermore, if 4ε 6 α 6

81
400ρc, Lemma 2.2 implies

Hk(C
α
4 (P )) ≈ Hk(C

10α
9 (P )) ≈ Hk(C

400α
81 (P )) ≈ Hk(M).

So, in the sequence 4, Hk(Gα
δ (P )) and Hk(G

40α
9

δ (P )) are sandwiched between three homology
groups whose ranks are equal to the rank of Hk(M). Following the approach of [10] one can

show that rank(Hk(Gα
δ (P )) → Hk(G

40α
9

δ (P ))) = rank(Hk(M)). Since we are working on homol-
ogy groups that are vector spaces (coefficient ring is a field), the equality in their ranks implies
isomorphism between them.

4 Algorithm

We wish to apply Lemma 3.4 to determine the homology group of M from P ⊂ M . For this,
we need δ > 4ε. Also, δ should not be too large compared to ε. For otherwise α, which we
will take as a factor of δ, will not satisfy the upper bound of 81

400ρc as needed in Lemma 3.4.
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In essence, we need an estimation of ε where P is an ε-sample. Often ε is estimated with
k-nearest neighbor distances where the choice of k is somewhat arbitrary. This is recognized as
one of the main problems in well known data analysis algorithms such as MDS or PCA [18, 23].
We propose to subsample P to estimate the right scale for computing the geodesic graph. We
follow a strategy of Chazal and Oudot [10] for building a series of geodesic complexes from the
given data. Subsamples are used both for building a series of geodesic complexes and also for
computing an appropriate geodesic graph.

We compute a nested sequence of subsamples {p0} = L0 ⊂ L1 ⊂ ... ⊂ Lk = P where
Li+1 = Li ∪{pi+1} with pi+1 being the furthest point in P \Li from Li. Next lemma is the key
to estimating δ for building Gδ(Li). Let Qp be the set of points in P \ Li which have p ∈ Li as
the closest point among all points in Li. Let q be the furthest from p among all points in Qp.
Let δp = d(p, q). If Qp is empty, take δp to be 0. Define δ = maxp{δp}.

Lemma 4.1 If Li ⊂ P is a tight εi-sample and P is an ε-sample of M respectively, then for
ε < εi 6 ρ(M)/2, one has 9

10 (εi − ε) 6 δ 6 εi.

Proof. Consider a point x ∈ M so that dM (x,Li) = εi. Since Li is a tight εi-sample such a
point exists. Let w be the closest point to x in P \ Li. We claim that w is also the closest
point to x in P . If not, there is a point in Li which is closest to x in P . Then, dM (x,Li) 6 ε
contradicting that ε < εi.

We have dM (w, x) 6 ε since P is an ε-sample. Let p be the closest point to w in Li. Then,

dM (w, p) > dM (x, p) − ε > dM (x,Li) − ε = εi − ε.

Since Li is an εi-sample, dM (w, p) 6 εi 6
ρ(M)

2 . We can apply Lemma 3.1 to claim d(w, p) >
9
10dM (w, p). Then, we have

δ > d(w, p) >
9dM (w, p)

10
>

9

10
(εi − ε).

This proves the lower bound on δ.
To prove the upper bound, consider the pair (u, p), p ∈ Li, u ∈ P \ Li which realizes the

distance δ = δp. Since Li is an ε-sample and u ∈ M \ Li,

δ = δp 6 dM (u, p) 6 εi.

The algorithm Topodata as delineated below computes the rank of the persistent homology
group of a pair of geodesic complexes built hierarchically. For a large range (range of εi), this
rank of the persistent homology coincides with the rank of M as Theorem 4.1 shows. This
means one can run Topodata on a data set and check the range of i for which persistent
homology between pairs of geodesic complexes built from Li remains stable. The computed
persistent Betti number in this range is the rank of Hk(M). Persistent Betti numbers can be
computed by the standard algorithm; see [15, 24].
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Topodata(P, k)

1. Initialize L = ∅;

2. While L 6= P do

(a) compute p := argmaxq∈P minr∈L d(q, r);

(b) L := L∪ {p}; P := P \ {p}; compute δ := maxq∈P minr∈L d(q, r);

(c) Compute G5δ;

(d) Compute persistence between G5δ
5δ (L) and G

200δ
9

5δ (L);

3. endwhile

Theorem 4.1 Given an ε-sample P of a smooth compact manifold M ⊂ R
d without boundary,

Topodata(P ) computes the rank of Hk(M) when L ⊆ P is an εi-sample for 14
9 ε 6 εi 6

81
2000 min{ρc, ρ(M)}.

Proof. By Lemma 4.1, we have 9
10(εi−ε) 6 δ 6 εi from which we get 4εi < 5δ 6 5εi for ε 6

9
14εi.

Since 5εi 6 81
400ρ(M) 6

ρ(M)
4 by assumption, the graph G5δ satisfies the conditions of Lemma 3.2

which enables us to approximate the geodesic distance dM by its discrete approximation with
dG5δ . Therefore, we can apply Lemma 3.4 to claim the following sequence of homomorphisms:

Hk(C
5δ
4 (L)) → Hk(G5δ

5δ (P )) → Hk(C
50δ
9 (L)) → Hk(G

200δ
9

5δ (L)) → Hk(C
2000δ

81 (L))

Then, by Lemma 3.4, rank(Hk(G5δ
5δ (L)) → Hk(G

200δ
9

5δ (L)) = rank(Hk(M)) proving the conclusion
of the lemma only if 4εi

5 6 δ 6
81

2000ρc. The lower bound is satisfied since δ >
9
10 (εi − ε) > 4εi

5
for ε 6

9
14εi. Since δ 6 εi, the upper bound is satisfied if εi 6

81
2000ρc which is an upper limit of

the stated range of εi.

Notice that we can tighten the constants so that one needs to consider the persistent ho-

mology between G(4+τ)δ
δ (L) and G(16+τ ′)δ

δ (L) for some small constants τ < τ ′ < 1. This can
be achieved by considering a graph G(4+τ)δ and requiring ε to be small enough to satisfy
(4 + τ)δ > 4εi.

5 Discussions

In this section we discuss various issues related to this work.

Complexity: Since geodesic complexes have smaller size than the Rips complexes (with the
same parameter), the time complexity analysis in [10] carries over here. Therefore, the com-
putations of the geodesic complexes including the persistence take O(c(m)|L|4) time for each
iteration as was shown in [10]. Here c(m) is a quantity that depends solely on the dimension
m of the manifold M . The computation of the geodesic graph cannot take more than O(|L|2).
Thus, the overall complexity of the algorithm is same as that of the algorithm in [10] which is
O(c(m)n5) where n is the number of given data points. However, the difference in size between
geodesic and Rips complexes (see Table 1) will have an impact on the running time in practice.
We expect that this difference is accentuated further in high dimensions.
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Noise: We assumed that the point data is noise-free, that is, they lie on M . If not, we
can assume that P lies within a small distance from M . Let p⊥ be the closest point (in
Euclidean metric) of M for a point p ∈ P and let P ⊥ = {p⊥ : p ∈ P}. We say P is an
ε-sample of M if P⊥ is an ε-sample of M and d(p, p⊥) 6 ε for each p ∈ P . Clearly, the
inclusions stated in Lemma 3.3 hold with the point set P ⊥. It can be shown that there exist
constants c1, c2 so that c1d(p, q) 6 d(p⊥, q⊥) 6 c2d(p, q). This leads to a sequence of inclusions
Cc′

1
α(P⊥) ⊆ Gα

δ (P ) ⊆ Cc′
2
α(P⊥) for some appropriate constants c′1, c

′
2 and δ where we assume

that p and p⊥ represent the same vertex at the complex level. It is not hard to observe that
this sequence can lead to a version of Lemma 3.4 for noisy data. Therefore, Topodata still
works with noisy data albeit with the constants and constraints being adjusted appropriately.

Model Vertices α
δ

Geodesic Complex Euclidean Rips Complex

3 1126429 1504055
Double-torus 12286 5 3193262 4705078

8 8475571 13314353

3 1838652 2627464
Genus3 18633 5 5160445 7830444

8 13489960 21371696

3 2235874 2773734
Botijo 23607 5 6371507 8440593

8 16809920 21778008

Table 1: Difference in number of edges between geodesic and Rips complexes for point data
on surfaces in three dimensions. As the ratio α

δ
increases, the size difference becomes more

prominent.

Extensions: One obvious extension of our method would be to accommodate larger class
of inputs such as manifolds with boundary, piecewise smooth manifolds, and even larger class
such as metric spaces. The theory of geodesics for smooth manifolds with boundaries exist and
therefore may be applied in our approach. However, extending these theories to other classes
with computational methods remains a challenging open problem.

We assumed that the manifold is embedded in Euclidean space. How about other embedding
spaces? If the metric of the embedding space is specified by some mechanism such as a distance
matrix for the data, one can apply the method of this paper assuming that the embedding
space induces a metric on the manifold. However, it would be a non-trivial exercise to extend
all required results such as approximating geodesic distances with distances in the embedding
spaces.

The geodesic complex clearly reduces the size of the Rips complex built on the extrinsic
distances. Table 1 shows some comparison data between the number of edges in the two
complexes in three dimensions. It would be still interesting to reduce the size even further
by considering some other complex. Is there a sub-complex of the geodesic complex that still
captures the topology of the manifold? We hope to address these questions in future research.
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