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Abstract

Tiling is a crucial loop transformation for generating high-performance code on modern architectures.
Efficient generation of multilevel tiled code is essential to maximize data reuse in deep memory hierar-
chies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback
and dynamic optimizations used in iterative compilation and automatic tuning. Previous parametric multi-
level tiling approaches have been restricted to perfectly nested loops, where all assignment statements are
contained inside the innermost loop of a loop nest. Previoussolutions to tiling for imperfect loop nests
have been limited to the case where tile sizes are fixed. In this paper, we present an approach to parame-
terized multilevel tiling for imperfectly nested loops. The tiling technique generates loops that iterate over
full rectangular tiles, making them suitable for compiler optimizations such as register tiling. Experimental
results using a number of computational benchmarks demonstrate the effectiveness of the developed tiling
approach.

1 Introduction

Tiling is a crucial transformation for achieving high performance, especially with deep multi-level memory
hierarchies. It is a well known technique for improving data locality and register reuse. Tiling has received a lot
of attention in the compiler community [8,12,17,29,31–33,40]. However, the majority of work only addresses
tiling of perfectly nested loops. With perfectly nested loops, tiling is possible when a band of loops is fully
permutable. From a code viewpoint, tiling involves strip mining, i.e. splitting loops intoan adjacent pair of tile
and intra-tile loops, and permutation to bring all intra-tile loops innermost. The condition for permutability of
a band of loops is that all correspondingly permuted dependence vectors must be lexicographically positive.

With imperfectly nested loops too, tiling involves strip mining – loop splitting and permutation, along with
loop distribution. The reasoning about legality of tiling of imperfectly nested loops requires a more general
dependence model than dependence vectors. The earliest works to develop approaches to tile imperfectly
nested loops [3,23–25] effectively mapped the instances of statements ofan imperfectly nested loop (of possibly
different nesting depths in the input code) into a common embedding iteration space and then performed tiling
in the framework of the common embedding space. A critical unresolved challenge with this approach is that
of developing an effective algorithm for generating efficient tiled code where lower dimensional statements are
hoisted out so that they do not have more loops surrounding them than theirinherent dimensionality - heuristics
have been proposed, but no generally effective implementation has beendeveloped to our knowledge.

A major breakthrough in efficient code generation for multiple statements in imperfectly nested loops was
achieved by the development of the polyhedral scanning algorithm of Quillere et al. [28] and its refinement
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and optimization in CLooG [6]. An innovative scheme for efficient parametrictiling of arbitrary polyhedral
statement domains was developed by Renganarayana et al. [30] and extended to efficiently generate multi-level
parametric tiled code [21]. However, this work is only applicable to perfectloop nests. The first effective
approach for tiling of imperfectly nested loops was recently developed in thePluto polyhedral transformation
framework [7]. However, it is only able to generate tiled code with fixed tile sizes. While the approach can
handle multi-level tiling, the code generation complexity grows explosively; thelatest distribution of Pluto was
found to fail for some inputs when generating multi-level tiled code.

In this paper we develop an effective approach to parametric multi-level tilingof imperfectly nested affine
loops. The importance of parametric tiling is exemplified by the highly successful ATLAS [37, 38] system for
empirical tuning of BLAS kernels. ATLAS uses parametrically tiled BLAS kernels that are repeatedly executed
on the target architecture for different problem sizes using an empiricalsearch strategy that varies the tile sizes.
The ATLAS system was manually engineered by experts with insights into tiling for optimization of BLAS
kernels. There has been much recent interest in developing generalized tuning systems that can similarly tune
and optimize codes input by users or library developers [5, 10, 35, 39]. An efficient parametric tiling tool is
extremely valuable for generating input tiled codes for such empirical tuningsystems.

The key to our approach is the exploitation of the power and effectiveness of the Quillere algorithm in
generating untiled imperfectly nested code, along with use of input scatteringfunctions (affine schedules for
the different statements) satisfying a generalized tiling condition and a geometric approach to generation of
parametric tiles by post-processing the abstract syntax tree (AST) of the loop structure generated by CLooG.

The paper is structured as follows. A discussion of various previous efforts on tiling is provided in Sec-
tion 2. We explain the key ideas behind our approach in Section 3. A detailed discussion of the algorithm
and implementation are presented in Section 4. We present experimental results in Section 5. We discuss the
benefits and constraints of our approach in Section 6. We conclude in Section 7.

2 Related Work

As discussed in the previous section, there have been several previous efforts that have addressed the tiling of
imperfectly nested loops as well as a very effective recently developed approach for generating tiled code for
perfectly nested loops involving arbitrary polyhedral statement domains. Before presenting our approach to
tiling of imperfectly nested loops, we provide some details on these previous efforts.

2.1 Code Generation in Polyhedral Frameworks

There has been significant progress over the last two decades on the development of powerful compiler frame-
works for dependence analysis and transformation of regular programs (programs with with affine loop bounds
and array access functions) [4, 7, 13, 15, 22, 27], using a polyhedral abstraction of statement domains and data
dependences. However, until recently very little attention was given to code generation, although it has a sig-
nificant impact on the effectiveness of the resulting code (we use the term“code generation” for the process of
transforming a polyhedral representation of computations back into loop structures). Recent advances in code
generation [6, 28] have made polyhedral approaches very powerful for transforming affine loop-based code.
CLooG [6,11] is a powerful state-of-the-art code generator that is widely used.

The code generation algorithm used in CLooG is based on the one developed by Quillere et al. [28]. The key
idea of the algorithm developed by Quillere et al. is that the generation of loops(along with the control code)
is performed by scanning a union of polyhedra (corresponding to statement domains, which may or may not be
disjoint) using a imperfectly nested loop. The scanning is performed either in lexicographic order of the indices
of the statement domains or in the order imposed by any given affine-by-statement schedules. The different
statement domains are embedded into a common iteration space of dimension equalto the maximum dimension
of loops in the input program. The code generation algorithm recursivelyprojects the statement polyhedra onto
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the outermost dimensions of the common embedded iteration space, separates the projections into disjoint
polyhedra, generates loops that scan the disjoint polyhedra, and arranges the loops in the lexicographic order or
according to the given affine scheduling function.

2.2 Parametric Tiling of Perfect Loop Nests

Recent work from the Colorado State University [16, 21, 30, 36] has effectively addressed parametric multi-
level tiling of perfect loop nests using the polyhedral model. The tiled code generator TLOG [36] generates
parametric single level tiled code for perfect loop nests. The TLOG algorithm decouples the problem of gen-
erating tiled code into two sub-problems: 1) scanning the tile origins, and 2) scanning the points within a tile.
A novel technique is used to scan the tile origins by generating a polyhedron(parameterized by tile sizes) that
includes all tile origins, followed by scanning of the polyhedron using CLooG [30]. A very similar approach to
decomposing the problem of tiled code generation into the above mentioned sub-problems and scanning of the
tile origins using polyhedral techniques was earlier proposed by Goumas et al. [14]. However, the approach of
Goumas et al. only handles fixed tile sizes. TLOG can only handle rectangular tiles, and hence it requires that
the input program, if not originally rectangularly tileable, be transformed to make it rectangularly tileable. Em-
pirical evaluation of TLOG on several benchmarks demonstrates that the code generation algorithm in TLOG is
efficient and that the quality of the code generated by TLOG is very good [30]. Kim et al. [21] generalized the
TLOG algorithm to develop HiTLOG [16] that can generate multi-level tiled codefor perfectly nested loops
where the tile sizes can be symbolic variables. A significant benefit of HiTLOG is that the cost of code gener-
ation for multi-level tiling is the same as the cost of single-level tiled code generation. Jimenez et al. [19, 20]
addressed parametric tiled code generation for non-rectangular iterationspaces. The code generated using their
approach suffers from significant code expansion, but involves lower overhead to scan through the full tiles in
the code.

2.3 Non-parametric Tiling of Imperfect Loop Nests

Ahmed et al. [2,3] was among the first to propose an approach for tiling imperfectly nested loops. The approach
first determines an affine embedding for each statement into a “product space” of the iteration domains of
each loop. The embedding is then optimized for locality by using another transformation matrix to achieve
permutability of the dimensions. The embedding function and the transformation are sought to minimize reuse
distances, based on a heuristic. The effect of the embedding function is tocreate a single perfectly nested loop
(albeit of a much larger dimension than finally needed), with guards createdfor each statement to ensure correct
execution. Eliminating unnecessary guards is extremely difficult. Lim et al. [23] used an affine partitioning
framework for tiling; the framework builds on an affine partitioning algorithm they proposed earlier [24, 25].
Parametric tiling is not considered in their work. Some specialized works [9,34,41] exist for tiling a restricted
class of imperfectly nested loops.

Bondhugula et al. developed Pluto [7, 26], a system for tiling arbitrary collections of imperfectly nested
loops. The Pluto system finds tiling transformations that result in data locality optimization for sequential exe-
cution and communication minimization for parallel execution. The tiling is performedusing a generalization
of the validity condition for tiling (explained in the next section), originally presented for perfectly nested loops
by Irigoin and Triolet [18]. The Pluto system requires the tile sizes to be fixed for code generation. A second
drawback of the Pluto system is that it generates multi-level tiling only for up to two levels. In our experiments,
we used a script that enables higher levels of tiling with Pluto, using the same approach to tiling as implemented
within the tool (described in [7]).
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for ( i=lbi ; i <=ubi;i+=sti ) {
for ( j=lbj ( i ); j <=ubj(i); j+=stj )

S(i , j );
}

(a) A perfectly nested loop

/∗ tiled loop ∗/
for ( it =lbi ; it <=ubi−(Ti−sti); it +=Ti) {

... (code tiled along j ) ...
}
/∗ epilog loop ∗/
for ( i= it ; i <=ubi; i+=sti ) {

for ( j=lbj ( i ); j <=ubj(i); j+=stj )
S(i , j );

}

(b) Tiling the outermost loop i

for it
[scan code to obtain lbv ,ubv]
if ( lbv < ubv) {

[prolog j ]
[ tiled j ]
[ epilog j ]

} else {
[ untiled j ]

}
}
[ epilog i ]

(c) After tiling loops i and j

i

j

Ti

Iteration space

(d) Iteration space ( tiled along i axis )

i

j

Ti

Epilog

Core tiles

Prolog
Tj

(e) Iteration space ( tiled along i and j axes)

/∗ tiled i ∗/
for ( it =lbi ; it <=ubi−(Ti−sti);it+=Ti) {

/∗ scan code∗/
lbv = MIN INT;
ubv = MAX INT;
for ( i= it ; i <=it+(Ti−sti ); i+=sti ) {

lbv = max(lbv, lbj ( i ));
ubv = min(ubv,ubj( i ));

}
if ( lbv<ubv){

/∗ prolog j ∗/
for ( i= it ; i <=it+(Ti−sti ); i+=sti )

for ( j=lbj ( i ); j <=lbv−stj;j+=stj )
S(i , j );

/∗ tiled j ∗/
for ( jt =lbv; jt <=ubv−(Tj−stj);jt+=Tj)

for ( i= it ; i <=it+(Ti−sti ); i+=sti )
for ( j= jt ; j <=jt+(Tj−stj ); j+=stj )

S(i , j );
/∗ epilog j ∗/
for ( i= it ; i <=it+(Ti−sti ); i+=sti ) {

for ( j= jt ; j <=ubj(i); j+=stj )
S(i , j );

}
} else {

/∗ untiled j ∗/
for ( i= it ; i <=it+(Ti−sti ); i+=sti )

for ( j=lbj ( i ); j <=ubj(i); j+=stj )
S(i , j );

}
}
/∗ epilog i ∗/
for ( i= it ; i <=ubi;i+=sti )

for ( j=lbj ( i ); j <=ubj(i); j+=stj )
S(i , j );

( f ) Detailed parametric tiled code

Figure 1: Parametric tiling of a perfectly nested loop
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3 Overview of Approach

Before providing a detailed description of our tiling algorithm, we first use a number of examples, figures and
pseudocode fragments to explain the key ideas behind the approach we have developed. We first begin by
discussing the approach to generation of parametric full tiles in the context of perfectly nested loops. We then
discuss the conditions under which we can tile imperfectly nested loops, followed by a sketch of our approach
to geometric separation of tiles for imperfectly nested loops.

3.1 Parametric Tiling for a Single Statement Domain.

In order to facilitate the presentation of the algorithm for tiling imperfectly nestedloops, we first explain how the
approach works in the simpler context of a single statement domain. It is quite different from the tiling approach
implemented in HiTLOG [21, 30]. Consider the simple 2D perfectly nested loop shown in Figure 1(a). The
perfect loop nest contains an inner loopj whose bounds are arbitrary functions of the outer loop variablei.
Consider a non-rectangular iteration space displayed in Figure 1(d), corresponding to the perfect loop nest in
this example. Since loopi is outermost, strip-mining or tiling this loop is straightforward (that is, to partition the
loop i’s iteration space into smaller blocks whose size is determined by the tile size parameterTi). Figure 1(d)
shows the partitioning of the iteration space along dimensioni. Figure 1(b) shows the corresponding code
structure, with a first segment covering as many “full” tiling segments alongi as possible (dependent on the
parametric tile sizeTi). The outer loop in the tiled code is the inter-tile loop that enumerates all tile origins.
Following the full-tile segment is an epilog section that covers the remainder of iterations (to be executed
untiled). The loop enumerates the points within the last incomplete group of outerloop iterations that did not
fit in a completei-tile of sizeTi.

For each tiling segment alongi, full tiles alongj are identified. For ease of explanation, we show a simple
“explicit scanning” approach to finding the start of full tiles, but the actual implementation computes it directly
for affine loop bounds by evaluating the bound functions at corner points of the outer tile extents. The approach
we develop is also applicable to general loops with arbitrary non-affine and non-convex bounds, by using
explicit scanning. The essential idea is that the largest value for thej-lower bound (lbv) is determined over the
entire range of ani-tile and it represents the earliest possiblej value for the start of a fullij tile. In a similar
fashion, by evaluating the upper-bound expressions of thej loop, the highest possiblej value (ubv) for the end
of a full tile is found. Iflbv is greater thanubv, no full tiles exist over thisi-tile range. In Figure 1(e), this is the
case for the last twoi-tile segments. For the firsti-tile segment in the iteration space (the second vertical band
in the figure, the first band being outside the polyhedral iteration space),lbv equalsubv. For the next twoi-tile
segments, we have some full tiles, while the followingi-tile segment hasubv greater thanlbv but by a lesser
amount than the tile size alongj.

The structure of the tiled code is shown in abstracted pseudo-code in Figure 1(c), and with explicit detail in
Figure 1(f). At each level of nesting, for a tile range determined by the outer tiling loops, thelbv andubv values
are computed. Ifubv is not greater thanlbv, an untiled version of the code is used. Iflbv is less thanubv, the
executed code has three parts: a prolog forj values up tolbv−stj (wherestj is the loop stride inj dimension),
an epilog forj values greater than or equal tojt (wherejt is the inter-tile loop iterator inj dimension), and
a full-tile segment in between the prolog and epilog, to coverj values between the bounds. The code for the
full-tile segment is generated using a recursive procedure that traverses the levels of nesting. The detailed tiled
code for this example is shown in Figure 1(f).

3.2 Tiling of Multi-Statement Domains

The iteration-space view of legality of tiling for a single statement domain is expressed as follows: a hyperplane
H is valid for tiling if Hdi ≥ 0 for all dependence vectorsdi [18]. This condition states that all dependences
are either along the tiling hyperplane or enter it from the same side. This sufficient condition ensures that there
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for ( i=lbi ; i <=ubi;i+=sti ) {
for ( j1=lbj1 ( i ); j1<=ubj1(i); j1+=stj1 ) {

S1(i , j1 );
}
for ( j2=lbj2 ( i ); j2<=ubj2(i); j2+=stj2 ) {

S2(i , j2 );
}

}
(a) An imperfect loop nest structure

i

j

Ti

S1a

S2a
S1b

S2b

Epilog j1

Core tiles j1

Prolog j1

Prolog j2

Core tiles j2

Epilog j2

Tj

(b) One tile segment along i dimension

for it
[scan code to obtain lbv1,ubv1]
if (lbv1 < ubv1){

[scan code to obtain lbv2 ,ubv2]
[prolog j1 ]
[ tiled j1 ]
if (lbv2 < ubv2){

[ epilog j1 + prolog j2 ]
[ tiled j2 ]
[ epilog j2 ]

} else {
[ epilog j1 + untiled j2 ]

}
} else {

[scan code to obtain lbv2 ,ubv2]
if (lbv2 < ubv2){

[ untiled j1 + prolog j2 ]
[ tiled j2 ]
[ epilog j2 ]

} else {
[ untiled j1 + untiled j2 ]

}
}

}
[ epilog i ]
(c) The final tiled code

Figure 2: Tiling an imperfectly nested loop

cannot be cyclic dependences between any pair of tiles generated usingfamilies of hyperplanes that each satisfy
the validity condition.

For a collection of polyhedral domains corresponding to a multi-statement program (from imperfectly
nested loops), the generalization of the above condition is: a set of affine-by-statement functionsφ (corre-
sponding to each statement in the program) represents a valid tiling hyperplane if φt(~t) − φs(~s) ≥ 0 for each
pair of dependences(~s,~t) [7]. The affine-by-statement functionφ maps each instance of each statement to a
point in a dimension of a target iteration space. A set of linearly independent φ functions maps each instance
of each statement into a point in the multi-dimensional target space. If eachφ function satisfies the above
generalized tiling condition, the multi-statement program can be rectangularly tiled in the transformed target
iteration space. If only a (contiguous) subset of theφ functions satisfies the generalized tiling condition, tiles
can be formed using families of hyperplanes from that subset.

Efficient code generation for multi-statement domains was a significant challenge until the Quillere algo-
rithm was developed. Its implementation in CLooG is now widely used for generating code for multi-statement
domains. The Pluto system uses CLooG for generating (non-parametric) tiled code for imperfectly nested loop
programs. However, Pluto cannot generate parametric tiled code for imperfectly nested loops. The key idea
behind our new approach to parametric tiling of imperfect loop-nests is to combine the power of the Quillere
algorithm (in sorting and separating polyhedra corresponding to multiple-statement domains) with a geometric
approach to tile separating, using the AST structure generated by the Quillere algorithm for non-tiled imper-
fectly nested loop code generation.

As elaborated later in the next section, first an input program is transformed to a target domain using scat-
tering functions that satisfy the above generalized tiling condition. For this purpose, we simply use scattering
functions generated by the Pluto system, but any set of schedules that satisfy the generalized tiling condition
can be used instead. The imperfectly nested loop structure generated by use of the Quillere algorithm is scanned
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to generate the tiled code structure as described in the next sub-section.

3.3 Geometric Separation of Tiles for Overlapping Statement Domains

We use a simple imperfectly nested loop example shown in Figure 2 to illustrate the approach to geometric tile
separation. The imperfectly nested loopi considered in this example contains two inner loops with loop bounds
that are functions of loop iteratori and other global parameters such as tile sizes and input problem sizes.
The Quillere algorithm generates efficient (non-tiled) loop code for multi-statement polyhedral domains arising
from imperfectly nested loops. Where feasible, the sorting of polyhedra within the Quillere algorithm enables
separation of statements in the point-wise (non-tiled) code. The key tiling question for this two-statement
example is: if the two statements S1 and S2 have been separated out in the point-wise code by the Quillere
algorithm, under what conditions can we also separate out tiles corresponding to these two statements? Our
answer to this question is to use the lower and upper bound values for the twostatements, (computed in a similar
manner to the perfect-nest example above) and exploit the fact that all dependences are lexicographically non-
negative in all the tiling dimensions (due to satisfaction of the generalized tiling condition).

For the example shown in Figure 2(a), sincelbv1 is less thanubv1, we have a separable set of tiles for S1,
and sincelbv2 is less thanubv2, there are also separable tiles for S2. The prolog of S2 and epilog of S1 need
to be combined and interleaved to ensure satisfaction of any dependencesbetween S1 to S2 or vice versa. The
pseudocode in Figure 2(c) shows the different possible cases to be considered and the code corresponding to
the four combinations.

4 Algorithm for Parametric Tiling of Imperfectly Nested Loops

In this section, we present details of the approach to parametric multilevel tiling.Given a sequence of arbitrarily
nested affine loops, tiling involves three steps:

1. Pre-processing: Extraction of statement polyhedra, computation of dependence polyhedra, and genera-
tion of a valid affine schedule where a band of the scheduling functions satisfies the generalized tiling
condition;

2. AST generation with preserved embedding information: Use of the Quillerealgorithm to scan the state-
ment polyhedra and generate imperfectly nested loop structure (AST), withpreservation of complete
embedding information;

3. Recursive traversal of the AST to generate parametric tiled code.

4.1 Preprocessing and AST Generation

The input to the tiling algorithm is a sequence of arbitrarily nested loops with loopbounds and array accesses
that are functions of outer loop variables and program parameters. First, the imperfect loop nest is made
rectangularly tileable, using skewing and other unimodular transformations.The required transformations can
be captured in the forms of scattering functions (or affine scheduling functions). While any suitable scheduling
functions that satisfy the generalized tiling condition (described in Sec. 3.2)may be used, for our experiments
described later, we have just used the scattering functions generated byPluto [7].

The second step in the tiling procedure is the generation of an AST for the imperfectly nested loop structure
generated by application of the Quillere polyhedral scanning algorithm. We use an adaptation of the imple-
mentation of the Quillere algorithm in CLooG to ensure that all embedding information for all statements
is explicitly preserved in the AST. Normally, CLooG generates optimized imperfectly nested code structures
where each statement is only enclosed by as many loops as its inherent dimensionality. Thus, if a multi-
statement domain corresponding to a 2D statement and a 3D statement were scanned, the output code would be
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for ( t=0;t<=T−1;t++){
for ( i=1;i<=N−2;i++) {

B[i ]=(A[i −1]+A[i]+A[i+1])/3; /∗ S1 ∗/
}
for ( i=1;i<=N−2;i++) {

A[i]=B[i ]; /∗ S2 ∗/
}

}
(a) Original code

S1 : (t′, i′) = (t, 2 ∗ t + i)
S2 : (t′, i′) = (t, 2 ∗ t + i + 1)

(b) Affine transformation (skewing)

for ( t=0;t<=T−1;t++){
B[1]=(A[1+1]+A[1]+A[1−1])/3;
for ( i=2∗t+2;i<=2∗t+N−2;i++) {

B[−2∗t+i]=(A[1+−2∗t+i]+A[−2∗t+i]
+A[−2∗t+i−1])/3;

A[−2∗t+i−1]=B[−2∗t+i−1];
}
A[N−2]=B[N−2];

}
(c) Skewed code

for ( t=0;t<=T−1;t++){
for ( i=2∗t+1;i<=2∗t+1;i++) {

B[1]=(A[1+1]+A[1]+A[1−1])/3;
}
for ( i=2∗t+2;i<=2∗t+N−2;i++) {

B[−2∗t+i]=(A[1+−2∗t+i]+A[−2∗t+i]
+A[−2∗t+i−1])/3;

A[−2∗t+i−1]=B[−2∗t+i−1];
}
for ( i=2∗t+N−1;i<=2∗t+N−1;i++) {

A[N−2]=B[N−2];
}

}
(d) Skewed code with one−time loops

S1
S2

t

i

(e) Original iteration space

t’

i’
S1
S2

( f ) Skewed iteration space

Figure 3: Example of preprocessing: 1D Jacobi code

imperfectly nested, with only two surrounding loops for the 2D statement and three surrounding loops for the
3D statement. However, this optimized code structure loses the embedding information for the 2D statement
within the 3D embedded domain. But this embedding information is essential for our approach to geometric
separation of multi-statement tiles. We have therefore adapted the CLooG code generator to explicitly generate
redundant ”one-trip-count” loops so that all statements have as many surrounding loops as the dimensionality
of the embedding target space, thereby explicitly preserving the embeddingof all statements. As we discuss
later, a post-processing step after tiling removes these redundant one-iteration loops in the final generated code
to make it efficient.

Figure 3 illustrates the preprocessing steps and the effect of our adaptation of CLooG to create redundant
loops for explicit representation of complete embedding information for all statement domains of different
dimensionalities. Figure 3(a) shows a 1D Jacobi stencil computation. Figure3(e) shows the iteration space
for the computation. It can be seen that there are data dependences with negative components, i.e., the code
is not tileable. Skewing can be done to eliminate these backward dependences. As seen in Figure 3(f), the
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iteration space after skewing no longer has backward data dependences and rectangular tiling now becomes
valid. Figure 3(b) shows the affine transformation generated by Pluto andFigure 3(c) shows the output code
after the transformation is processed using CLooG. It can be seen that there is a doubly nested loop along with
two “peeled” 1D statementsB[1]=(A[1+1]+A[1]+A[1-1])/3 andA[N-2]=B[N-2]. The output from
the adapted version of CLooG to explicitly preserve the embedding informationfor these two 1D loops in the
2D embedding domain is shown in Figure 3(d). Note that the iterator variable ofthe redundant one-time loop
is never actually used inside the scope of the loop body as its value has already been propagated properly by
CLooG. Consequently, later removal of these one-time loops is always safe. As a post-processing optimization
after tiling, these dummy one-time loops get removed from the final tiled code.

Algorithm 1 Parametric tiling algorithm
INPUT inputStmts : sequence of statements to be tiled,precedingStmts : sequence of statements that precedeinputStmts,

outerLoops : sequence of outer tiled loops
1: unprocStmts = all statements inprecedingStmts that are marked as unprocessed
2: procStmts = precedingStmts − unprocStmts

3: if inputStmts is emptythen
4: MergeunprocStmts and enclose them with intra-tile loops that correspond toouterLoops, and insert the formed loop nest

into procStmts. Then returnprocStmts.
5: end if
6: firstStmt = the first statement ininputStmts

7: remainingStmts = inputStmts − 〈firstStmt〉
8: if firstStmt is not a loopthen
9: Mark firstStmt as an unprocessed statement, and then return Tile(remainingStmts, precedingStmts + 〈firstStmt〉,

outerLoops).
10: end if
11: curLoop = firstStmt

12: Generate an explicit scanning code (scanCode) to find the latest starting value (startV al) and the earliest ending value (endV al)
of curLoop variable, for the ranges ofouterLoops tiles.

13: Generate a prolog code (prologCode) that traversesunprocStmts and the opening boundary tile ofcurLoop, enclosed with
intra-tile loops corresponding toouterLoops.

14: tiledStmts = Tile(all statements insidecurLoop body, 〈〉, outerLoops + 〈curLoop〉)
15: UsetiledStmts to generate an inter-tile loop (tiledCode) for curLoop that starts fromstartV al to endV al.
16: Generate an epilog code (epilogCode) that traverses statement instances that come aftertiledCode and are inside the closing

boundary tile ofcurLoop. Mark epilogCode as an unprocessed statement.
17: if both the lower and upper bounds ofcurLoop are free ofouterLoops iteratorsthen
18: Return Tile(remainingStmts, 〈scanCode〉 + procStmts+ 〈prologCode, tiledCode, epilogCode〉, outerLoops).
19: else
20: tileableStmts = Tile(remainingStmts, 〈prologCode, tiledCode, epilogCode〉, outerLoops)
21: untileableStmts = Tile(remainingStmts, unprocStmts + 〈curLoop〉, outerLoops), wherecurLoop has already been

marked as an unprocessed statement.
22: Generate an if-statement (ifCode) as follows: if (startV al < endV al) tileableStmts elseuntileableStmts.
23: Return〈scanCode〉 + procStmts + ifCode.
24: end if
OUTPUT The sequence of transformed statements after tiling

4.2 Tiled Loop Generation Algorithm

This section discusses the tiling algorithm used for generating parametric one-level tiled code for imperfect
loop nests. In a later section, we discuss an extension of the approach to generate multi-level tiled code.

The algorithm recursively decomposes a given imperfect loop nest into code segments that scan partial tiles
and full rectangular tiles. At each step, our task is: given an imperfect loop nest at a particular nesting level
and a set of outer tiled loops, divide the current loop into a sequence of loop nests that scan a set of tiles whose
union covers all points (in the iteration space corresponding to the given loop nest, for the ranges of the outer
tiles).
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As discussed earlier in Section 3.1, three types of code segments are generated to scan disjoint partial and
full tiles: prolog, tiled-loop, and epilog. While prolog and epilog correspond to scanning partial tiles, tiled-loop
corresponds to scanning full tiles. It is possible that a tiled statement polyhedron has empty full tiles. Hence,
we need to generate a scan code and an if-statement to verify the presence of full tiles. For ease of explanation,
let us first assume that full tiles always exist in each tiled statement polyhedron. This means that we need not
generate the scan code and the if-statement, simplifying the tiled code generation problem.

The tiled code generation procedure takes three objects as input: a sequence of ASTs at the same nesting
level that need to be tiled (A), all preceding ASTs that have previously been processed (P ), and a set of all outer
tiled loops (O) ordered from outermost to innermost. The output of the recursive procedure is a sequence of
transformed loops that scan the tiled iteration space. We useTile to denote the recursive tiling procedure,a to
denote the first AST inA, andR for the remaining ASTs inA (that are at index positions greater than or equal
to two). Given the three input argumentsA, P , andO, the following recursive procedure solves our simplified
tiling problem.

1. If A is empty, then returnP .

2. If a is not a loop, then recurse to the next AST inA (that is, Tile(R,P + 〈a〉, O)) and return the output.

3. Otherwise, perform a tail recursion on all statements that are insideA’s loop body (says) by calling
Tile(s, 〈〉, O + 〈a〉).

4. Take the transformed loops obtained from the previous step, and selectively merge all adjacent prolog
and epilog into a single loop. After that, use the transformed loops to construct a tiled loop (sayTl).

5. Generate a prolog loop (sayPl) and an epilog loop (sayEl).

6. Recurse to the next AST inA, by calling Tile(R,P + 〈Pl, Tl, El〉, O) and then return the output.

In the simplified algorithm,〈. . .〉 notation represents a sequence of objects. The “+” operator is used to
combine two sequences and the “−” operator is used to remove from the first sequence operand all elements
that exist in the second sequence operand.

Note that the generation of inter-tile and intra-tile loops is implicit in our simplified algorithm. These loops
can be derived from the givena andO. Details on generating inter-tile and intra-tile loops will be provided in
the detailed tiling algorithm later in this section.

The key idea of the tiling algorithm is to use a recursion to perform adepth-first traversalof the input
AST, and to recursively convert each loop node into a sequence of loops: a prolog loop, a tiled loop, and an
epilog loop. At each step of the recursive procedure, if all nodes at acertain nesting level have already been
transformed, all contiguous prolog and epilog originated from differentstatement polyhedra will be fused and
interleaved (Step 4). This is to ensure that any data dependences between statement instances in the two distinct
iterations domains are not violated. After that, all of these transformed loopsare combined together inside a
tiled loop. Step 5 of the algorithm generates a prolog and an epilog. The generated prolog, tiled loop, and
epilog are then returned as output of the procedure.

The general tiled code generation algorithm is shown in Algorithm 1. The samefundamental idea of the
simplified algorithm is used. The generation of inter-tile and intra-tile loops is nowincluded in the detailed
algorithm in Steps 4, 13, and 15. The tiling algorithm generates a scan code inStep 12 and also an if-statement
in Steps 20-22, both used to identify at run time whether the loop iteration domain contains full tiles. Two
recursive calls are made to produce an untiled version and a tiled version of the loop. Each generated loop
version then becomes a separate statement block of the constructed conditional statement. By recursively
creating an if-statement for each loop at one nesting level, a nested if-statement structure will be generated in
the final tiled code. Consider a 2D imperfect loop nest that hasn non-rectangular inner loops. Applying our
tiling procedure to the 2D loop nest will produce a tiled code with a total of2n possible tile cases. Note that
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although it is possible to use a simple loop to traverse all loop nodes at the same nesting level, we choose to
use atail recursion. The generation of nested if-statements becomes simple with a tail recursion. The output
of tiling the current loop node (i.e., a sequence of transformed loops) canbe replicated and passed as an input
argument to the next level of recursion for creating all possible tile casesat the innermost level of the nested
if-statements.

In the special case of rectangular loop nests, the bounds of the current loop are free of any outer loop
variables, so that the tiled iteration space has no opening boundary tiles. Consequently, no prolog loop gets
generated. Also, the scan code and the if-conditional statement need notbe produced since the rectangular
iteration domain can always be partitioned into full and partial rectangular tiles, using a tiled loop and an
epilog.

4.3 Enhancements to the Core Algorithm

We now address a number of enhancements to the core algorithm that are implemented in the tiled loop gener-
ator.

4.3.1 Multi-level Tiling

The core tiling algorithm described in Section 4.2 generates efficient parametric tiled code by separating each
statement polyhedron into partial and full tiles. Multi-level tiling is important to exploit locality in a deep
memory hierarchy. Since the tiling algorithm separates all partial and full tiles and the tiled loops that iterate
over full tiles can be known at compile time, the main tiling algorithm can be extendedto generate multilevel
tiled code. From the implementation perspective, the extension involves addinganother argument to the tiling
procedure that describes the number of level of tilings (tileLevel), and modifying the termination step (Step 4
in Algorithm 1) of the recursive tiling procedure. The termination step generates the set of intra-tile loops
that correspond to the given sequence of outer tile loops, to visit all pointsinside a tile. Hence, instead of
generating intra-tile loops, we modify this step to generatetileLevel − 1 sets of inter-tile loops, starting from
level tileLevel − 1 (as outermost) to level one (as innermost), and finally to generate another set of intra-tile
loops at the innermost level.

4.3.2 Optimizing Boundary Tiles

The approach discussed so far does not optimize the boundary tiles. Thismay result in lower performance
as the total area of all boundary tiles can generally be very large especially when large tile sizes are used at
the outermost level of tiling. Thus, it is important to optimize the boundary tiles to achieve high-performance
tiled code. Loops that scan partial tiles are the prolog and epilog codes, both generated at Steps 13 and 16
of Algorithm 1, respectively. After prolog and epilog codes are completelygenerated (enclosed with intra-tile
loops at Steps 13 and 4 respectively), we can further tile the boundary tiles by calling the multi-level tiling
procedure with a tile size that is used at the next lower level of tiling (i.e.,tileLevel− 1). In this way, all newly
formed boundary tiles can be recursively tiled and refined into smaller full and partial tiles. Figure 4 shows
an example of an iteration domain recursively tiled for three levels of tiling. From the figure we can clearly
see the difference in terms of the total area of untiled partial tiles, between using and not using boundary tile
optimization.

4.3.3 Static Determination of the Start and End of Full Tiles

In regular programs where loop bounds are affine functions of outer loop iterators and global parameters, it is
possible to statically determine the upper and lower bounds of possible full tilesthat are parameterized by tile
sizes, along each dimension of the iteration space. We determine the start (orlower bound) and end (or upper
bound) of full tiles along each dimension, starting from the outermost to the innermost. When we calculate
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Figure 4: Iteration space tiled for three levels of tiling; without boundary tile optimization (left) and with
boundary tile optimization (right)

the lower bound of full tiles along a dimension, we utilize the fact that the lower and upper bounds of the tiled
loops of the outer dimensions are already known and that the loop iterator corresponding to the dimension is
an affine function of the loop iterators of the outer dimensions. The start ofthe full tiles is evaluated from the
affine lower bound expression by substituting the loop iterators of the outerdimensions with the lower or upper
bound of the tiled loops of the outer dimensions according to the following condition: if the coefficient of a
loop iterator in the affine bound expression is positive, then we substitute it with the upper bound of the tiled
loop along the dimension, and vice versa if the coefficient is negative. In asimilar manner, we determine the
end of the full tiles.

4.3.4 Optimizing One-Time Loops

As mentioned earlier in this section, loops running exactly once are explicitly inserted into the input AST for
the tiled loop generator. Generating tiled code for loop structures that contains one-time loops using the tiling
algorithm will of course generate correct results. However, we can substantially reduce both the code generation
time and the efficiency of the generated code by post-processing to eliminate the one-time loops. In Steps 20-
22, an explicit if-condition is generated to check whether the current loopis tileable or not. This check requires
finding the start and end of full tiles, derived from directly evaluating the bound functions at the corner points
of given ranges of outer tiles. If the bounds are the same (lb = ub), which is true for one-time loops, then the
start of the full tiles will always be greater than or equal to the end of the full tiles. This implies that the current
loop is not tileable. Hence, the corresponding true case of the generatedif-statement will never be evaluated
and, therefore, will not be generated and used during code generation time. In other words, all one-time loops
are always left completely untiled.

5 Experimental Evaluation

In this section, we discuss various experiments carried out to assess the effectiveness of the developed tiling
approach. We base our comparison over two state-of-the-art tiled-code generators, Pluto [26] and HiTLOG [16].
As discussed earlier, Pluto is a polyhedral transformation framework thatcan generate tiled code for imperfectly
nested loops using fixed tile sizes. HiTLOG is a polyhedral tiled code generator that can generate parametric
tiled code for perfectly nested loops. We primarily compare our tiled code generator, PrimeTile, with Pluto
(version 0.4.1), which is the only system we are aware of that can generate tiled code for imperfectly nested
loops. In addition, for the special case of perfectly nested loops, we also compare PrimeTile with HiTLOG.
We note that PrimeTile is more general and powerful than both these compared systems: 1) Pluto can only
generate code with fixed tile sizes for imperfectly nested loops, while PrimeTile generates parametric tiled
code, suitable for direct use in generalized versions of tuning systems such as ATLAS; 2) HiTLOG can generate
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Name Description Imperfect Require Max. loop Input problem
nest skewing depth sizes

LU LU factorization Yes No 3 N = 2500
2D FDTD 2D Finite Difference Time Domain method Yes Yes 3 T = 2000, N = 2000
1D Jacobi 1D Jacobi method Yes Yes 2 T = 2000, N = 6 × 106

Cholesky Cholesky factorization Yes No 3 N = 5000
TriSolver Triangular solver Yes No 3 N = 3000

Seidel 3D Gauss Seidel No Yes 3 T = 2000, N = 2000
DSYRK Symmetric rankk update No No 3 N = 3000
DTRMM Triangular matrix multiplication No No 3 N = 3000

Table 1: Benchmarks used in the experiments

parametric tiled code only for perfectly nested affine loops, while PrimeTile generates parametrically tiled code
for arbitrary imperfectly nested affine codes.

We use a set of eight benchmarks that include linear algebra kernels andstencil computations, as listed
in Table 1. The collection of benchmarks includes three perfectly nested cases and five imperfectly nested
cases. As pointed out earlier, due to data dependences, skewing and other unimodular transformations may
be needed to make rectangular tiling valid; the need for such skewing transformation is indicated in the fourth
column. The next column displays the maximum depth level of each benchmark.The last column describes the
input sizes used for the experiments. In order to perform a fair comparison of PrimeTile, Pluto and HiTLOG,
we made use of a convenient feature of the Pluto system – the option--opt, which causes Pluto to simply
transform the code without tiling, but using exactly the same hyperplanes (scattering functions) that would have
been used to generate tiled code if the--tile option had been used. This ensures that any skewing needed to
ensure rectangular tileability of the code is performed. Intermediate CLooG files generated by Pluto are used as
inputs for HiTLOG and PrimeTile, ensuring that all three systems perform tilingon an identically pre-processed
version of the input code.

All experiments were run on a multicore Intel Xeon workstation. The workstation has dual quad-core
E5462 Xeon processors (8 cores total) running at 2.8 GHz (1600 MHz FSB) with 32 KB L1 cache, 12 MB
of L2 cache (6 MB shared per core pair), and 2 GB of DDR2 FBDIMM RAM, running Linux kernel version
2.6.25 (x86-64). We use version 4.2.4 of g++ (GCC) with -O3 optimization flagto compile the generated codes.

5.1 Efficiency of Code Generation

This section evaluates the efficiency of the code generation process with the developed tiling tool. We show
how well each tiling method scales with respect to the number of tiling levels in the generated code. Two
tiled versions are generated using PrimeTile. One version (labeled “PrimeTile(f)”) is the tiled code in which
boundary tiles are also recursively tiled (using smaller tile sizes). The otherversion (labeled “PrimeTile(n)”)
represents tiled code in which boundary tiles are not tiled at all. The time taken for code generation for the five
imperfect nest benchmarks and the three perfect nest benchmarks are given in Table 2 and Table 3, respectively.
Due to the fact that PrimeTile and Pluto can handle imperfectly nested loops, thetime taken to generate code
increases with the number of levels of tiling, while the time taken by HiTLOG remains almost the same for
increasing levels of tiling. The time taken to generate the PrimeTile(n) version increases insignificantly for
increasing levels of tiling. However, there is a trade-off with performancecompared to the PrimeTile(f) version
as illustrated later in the section. PrimeTile is implemented with the ability to control the depth of tiling
recursion for the boundary tiles. Hence, we can generate tiled versions(between PrimeTile(n) and PrimeTile(f))
that vary in the level of tiling performed for the boundary tiles.

A drawback of the Pluto system, as indicated in Section 2, is that it generates multi-level tiling only for
up to two levels. In our experiments, we use a script that extends Pluto for additional levels of tiling. Pluto
supplies the code generator (CLooG) with higher dimensional iteration domains using tile shape constraints,
using the approach proposed by Ancourt and Irigoin [4], and duplicated scattering functions for the tile space.
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1 level of tiling 2 levels of tiling 3 levels of tiling 4 levels of tiling
Pluto Prime- Prime- Pluto Prime- Prime- Pluto Prime- Prime- Pluto Prime- Prime-

Tile(f) Tile(n) Tile(f) Tile(n) +script Tile(f) Tile(n) +script Tile(f) Tile(n)
LU 0.03 0.27 0.27 0.20 0.48 0.28 - 1.59 0.28 - 6.88 0.29

2D FDTD 0.25 0.56 0.56 3.02 1.84 0.57 - 9.24 0.58 - 63.66 0.59
1D Jacobi 0.03 0.28 0.30 0.06 0.37 0.29 0.31 0.68 0.30 3.87 1.62 0.30
Cholesky 0.07 0.37 0.37 0.74 0.82 0.39 13.74 2.79 0.42 - 11.21 0.45
TriSolver 0.08 0.31 0.32 1.77 0.52 0.32 - 1.28 0.34 - 3.77 0.37

Table 2: Tiled code generation times (in seconds) of different tiling methods on imperfect nest benchmarks

1 level of tiling 2 levels of tiling 3 levels of tiling 4 levels of tiling
Pluto Prime- Prime- Hi- Pluto Prime- Prime- Hi- Pluto Prime- Prime- Hi- Pluto Prime- Prime- Hi-

Tile(f) Tile(n) TLOG Tile(f) Tile(n) TLOG +script Tile(f) Tile(n) TLOG +script Tile(f) Tile(n) TLOG
Seidel 0.02 0.32 0.320 0.09 0.06 0.85 0.325 0.09 9.57 4.10 0.34 0.10 - 221.01 0.35 0.10

DSYRK 0.02 0.26 0.26 0.12 0.05 0.34 0.26 0.11 2.63 0.69 0.27 0.11 - 1.81 0.28 0.10
DTRMM 0.02 0.26 0.26 0.11 0.10 0.38 0.26 0.09 28.42 0.85 0.27 0.09 - 2.49 0.28 0.09

Table 3: Tiled code generation times (in seconds) of different tiling methods on perfect nest benchmarks

We manually analyze the CLooG input file generated by Pluto for each benchmark. We then create a script (for
each benchmark) that parses the CLooG input file and modifies the extracted domains and scattering functions
with additional tiling dimensions using the same method that Pluto uses for up to two levels of tiling.

Pluto fails to generate tiled code for more than four levels of tiling (because ofoverflow errors in calls to
Polylib within CLooG). Our system successfully generates tiled code for any number of levels of tiling (we
tried up to 8 levels). Except for the case of one-level tiling, PrimeTile is generally faster than Pluto. PrimeTile
is implemented in Python, and hence is inherently slower than the C-based codegenerator executables in Pluto
and HiTLOG. This is why PrimeTile is slower than Pluto for one-level tiling.

5.2 Performance of Generated Tiled Code

In this section, we assess the efficiency of the tiled code generated by PrimeTile. We generate tiled code using
one level of tiling and two levels of tiling for various tile sizes. When one level tiling is used, the considered tile
sizes are2n for n ranging from 1 to 10. In the two level tiling case, the sizes of the outer tile (T2) are 128, 256,
512, 768, and 1024, whereas the inner tile sizes (T1) range from 2 toT2/2. We use square tiles just for ease
of experimentation. We generate tiled code using the three different tiled code generators for all combinations
of the tile sizes under consideration. We then measure the execution time of each generated code, and finally
select the best performing tiled code. Table 4 lists the best execution times of tiled codes generated by using
different tiling techniques.

We further optimize the best performing tiled code to show the benefits of having full tiles. For the tiled
code generated by PrimeTile and HiTLOG, we perform another low level oftiling on the best tiled code, unroll
the full tiles at the innermost level, and apply scalar replacement optimization to improve locality at the register
level. We try all possible combinations of register tile sizes with values of 1,2, and 4. In Table 4, we show the
the best execution times of tiled codes that are enhanced using unrolling andscalar replacement for PrimeTile
and HiTLOG (rows corresponding to tiling methods with suffix “(regtile)”). Pluto provides loop unroll-and-
jam facility that is adjustable using--ufactor=<factor> optimization flag. We use unroll factors ranging
from 1 to 10 to generate unroll-and-jammed code from Pluto. However, Plutodoes not apply scalar replacement
optimization. Hence, for fair comparison with Pluto, we also present the performance results of register tiled
code without scalar replacement, for PrimeTile and HiTLOG (rows in Table 4 corresponding to tiling methods
with suffix “(unroll)”). The best tile sizes and best unroll factors usedto obtain the optimized code in Table 4
are given in Table 5 and Table 6, respectively.

For imperfectly nested loops, the performance of tiled code generated by Pluto is comparable to that gen-
erated by PrimeTile. For perfectly nested loops, the performance results demonstrate that the parametric mul-
tilevel tiled code generated by PrimeTile and HiTLOG consistently outperform the fixed multilevel tiled code
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LU 2D FDTD 1D Jacobi Cholesky TriSolver Seidel DSYRK DTRMM

Pluto 12.3 68.0 26.8 40.7 30.5 108.6 36.7 38.7
PrimeTile(n) 11.5 74.4 26.5 40.5 30.9 87.1 24.3 34.6
PrimeTile(f) 11.0 70.3 26.3 38.4 29.3 86.5 23.0 33.1

HiTLOG - - - - - 89.1 22.9 34.1
Pluto(unroll/jam) 8.5 61.3 22.1 38.4 30.5 77.0 15.1 27.5
PrimeTile(unroll) 8.0 54.5 18.9 28.9 18.4 75.1 11.5 17.9
PrimeTile(regtile) 6.2 58.6 13.5 25.0 16.7 76.6 16.2 21.9
HiTLOG(unroll) - - - - - 78.5 11.4 19.7
HiTLOG(regtile) - - - - - 77.8 16.3 23.9

Table 4: Best execution times (in seconds) of different tiling methods on all benchmarks

LU 2D FDTD 1D Jacobi Cholesky TriSolver Seidel DSYRK DTRMM

Pluto (768,32) (256,32) (0,1024) (1024,32) (128,16) (256,8) (128,16) (256,16)
PrimeTile(n) (0,16) (0,16) (0,64) (0,32) (0,16) (0,4) (0,16) (0,8)
PrimeTile(f) (256,16) (128,16) (768,64) (128,16) (128,16) (128,4) (128,16) (128,4)

HiTLOG - - - - - (128,4) (128,16) (128,8)

Table 5: Best tile sizes used to generate the codes in Table 4. All tile sizes arespecified in the form of (outer
tile size, inner tile size). Zero indicates no tiling at that particular level.

from Pluto. The results also indicate that the execution times of tiled code generated by PrimeTile and HiTLOG
are almost the same.

Due to the loop unrolling and/or scalar replacement optimizations, the register tiled code performs signif-
icantly better then the code that is tiled only for different levels of caches. Also, the best unroll-jammed code
from Pluto performs worse compared to the unrolled code from PrimeTile or HiTLOG. Upon examining the
code generated by Pluto, it appears that the reason for this may be because Pluto does not separate full tiles and
partial tiles at different levels of tiling, prohibiting other potential optimizations such as loop unrolling that can
improve register locality.

Figures 5, 6, 7, and 8 show the execution times of tiled code for LU, 2D FDTD, Seidel, and DSYRK,
respectively. We show the execution times for an outer tile size that yields the best performance for each tiling
approach and five different inner tile sizes for each outer tile size (including the one giving best performance).
As shown in the graphs, the performance of PrimeTile(n) code version is the same as that of PrimeTile(f)
version for one level tiling cases, since both codes are identical. As outertile sizes increase in two level tiling
cases, PrimeTile(f) version performs better than PrimeTile(n) version. This is because the area of partial tiles
in PrimeTile(n) version that are not optimized by tiling becomes larger with higherouter tile sizes. It can be
observed in Table 5 that always only one level of tiling produces the besttiled code of PrimeTile(n) version.
Furthermore, the inner tile size of the best two-level tiled code of PrimeTile(f)version is in general the same
as that of PrimeTile(n). From the graphs, it is clear that for small inner tile sizes, tiled codes generated using
PrimeTile(f) are better than Pluto generated fixed tiled codes, and for larger inner tile sizes, they are comparable
to the fixed tiled codes generated by Pluto. For perfect nest benchmarks, PrimeTile performs better when inner
tile sizes are very small (2 and 4), and the performance becomes comparable to the HiTLOG tiled code as the

LU 2D FDTD 1D Jacobi Cholesky TriSolver Seidel DSYRK DTRMM

Pluto(unroll/jam) 3 × 3 5 × 5 6 × 6 7 × 7 2 × 2 6 × 6 8 × 8 7 × 7
PrimeTile(unroll) 2 × 1 × 2 4 × 1 × 4 4 × 1 4 × 1 × 1 4 × 4 × 1 2 × 1 × 2 4 × 4 × 4 4 × 4 × 2
PrimeTile(regtile) 4 × 4 × 1 1 × 1 × 2 4 × 4 4 × 4 × 1 4 × 4 × 1 4 × 4 × 4 1 × 4 × 4 4 × 1 × 4
HiTLOG(unroll) - - - - - 2 × 1 × 2 4 × 4 × 4 4 × 4 × 2
HiTLOG(regtile) - - - - - 2 × 1 × 2 1 × 4 × 4 4 × 1 × 4

Table 6: Best unroll factors used to generate the codes in Table 4
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Figure 5: Execution times for LU code generated by Pluto and PrimeTile

inner tile sizes increase. The higher performance difference for smallertile sizes is due to the higher control
overhead caused by the evaluation of min and max expressions and if-conditions in both Pluto and HiTLOG,
as explained later in this section.

5.3 Evaluation of Code Quality

In this subsection, we evaluate the quality of the code generated by the various tiling methods using some static
and dynamic performance metrics, including the number of lines of code and the dynamic control overhead due
to evaluation of if-conditions and max and min expressions. A detailed evaluation on the code quality based
on these metrics is presented in Table 7. It can be noted that the code generated using PrimeTile(n) version is
as compact as that generated using Pluto and HiTLOG. The expanded code generated by PrimeTile(f) version,
however, as discussed earlier in the section, yields better performance.The dynamic control overhead due
to if-conditions and max and min expressions is orders of magnitude higher in codes generated by Pluto and
HiTLOG than PrimeTile. Pluto does not generate if-conditions for perfect nest cases, but the dynamic count of
max and min expressions is very high as in the case of imperfect nests.

6 Discussion and Perspective

In this section, we provide a discussion on the benefits and constraints of the tiling approach that we have
developed. Our philosophy has been to work at the same level of separation between the transformation phase
and the code generation phase as currently manifested in polyhedral/affine compiler optimization frameworks.
Let us consider CLooG as a concrete example of a powerful polyhedral code generator. It takes as input a
description of the statement domains and the schedule (scattering functions inCLooG terminology). CLooG
generates valid code for any dependence preserving affine schedule, but the dependence information is not
explicitly present in the input to CLooG. In other words, the polyhedral transformation phase that precedes the
code generation phase works with dependence abstractions in generating a valid schedule, but only provides
the generated schedule to CLooG. Thus, CLooG only works with the constraints imposed by the scheduling
functions, and the information on the actual data dependences is not available to CLooG.
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Figure 6: Execution times of 2D FDTD code generated by Pluto and PrimeTile
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Figure 7: Execution times of Seidel code generated by Pluto, PrimeTile, and HiTLOG
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Figure 8: Execution times of DSYRK code generated by Pluto, PrimeTile, and HiTLOG

Static Dynamic
#lines #bytes #mins #maxs #ifs #mins #maxs #ifs

Pluto 45 1.6K 13 15 2 1.2G 6.05M 167.4M
LU PrimeTile(n) 87 2.8K 0 0 3 0 0 12.2K

PrimeTile(f) 423 16.9K 0 0 12 0 0 12.2K
Pluto 397 26.4K 110 93 29 74.5M 40.9M 7.4M

2D FDTD PrimeTile(n) 226 12.1K 0 0 9 0 0 15.6K
PrimeTile(f) 682 42.4K 0 0 17 0 0 29.4K

Pluto 59 2.2K 12 12 7 35.3M 187.5K 46.9K
1D Jacobi PrimeTile(n) 71 2.1K 0 0 4 0 0 34

PrimeTile(f) 200 7.7K 0 0 8 0 0 60
Pluto 122 6.2K 17 27 16 722.3M 259.6M 7.2M

Cholesky PrimeTile(n) 125 4.2K 0 0 3 0 0 12.2K
PrimeTile(f) 503 20.6K 0 0 13 0 0 94.6K

Pluto 128 4.9K 21 14 13 1.44G 58.08M 33.4M
TriSolver PrimeTile(n) 104 3.2K 0 0 3 0 0 34.97K

PrimeTile(f) 359 13.7K 0 0 7 0 0 35.5K

Pluto 31 2.0K 26 26 1 1.5G 1.6G 1
Seidel PrimeTile(n) 81 4.3K 0 0 3 0 0 249.5K

PrimeTile(f) 425 25.1K 0 0 14 0 0 465.2K
HiTLOG 57 1.99K 3 3 3 1.0G 490.0M 197.1M

Pluto 29 843 8 8 0 1.7G 903.6M 0
DSYRK PrimeTile(n) 61 1.9K 0 0 1 0 0 187

PrimeTile(f) 236 9.0K 0 0 4 0 0 210
HiTLOG 53 1.4K 3 3 1 261.4M 39.0M 3.6M

Pluto 31 899 8 8 1 951.2M 909.5M 1
DTRMM PrimeTile(n) 61 1.98K 0 0 2 0 0 140.2K

PrimeTile(f) 241 9.4K 0 0 6 0 0 562.2K
HiTLOG 57 1.6K 3 3 3 388.1M 179.9M 32.6M

Table 7: Evaluation of code quality using static and dynamic metrics on all benchmarks for different tiling
methods
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Our approach to efficient tiling of imperfect loop nests also assumes a similar separation between the trans-
formation phase and code generation phase. The transformation phase passes on a schedule to the code gen-
erator, along with a specification of a contiguous band of loops in the targetcode that is to be tiled. Just as
CLooG receives only the schedule functions and not the actual data dependences, in our implemented system,
the tiling code generator does not have information about the data dependences. For our experiments, we used
affine transforms from the Pluto system as the input to out tiling code generator. However, any schedule could
be used, as long as the generalized tiling condition (dependences are lexicographically non-negative in all tiled
dimensions) is satisfied by the schedule.

Our choice of modularization and separation of the transformation phase from the code generation phase
does mean that the tiling code generator might be forced to be conservativein some circumstances. We illustrate
this using some examples.

The key idea behind our tiling approach is that of geometric separation of tilescorresponding to instances
of multiple statements. Since no actual dependence information is available, the only assumption that can be
made is that the input schedule satisfies the generalized tiling condition, i.e. thatall dependences must be
lexicographically non-negative in the common embedded space, with respect to all the tiling dimensions. The
embedded iteration space may be the original iteration space of the program or an iteration space transformed
from the original iteration space according to suitable affine transformations to ensure that the generalized
tiling condition is satisfied. The instances of different statements of the program are embedded according to an
affine-by-statement scheduling function.

Consider the example described in Figure 9. There are two imperfect loop nests — Code A and Code
B. Both the codes have two statements, S1 and S2, S1 being a one-dimensional statement and S2 a two-
dimensional statement. The individual statement polyhedra for S1 and S2 are exactly the same for both codes,
but the dependences are different. In Code A, there is a data dependence from an instance of S1 to all instances
of S2 that have the same outer loop iterator value. In Code B, in addition to the dependence that exists in Code
A, there is a dependence from S2 to S1 as shown in Figure 9(f).

It can be seen that Code A is fully tileable along both thei andj dimensions. A tiled version of Code A
would first execute a tile of S1 (spanning a range ofi values), followed by a set of S2 tiles for the same range
of i values), and then another tile of S1 followed by a set of S2 tiles, and so on.

Figure 9(b) shows valid scheduling functions for S1 and S2 in Code A. Weuse an identity mapping for S2
(map S2(i,j) to point [i,j] in the embedded target space). Two (of many possible) valid scheduling functions
are shown for S1. Schedule S1a maps S1(i) to embedded-space point [i,0], while schedule S1b maps S1(i)
to [i,i] in the 2D target embedded space. The mapping onto the embedded space is shown in Figure 9(d) for
use of schedule S1a with S1. It can be seen that geometric separation of the tiles for S1 and S2 is feasible. In
contrast, with schedule S1b (shown in Figure 9(e)), geometric separationof tiles for S1 is not feasible. This is
because of the possibility of lexicographically non-negative dependences (such as between S2(i,j) to S1(i+1))
that would disallow tiling of S1. Given just the schedule (which implies the mappingonto the embedded target
space) but no information about the actual dependences, it is impossible torule out such a possibility. Indeed,
Code B provides such an example. As seen in 9(f), S1b is a valid schedulefor Code B. In this case, S1a is
not a schedule that satisfies the generalized tiling condition since the dependences from S2 to S1 would have a
negative component. With Code B, tiling of S1 is in fact not feasible.

The above example illustrates the possibility of conservative tiling decisions because of using a geometric
separation of tiles for multiple statements. A monolithic system that both performs polyhedral transformations
as well as code generation could possibly be developed that avoids this, but is beyond the scope of this work.
We believe that instead it would be preferable to maintain the CLooG-like separation between transformation
modules and the code generator, and seek to generate schedules like S1aand not S1b in the first place. It is
interesting that the Pluto system generates schedule S1a and not S1b for this example.
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for ( i=0;i<N;i++) {
S1: a[ i ] = a[ i ] + 5.0;
for ( j=i ; j <N; j++) {

S2: b[ i ][ j ] = b[ i ][ j ] + a[ i ];
}

}
(a) Code A

c1

c2

S2

S1

(d) Embedded iteration spaces of
S1 and S2for code A (using schedule
S1a for S1)
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(b) Schedulesfor S1 and S2

c1

c2

S2

S1

(e) Embedded iteration spaces of
S1 and S2for code A (using schedule
S1b for S1)

for ( it =0; it <N;i+=Ti) {
for ( i= it ; i <min(it+Ti,N); i++) {
S1: a[ i ] = b[ i−1][i−1] + 5.0;
}

for ( j=i ; j <N; j++) {
S2: b[ i ][ j ] = b[ i ][ j ] + a[ i ];

}
}
(c) Code B

c1

c2

S2

S1

( f ) Embedded iteration spaces of
S1 and S2for code B (using schedule
S1b for S1)

Figure 9: Tiling in embedded transformed space

7 Conclusions

Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic
optimizations used in iterative compilation and automatic tuning. Previous parametricmultilevel tiling ap-
proaches are restricted to perfectly nested loops, where all assignmentstatements are contained inside the
innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where
tile sizes are fixed. In this paper we have developed an effective approach to parametric multi-level tiling of
imperfectly nested affine loops. The key idea behind our tiling algorithm is the use of a geometric approach
to multi-statement tile separation by analysis of the AST generated by Quillere’s polyhedra scanning algo-
rithm used with schedules that satisfy the generalized tiling condition. The approach is effective in generating
loops that traverse over full rectangular tiles that are suited for potentialcompiler optimizations such as register
tiling. We have demonstrated the effectiveness of the developed tiling approach with an extensive experimental
evaluation using a number of computational benchmarks.

8 Availability of the Tiling Tool

The PrimeTile software and the modified version of CLooG are available for public download at [1].
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