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Abstract—Vehicular Internet access via open WLAN access
points (APs) has been demonstrated to be a feasible solution to
provide opportunistic data service to moving vehicles. Using an in
situ deployment, however, such a solution does not provide worst-
case performance guarantees due to unpredictable intermittent
connectivity. On the other hand, a solution that tries to cover
every point in an entire road network with APs (full coverage)
is not very practical due to the prohibitive deployment and
operational cost. In this paper, we introduce a new notion
of intermittent coverage for mobile users, called α-coverage,
which provides worst-case guarantees on the interconnection
gap while using significantly fewer APs than needed for full
coverage. We propose efficient algorithms to verify whether
a given deployment provides α-coverage and approximation
algorithms for determining a deployment of APs that will provide
α-coverage. Our algorithm can also be used to supplement open
WLAN APs in a region with appropriate number of additional
APs that will provide worst-case guarantees on interconnection
gap. We compare α-coverage with opportunistic access of open
WLAN APs (modeled as a random deployment) via simulations
over a real-world road network and show that using the same
number of APs as random deployment, α-coverage bounds the
interconnection gap to a much smaller distance than that in a
random deployment.

I. INTRODUCTION

The growing popularity of media enabled handhelds such
as vPods and iPods, and services such as vCast from Veri-
zon, indicate that there is an increasing demand for wireless
data services for mobile users. Other applications of such
services include in-vehicle entertainment, remote monitoring
and tracking of shipments in trucks, and communication within
a mobile workforce. Although technologies such as 3G data
services and upcoming WiMAX [1] can provide coverage
over large areas, they fail to provide high data rates such
as in the case of Wireless LANs (WLANs). In the shipment
monitoring service used by Walmart [2], satellite connectivity
from the trailers is used to update information on the status of
the shipped items. However, satellite connectivity and related
communication equipments are expensive.

WLANs have the potential to provide high data rate cover-
age to support such applications. But, the prohibitive cost of
deployment and management of a large number of WLAN
access points (APs) for providing full coverage, calls for
smarter, more scalable solutions that can leverage intermit-
tent connectivity provided by WLAN hotspots. Evaluation
of wireless data access by mobile users using in situ Wi-
Fi networks [6], [10], [11], [20], and in various controlled

environments [6], [14], [20]–[22] have confirmed the feasibil-
ity of WiFi-based vehicular Internet accessfor non-interactive
applications. The possibility and challenges to support certain
interactive applications, such as Web browsing, have also been
studied [6], [7].

Solutions based on intermittent connectivity of WLANs
can provide opportunistic services without any worst case
service guarantees. In busy urban areas mobile users can
hope to connect with APs more frequently than in the sub-
urban areas, but the exact frequency may drastically vary
from region to region. Thus, a user lying in a coverage hole
is unable to estimate the time to the next connection. In
order to address such coverage uncertainties, we introduce a
new notion of intermittent coverage for mobile users, called
α-coverage, and study how such coverage can be attained
by systematic deployment of additional APs to create an
economically scalable infrastructure.

Informally, a deployment of APs provides α-coverage to a
road network1, if any simple path of length α on the road
network meets with at least one AP. If the expected service
from an AP is known, then the cumulative service received
by a mobile user over a certain path can be estimated. For
a given road network, we ask the following three questions:
1) does a given deployment provide α-coverage? 2) how to
deploy a minimum number of APs to ensure α-coverage (in a
new deployment)? 3) given a deployment that does not provide
α-coverage (such as a random deployment, i.e., open WLAN
APs), how to deploy a minimum number of additional APs
to ensure α-coverage (incremental deployment)? The third
problem is a generalization of the second, and is usually more
difficult to solve.

This paper makes the following contributions.
• We present the first notion of coverage for mobile users

with intermittent connectivity called α-coverage. We de-
fine three coverage metrics that can be used in various
scenarios.

• We present efficient algorithms for coverage verification,
and factor O(log n) approximation algorithms for deter-
mining both a new and an incremental deployment.

• We evaluate the performance of random deployment and
our solutions for real road networks [3] and show that
our proposed algorithms perform significantly better than
random deployment.

1See Section II for a precise definition
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The framework and solutions presented in this paper are
immediately usable by various service provider companies
for enabling WLAN based services for mobile users. This
is because we provide a solution for planning incremental
deployment, so service providers can install few APs for large
values of α to begin with, and over time add new APs to
gradually bring down the value of α. In addition to providing
a low cost solution for supporting various existing applications
mentioned earlier, making worst-case service guarantee may
enable new applications based on intermittent connectivity.

The organization of the rest of the paper is as follows.
Section II introduces the model. Section III presents the
coverage verification algorithms. Section IV discusses the
hardness of the optimization problem. Section V presents two
approximation algorithms for incremental deployment. Section
VI discusses how certain practical issues can be considered
when applying our results to a real deployment, and future
extensions of our work. The performance of the algorithms
are presented in Section VII. Section VIII contrasts our work
with related work. Finally, Section IX concludes the paper.

II. THE PROBLEM FORMULATION

We model a road network R as a connected undirected ge-
ometric graph GR, where vertices represent the points where
the road centerline segments and the road intersections meet,
and edges represent the road centerline segments connecting
the road intersections. For a curved road segment, we introduce
artificial road intersections, so that each edge represents a
straight line segment. Let VGR and EGR denote the vertex set
and edge set, respectively. Each edge e has a length, denoted
as |e|, which is the length of the corresponding road segment.
This model has been used by some publicly available road
network databases, such as [3]. Although we are assuming an
undirected graph model, most of our results can be extended
to directed graphsas discussed in Section VI .
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Fig. 1. (a) A graph GR representing a small road network. Every
edge except (v1, v6) has unit length and (v1, v6) has length 2. (b)
A path fst of length 4 is highlighted, where s is the middle point
of (v2, v3) and t is the middle point of (v6, v7). dist(s, t) = 3. An
optimal deployment that provides 2-coverage is achieved by placing
APs at vertices v2, v5, v7, and point v9, the middle point of (v1, v6).

For a point p on an edge (u, v) ∈ EGR , if p is not a
vertex, we can make it a vertex by adding p to VGR and
by subdividing edge (u, v) into two edges (p, u) and (p, v)
in EGR , with |(p, u)| and |(p, v)| equal to the length of the

corresponding road segments starting at p. The resulting graph
is denoted as GR ∨{p}. For instance, by inserting the middle
point of edge (v1, v6) to the graph in Figure 1(a), we can get
a graph where all the edges have the same length as shown in
Figure 1(b). GR ∨ {p} = GR if p is a vertex in GR.

Consider a set of APs deployed at roadside. To achieve
the maximum possible coverage, it is reasonable to assume
that the APs are deployed as close to the road centerline as
possible. Therefore, each AP is represented by the point in
GR closest to it. The feasibility of such modeling is further
discussed inSection VI. Using the operation just defined, we
can make these points as vertices of the graph when needed.
The trajectory of a moving vehicle is modeled as a set of
consecutive general paths on the graph defined as follows.

Definition II.1. A general path on a graph: A general path
fab in a graph GR between a and b, both of which are points
on some edges of GR, is a (simple) path in G ∨ {a, b}. The
length of fab, denoted as |fab|, equals to the sum of the lengths
of the edges composing the path in GR ∨ {a, b}.

A general path will be simply called a path when there is
no ambiguity. For instance, Figure 1(b) highlights a path of
length 4. We are now ready to formally define α-coverage.

Definition II.2. α-coverage: A deployment of APs provides
α-coverage to R, if every path fab in GR with |fab| ≥ α is
covered by at least one AP.

For instance, Figure 1(b) shows a deployment that provides
α-coverage for α = 2. Although α-coverage closely models
our intuition, it is impossible to determine in polynomial time
whether a deployment provides α-coverage, unless P=NP. To
see this, suppose no APs are deployed in a given graph where
each edge has unit length and α = |V | − 1, then verifying
whether this graph is α-covered is equivalent to determining
whether there is a Hamiltonian path in the graph, and the
latter is NP-complete even for planar graphs [19]. Since even
verifying whether a graph is α-covered is NP-complete, we
propose two new metrics to approximate α-coverage. First,
we define the following terms:

Definition II.3. Distance on a graph: For any two points a
and b in graph GR, the distance between them, denoted as
dist(a, b), is the length of the shortest path between a and b
in GR ∨ {a, b}.

Definition II.4. αN -coverage: A deployment of APs provides
Network Coverage of distance α (αN -coverage for short) to
R, if every path fab in GR with dist(a, b) ≥ α is covered by
at least one AP.

Note that if a deployment provides α-coverage, it also
provides αN -coverage. The converse is not true. For instance,
the deployment in Figure 1(b) also provides αN -coverage
when α = 2. Now suppose α = 5, then since the diameter of
the graph is 4, the distance between any pair of points in the
graph is at most 4, αN -coverage is satisfied without deploying
any APs. However, an empty deployment does not provide α-
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coverage since the longest path in the graph has length 8.
Given GR – the graph model of a road network, A0

– a set of points in GR that models the APs previously
deployed, we ask the following two questions – 1) determine
if the deployment provides a desired coverage, and if not 2)
find a minimum set of points A in GR so that when new
APs are deployed around these points, A0 ∪ A provides the
desired coverage. Notice that the second problem addresses
both the new deployment and incremental deployment. We
refer to this optimization problem as αN -Cover. We show in
Section III that it can be verified in polynomial time whether
a deployment provides αN -coverage. However, the decision
version of αN -Cover is NP-complete as proved in Section IV.
We provide a O(log n) factor approximation algorithm in
Section V, where n is the number of vertices in the graph.

Notice that, αN -coverage requires that all paths between
two points that are α distance away are covered, and the
number of such paths could be exponential. In reality, however,
there are a small subset of paths most frequently traveled
between any two places, which can be learned from historical
traffic data [15]. For instance, people usually follow close
to shortest path from their source to the destination. Our
third metric, αP -coverage, captures this observation. Although
determining a deployment to achieve αP -coverage is still NP-
Complete, we are able to find a more efficient approximation
algorithm for it (see Section V). Let Fab denote the set of
paths between a and b most frequently traveled, where |Fab|
is bounded by a small constant.

Definition II.5. αP -coverage: A deployment of APs provides
Path Coverage of distance α (αP -coverage for short) to R,
if every path fab in Fab with dist(a, b) ≥ α is covered by at
least one AP.

To simplify the presentation, we assume Fab is the set of
shortest paths. The solution can be easily extended to arbitrary
Fab as discussed in Section VI. Also note that a deployment
that provides αN -coverage also provides αP -coverage, but not
vice versa.

III. α-COVERAGE VERIFICATION

In this section, the following problem is considered: given
a graph GR, a set of points A0 in GR, and α, does A0

provide αN -coverage or αP -coverage to R? First, a new graph
G(V, E) = GR∨A0 is obtained. That is, we make each point
in A0 a vertex. Each vertex v of G is then assigned a weight,
denoted as w(v), which equals to 1 if v represents an AP, and
is 0 otherwise. We then give polynomial time algorithms for
verifying αN and αP -coverage. To simplify the discussion,
we make the following assumption in the rest of the paper:

Assumption III.1. For any pair of vertices (u, v) of G,
dist(u, v) 6= α.

If a given α does not satisfy this assumption, we can choose
a small ε such that α+ ε satisfies this condition. By making ε
small enough, (α + ε)-coverage can be viewed as equivalent
to α-coverage in any real settings.

A. The Verification of αN -coverage

Definition III.1. Coverage weight: The coverage weight of a
path f , denoted as c(f), equals to the sum of weights of the
vertices on f .

Definition III.2. Coverage distance: The coverage distance
of a pair of points (a, b) in G, denoted as c(a, b), equals to
the minimum coverage weight of all paths between a and b.

We use the term α-pair to refer to a pair of points that are
a distance of α apart. We observe that a deployment provides
αN -coverage iff the coverage distance of each α-pair is at
least 1. Notice that, according to Assumption III.1, in each α-
pair, at least one point is not a vertex of G. Further, if (a, b) is
an α-pair and a is a vertex, there always exists another α-pair
(c, d) such that neither c or d is a vertex and c(c, d) ≤ c(a, b).
Therefore, it suffices to only consider α-pairs consisting of
non-vertex points. Although there are infinite such α-pairs,
they can be divided into equivalent classes as follows.

Definition III.3. Equivalent αN -pairs: Two α-pairs (a, b)
and (c, d) are αN -equivalent if a and c are on the same edge,
and b and d are on the same edge.

By this definition, all the α-pairs in the same αN -equivalent
class have the same coverage distance. Furthermore, the num-
ber of equivalent classes is bounded by O(|E|2) since for any
pair of edges, there is at most one equivalent class. Therefore,
once all the equivalent classes are identified, αN -coverage can
be determined by checking the coverage distance of α-pairs in
each class one by one, which can be done as follows. First, we
note that the coverage distance of every pair of vertices in G
can be computed by extending the Floyd’s all-pairs shortest
paths algorithm, see Algorithm III.1. Suppose a is on edge
(u1, u2) and b is on edge (v1, v2) and a and b is an α-pair,
then c(a, b) = min(c(u1, v1), c(u1, v2), c(u2, v1), c(u2, v2)).

Algorithm III.1 All-pair-vertices coverage weights
1: procedure VCWEIGHT(G) . G: a graph with n weighted

vertices.
2: for i = 1 to n do
3: for j = 1 to n do
4: c(vi, vj , 0) ←∞;
5: for i = 1 to n do
6: c(vi, vi, 0) ← w(vi);
7: for all (vi, vj) ∈ E(G) do
8: c(vi, vj , 0) ← w(vi)+w(vj);
9: for k = 1 to n do

10: for i = 1 to n do
11: for j = 1 to n do
12: c(vi, vj , k) ← min(c(vi, vk, k − 1)+
13: c(vk, vj , k − 1)−w(vk),
14: c(vi, vj , k − 1))

B. The Verification of αP -coverage

Definition III.4. The core of a general path: The core of a
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general path is its longest subpath ending at vertices of G.

For instance, in Figure 1, the core of fst is the path
(v3, v5, v4, v7).

Definition III.5. The core of a set of paths: Let F be a set
of paths. The core of F is a set of paths, where each of them
is the core of a path in F .

Definition III.6. Equivalent αP -pairs: Two pairs (a, b) and
(c, d) are αP -equivalent if 1) dist(a, b) ≥ α and dist(c, d) ≥
α; 2) a and c are on the same edge, and b and d are on the
same edge; 3) the set of shortest paths between a and b and
that between c and d have the same core.

A polynomial time algorithm for verifying αP -coverage can
then be derived by noticing that 1) if (a, b) and (c, d) are
equivalent αP -pairs, then all the shortest paths between a and
b are covered iff all the shortest paths between c and d are
covered; 2) each equivalent class can be verified in polynomial
time since there are only constant number of paths in the core
shared by all the pairs in the same class; 3) the number of
equivalent classes is bounded by O(|E|2).

IV. THE HARDNESS OF α-COVERAGE

We name the decision version of the α-coverage (resp. αN -
coverage and αP -coverage) optimization problem α-COVER
(resp. αN -COVER and αP -COVER). In this section, we show
that α-COVER is NP-hard and αN - and αP -COVER are
NP-complete. By the existence of verification algorithms just
presented, it suffices to show that there is an NP-complete
problem that can be reduced to α-COVER (resp. αN -COVER
and αP -COVER) in polynomial time. It is known that VER-
TEX COVER is NP-complete when restricted to triangle-
free graphs 2 without degree 1 vertices, since it remains NP-
complete when restricted to triangle-free, 3-connected, cubic 3

planar graphs [23]. We will first reduce this subproblem of
VERTEX COVER to a subproblem of αN -COVER with α = 2
and |A0| = 0, that is, there are no previously deployed APs,
which is then extended to the other two cases. In this section,
α is fixed to 2.

Lemma IV.1. If G is a triangle-free graph having no degree
1 vertices where each edge has unit length, a set of vertices
form a vertex cover of G iff it provides αN -coverage to G.

Proof: Suppose that a set of vertices, A, provides vertex
cover to G, but does not provide αN -coverage. Then there
is a path of length 2 that is disjoint from any vertices in A,
which contains at least one edge not covered by any vertices
in A, a contradiction. Conversely, suppose a set of vertices, A,
provides αN -coverage to G, but it is not a vertex cover, then
there must be an uncovered edge (u, v). Since G has no degree
1 vertices and is triangle free, there must exist edges (u1, u)
and (v, v1) with middle points a and b, respectively, such that

2A graph is triangle free if it has no cycles of length three
3A cubic graph is a graph where each vertex is incident to exactly three

edges.

fab = auvb is a path disjoint from A and dist(a, b) = 2, a
contradiction.

Although in general, a deployment that only uses vertices
may be suboptimal as shown in Section V, for the set of in-
stances of αN -coverage we consider in this section, restricting
APs to vertices actually gives optimal solutions as given by
the following lemma.

Lemma IV.2. Let G be a triangle-free graph having no degree
1 vertices where every edge has unit length. If there is a set
of k points in G that provides αN -coverage to G, then there
is a set of k vertices that also provides αN -coverage to G.

Proof: Let A be a set of k points in G that provides αN -
coverage to G. We will construct a set of vertices, B, such
that |B| ≤ k and B is a vertex cover for G. The claim then
follows from Lemma IV.1.

First, we note that for any vertex v, there is at most one
edge incident to v that is disjoint from A. Since, otherwise
the two uncovered edges incident on v, say (u, v) and (v, w),
form an uncovered path (u, v, w) with dist(u,w) = 2, due to
the fact that G is triangle-free. This contradicts the fact that
A provides αN -coverage to G.

All the points in A that are also vertices are first added to
B. Consider an edge (x, y) that is disjoint from A. There must
exist distinct edges (w, x) and (y, z) with w 6= z and points
a on (w, x) and b on (y, z) such that a ∈ A and b ∈ A, and
|ax| ≤ 0.5 or |by| ≤ 0.5. Without loss of generality, suppose
|ax| ≤ 0.5. Add x to B. If there is an edge (v, w) incident to
w that is disjoint from A, then there must be an edge (u, v)
and a point c on (u, v) such that |cv| ≤ 0.5, add v to B.
Continue this process until either y or a vertex where all the
incident edges are covered by points in A is reached. Then
pick another edge that is disjoint from A. Repeat the process
until all such edges have been considered. Finally, for each
edge that contains a point in A and has not been visited, add
any one of its two ends to B. By its construction, B covers
all the edges and |B| ≤ |A|.

Theorem IV.1. αN -COVER is NP-complete.

Proof: Given a triangle-free graph G without degree 1
vertices, make an instance of αN -COVER with G as the graph
model of a road network where each edge has unit length, α =
2, and |A0| = 0. The theorem then follows from Lemma IV.1
and Lemma IV.2.

The above argument can be applied to αP -COVER directly.
Therefore, we have

Theorem IV.2. αP -COVER is NP-complete.

For α-COVER, we can prove the following results by the
similar argument as above.

Lemma IV.3. If G is a graph having no degree 1 vertices
where each edge has unit length, a set of vertices form a
vertex cover of G iff it provides α-coverage to G.
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Lemma IV.4. Let G be a graph having no degree 1 vertices
where every edge has unit length. If there is a set of k points
in G that provides α-coverage to G, then there is a set of k
vertices that also provides α-coverage to G.

Theorem IV.3. α-COVER is NP-hard.

Proof: Given a graph G without degree 1 vertices, make
an instance of α-COVER with G as the graph model of a
road network where each edge has unit length, α = 2, and
|A0| = 0. The theorem then follows from Lemma IV.3 and
Lemma IV.4.

V. APPROXIMATION ALGORITHMS FOR α-COVER

In this section, we present approximation algorithms for
αN -Cover and αP -Cover. Formally, given graph GR and a
set of point A0 in GR, and α, find a set of points A such that
A0 ∪ A provides αN or αP -coverage to R. We would like
to minimize |A|. Let G = GR ∨ A0. For any edge e of G,
if |e| > α, e is chopped into d|e|/αe pieces of equal length.
In the following discussion, we will assume that the length of
any edge of G is no more than α. Assumption III.1 is still
assumed.

We present two polynomial time algorithms in this section.
The first algorithm reduces αN -coverage to the vertex multicut
problem [13] and the second one reduces αP -coverage to the
set cover problem [24]. Both algorithms have an O(log n)
approximation factor, where n is the number of vertices in GR.
The second algorithm also works for αN -coverage. However,
only for αP -coverage, the algorithm has polynomial time
complexity. It should be noted that for a given road network,
the first algorithm is much more time consuming than the
second one, which is expected since αN -coverage provides
higher coverage quality than αP -coverage.

Given α, let OPT denote the minimum |A| in any deploy-
ment that provides αN -coverage where APs can be deployed
at anywhere in G, and OPT′ denote the minimum |A| for
providing αN -coverage when APs can only be deployed at the
vertices of G. Both of our algorithms use only the vertices of
G to construct A, which avoids an infinite search space so that
approximation solutions can be found. The following lemma
states that such a deployment decision doubles the number of
APs used in the worst case.

Lemma V.1. OPT ≤ OPT′ ≤ 2× OPT.

Proof: OPT ≤ OPT′ follows directly from the definition.
Let A be a set of OPT points such that A0 ∪ A provides
αN -coverage. We apply the following two rules to construct
a set of vertices, say A′, such that A0 ∪A′ also provides αN -
coverage: 1) add all the points in A that are also vertices of
G to A′; 2) for each point in A that is not a vertex, add the
two ends of the edge where the point is on to A′. We have
|A′| ≤ 2 × |A|. Let F denote the set of paths required to be
covered to ensure αN -coverage. For any f ∈ F , there exists
a point, say p, in A0 ∪ A that covers f . If p is a vertex, f is
also covered by p ∈ A0∪A′. Otherwise, suppose p is on edge
(u, v). Then u ∈ A′ and v ∈ A′. Since |f | ≥ α ≥ |(u, v)|, f

v� v� v� v� v� v
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n

���v� v� v� v� v� v
n���

Fig. 2. A graph with a single path (v1, v2, ..., vn) where the squares
represent APs. Each edge has unit length, and α ∈ (1, 2). (a) A
minimum cover that provides αN -coverage. (b) A suboptimal solution
that uses only vertices to provide αN -coverage.

goes through at least one of u and v, and thus is covered by
A′. Therefore, A0 ∪A′ also provides αN -coverage.

The same result also holds for αP -coverage. Notice that,
an important advantage of restricting APs to vertices is that
it increases the chance of data access since vehicles may stop
or slow down around road intersections.

Figure 2 gives an example where using only vertices gives
a suboptimal solution. In the figure, |A0| = 0, G is a single
path with n vertices, where each edge has unit length, and
α ∈ (1, 2). To achieve αN -coverage, an optimal solution is
a set of points uniformly spaced with α distance along the
path. On the other hand, if only the vertices are allowed to
be used, then all the vertices except the two ends of the path
have to be used to ensure αN -coverage. Therefore, OPT =
d(n−1)/αe−1, OPT′ = n−2, and limn→∞OPT′/OPT = α.
In particular, when n = 4, and α ∈ [1.5, 2), a minimum cover
contains only one point at the center of the path, while two
vertices are needed to ensure the coverage. In general, if G is
a single path with n vertices and each edge has unit length, the
factor 2 can be achieved when n = 2k+2, α ∈ [k+0.5, k+1)
for any integer k ≥ 1.

A. αN -Cover via Vertex MultiCut

Assuming only the vertices of G are used to construct A,
the αN -Cover optimization problem can be reduced to the
minimum vertex multicut problem [13] defined as follows.
Given a connected undirected graph G(V, E) with positive
costs on its vertices, let {(s1, t1), ...(sk, tk)} be a set of pairs
of vertices, named as terminals, where each pair is distinct,
but vertices in different pairs are not required to be distinct.
A vertex multicut is a set of non-terminal vertices whose
removal separates each pair. The problem is to find a vertex
multicut of minimum cost. We assume that all vertices have
the same cost in this section. The main steps of our algorithm
are summarized in Algorithm V.1.

For each pair of edges (e1, e2), the algorithm determines
whether there are points a in e1 and b in e2 such that
dist(a, b) = α, which can be done in constant time as
follows. Suppose e1 = (u1, u2), e2 = (v1, v2). Let t1 =
|au1|/|e1|, t2 = |bv1|/|e2|. Let dij(a, b) = dist(ui, vj) +
|aui|+ |bvj |, i, j ∈ {1, 2}. Then dij(t1, t2) is a linear function
of t1 ∈ [0, 1] and t2 ∈ [0, 1] for i, j ∈ {1, 2}. For
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Algorithm V.1 αN -Cover via Vertex Multicut
Input: G, the graph model of a road network R, A0, the set of vertices
of G that represents APs previously deployed, and α

1: if A0 provides αN -coverage to G then return;
2: T ← ∅;
3: for each pair of edges (e1, e2) of G do
4: if there are points a on e1 and b on e2 such that

dist(a, b) = α and c(a, b) = 0 then
5: T ← T ∪ (m1,m2); . mi: the midpoint of ei

6: return GVY(G,T,A0); . Apply
the GVY algorithm [24] to find a vertex multicut with A0 as a
subset that separates each pair of midpoints in T .

given i, j, i′, j′ ∈ {1, 2} and (i, j) 6= (i′, j′), the solutions
to the equation dij − di′j′ = 0 divide [0, 1] × [0, 1] into
two subregions. All such equations then give a partition of
[0, 1] × [0, 1] composed of convex subregions. Using the
partition, the minimum and maximum distance between any
pair of points on the two edges can be determined by only
studying the vertices of the convex regions. There is an α-pair
iff α is between the two extremal values. If there is such a pair
and the coverage distance of the pair is 0, the middle points
of e1 and e2 are inserted to T . The algorithm then resorts
to the well known GVY algorithm [24] to find a minimum
vertex multicut with A0 as a subset that separates each pair
of midpoints inserted.

The algorithm stated in [24] actually solves the minimum
edge multicut problem [12] defined similarly and achieves
an O(log k) approximation factor where k is the number of
pairs. However, it can be extended to the vertex version while
preserving the approximation factor [13].

Let S = {s1, s2..., sk} denote the set of sources and
T = {t1, t2, ..., tk} denote the set of destinations in the
terminal pairs. For each vertex v ∈ V \(S ∪ T ), there is
a non-negative variable dv called distance label. For each
vertex v ∈ V and each terminal pair (si, ti), i = 1, ..., k,
there is a variable yv,i, which is the shortest distance (in
terms of the distance labels) from si to v. When applied
to our scenario, dv corresponds to the coverage weight of
v and yv,i corresponds to c(si, v), the coverage distance
from si to v. The linear program (after LP-relaxation) of the
minimum vertex multicut problem is as follows, where cv

is the cost of vertex v and is set to 1 for each v in our scenario.

minimize
∑

v∈V \(S∪T ) cvdv

subject to yv,i ≤ yu,i + dv,∀(u, v) ∈ E, ∀i = 1, ..., k.
ysi,i = 0, ∀i = 1, ..., k,
yti,i ≥ 1, ∀i = 1, ..., k,
dv ≥ 0, ∀v ∈ V \(S ∪ T ).
dv = 0, ∀v ∈ S ∪ T .

The first constraint says that yv,i satisfies triangle inequality.
The second constraint says that the shortest distance from si

to itself is 0. The third constraint requires that the shortest
distance between each terminal pair is at least 1, which ensures

that the set of vertices with positive distance labels form a
multicut. The third and fourth constraints together ensure that
the distance label of each nonterminal vertex is between 0 and
1, and the last constraint says that the distance label of each
terminal is 0. The dual of the above program models the vertex
version of the well-known maximum multicommodity flow
problem. The GVY algorithm first solves the above program
to get a set of distance labels for all the vertices. Then from
those vertices with positive distance labels, a subset of them
are selected to form a cut (LP-rounding). This is the best result
known for the minimum vertex multicut problem for a general
graph. The standard GVY algorithm does not consider the case
where a set of vertices are forbidden to be chosen as cut nodes.
This can be solved by fixing the cost and the distance label
of each vertex in A0 to be 0 and 1, respectively. The analysis
in [24] can still be applied to show that this modification does
not impact the approximation factor.

Since the GVY algorithm has a factor O(log k) where
k = O(|E|2), considering Lemma V.1, Algorithm V.1 has an
O(log n) factor.

B. αP -Cover via Set Cover

Assuming only the vertices of G are used to construct A,
the αP -coverage optimization problem can be reduced to the
set covering optimization problem [24] as follows:

Algorithm V.2 αP -Cover via Set Cover
Input: G, the graph model of a road network R, A0, the set of vertices
of G that represents APs previously deployed, and α

1: if A0 provides αP -coverage to G then return;
2: U ← the union of cores with respect to all αP -pairs except

those have been covered by A0;
3: S ← {Sv : v ∈ V \A0} where Sv ⊂ U is the set of paths

covered by vertex v 6∈ A0;
4: Output a subcollection of S of minimum size that covers

all the elements of U ;

The above algorithm also applies to αN -Cover, where set
U has exponential size. For αP -Cover, |U| = O(|E|2). Since
there is a factor O(log |U|) algorithm for set cover [24],
considering Lemma V.1,this algorithm has an O(log n) factor.

VI. DISCUSSION

In this section, we discuss several issues related to the
modeling of road networks and APs including some real
constraints ignored before, and an extension of α-coverage.

A. Modeling issues

We have considered an undirected graph model of road
networks so far to simplify the discussion. However, most of
our results can be extended to a directed graph that models
one-way roads as well. First, we can extend the definitions
of general paths and distance on graph by taking direction
into account. In this case, dist(a, b) and dist(b, a) may be
different. The definition of the three coverage metrics and
the two types of equivalent classes can be extended as well.
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Then both the coverage verification algorithm and the set
cover based optimization algorithm can be extended to directed
graphs. On the other hand, it is known that the minimum
multicut problem is much harder to approximate for directed
graphs than undirected graphs. There are some recent results
for finding the minimum edge multicut [5], [16]. However,
whether these results can be extended to vertex multicut with
the same approximation ratio needs further study.

We have modeled APs as points in the graph of a road
network, which can be justified as follows. First, we are
considering a planned deployment, and therefore it makes
sense to deploy APs as close to road centerlines as possible,
to maximize the area on roads covered by APs. Second,
we are considering a sparse deployment in this paper, and
therefore, we ignore the case where the coverage regions of
multiple AP overlap with each other. We will explore denser
deployments where overlappings are frequent in the future
work. Third, we are seeking a solution that provides the worst
case guarantee to the interconnection gap, and therefore make
the most conservative assumption about the contribution of
each AP.

B. More about αP -coverage

In our definition of αP -coverage, the set of paths associated
with a pair of points can be an arbitrary set of critical
paths. Although we use shortest path as an example in the
coverage verification and optimization algorithms, they can
be extended to the general case as long as the following
condition is satisfied: for each pair of edges of G, there are
only a constant number of equivalent classes of αP -pairs.
Then the total number of equivalent classes is bounded by
O(|E|2). Since the verification algorithm takes O(c|V |) time
to check each equivalent class where c is the maximum number
of paths associated with a pair, the total running time is
O(c|V ||E|2). The set cover based optimization algorithm takes
two collections U and S as the input, where S = O(|V |).
Since each equivalent class contributes at most c paths to U ,
|U| = O(c|E|2). Therefore, the optimization algorithm can
also be done in polynomial time.

C. From α-coverage to (α, β)-coverage

We now consider an interesting extension of α-coverage,
which guarantees the quality of data access in the worst case.
We have not found complete solutions to this extension and
will continue to work on it. In particular, we say that a deploy-
ment of APs provides (α, β)-coverage to a road network, if for
any path of length ≥ α that a vehicle travels, it is guaranteed
that the vehicle has access to at least β bits of data. This
can be viewed as an extension of α-coverage. The similar
extensions can be applied to αN - and αP -coverage as well. We
again have the following two problems to solve: 1) determine
whether a deployment provides (α, β)-coverage, and if not
2) find an optimal incremental deployment to provide (α, β)-
coverage. We may again want to minimize the number of new
APs used. However, other optimization goals are also possible.

For instance, we may consider a heterogenous deployment and
try to minimize the total cost of the new APs.

For this new coverage metric, we can not simply model
APs as points in the graph since the amount of data that a
particular vehicle can access from an AP is approximately
proportional to the amount of time that vehicle is associated
with the AP, which is in turn determined by both the location
of the AP and its transmission range. Notice that, by ensuring
α-coverage, we can achieve (α, u)-coverage where u is the
minimum amount of data that a vehicle may access from an
AP within the range. Then one way to approximate (α, β)-
coverage is to guarantee that for any path of length ≥ α that a
vehicle travels, the vehicle can contact with has at least m =
dβ/ue non overlapping APs. On the other hand, if a vehicle
has m antennas installed so that m APs in the range can be
simultaneously accessed, (α, β)-coverage can be approximated
by first finding a set of points that provides α-coverage, then
deploying m APs at each point found.

VII. EVALUATION

In this section, we present the simulation results where
we compare α-coverage against a random deployment (as a
good model for the distribution of open APs). We evaluate
the distribution of the interconnection gap provided by our
algorithm and that by three random deployment techniques,
by using data from a real-world road network. We show that
using the same number of APs, the interconnection gap under
α-coverage is bounded to a much smaller distance and has
a much smaller standard deviation than that in a random
deployment. Now we discuss the details of our simulations.

A. Simulation settings

a) Generating Road Networks:: We obtain road network
data from the 2007 Tiger/Line shapefiles [3]. We only use
the All Lines shapefile since it contains all the information
about a road network we need. The database is organized by
counties. Our simulations are based on the road network of
the Franklin county in State of Ohio. The database does not
contain information about one-way roads, so we only consider
the undirected graph model of road networks. In the database,
each road segment is a polyline that contains two intersections
and zero or more interior shape points. We ignore the shape
points and connect the two ends of a road segment by a straight
line to reduce the size of the graph.

We then map the road network to a 2D plane by Mercator
projection to facilitate the generation of movement files and
ns-2 based simulations. Although the projection may distort
the distance, the simulation results are still valid since we
compare our approach with random deployment on the same
road network. In the Tiger/Line database, the roads in U.S.
are classified into different types. We consider two cases:
1) a constant speed limit (55 miles/hour) is assigned to all
the roads; 2) different types of roads are assigned different
speed limits to reflect the real traffic, from 25 miles/hour to
65 miles/hour.
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Fig. 3. Left: the cumulative distribution of the interconnection time when α = 3000m. Right: the standard deviation of the interconnection
time for various α. The speed limit is fixed to 55 miles/hour. The maximum gap for αP -coverage is about 214 sec, bounded by the time
spent on two adjacent moves (see the text for an explanation.) The maximum gap for a random deployment can be larger than 2000 sec (not
shown).

b) Generating Moving Scenarios:: A restricted random
waypoint mobility model [4] is used to generate ns-2 move-
ment files. The model accepts the graph of a road network as
input. We didn’t start simulations at steady-state [9] since it is
too time consuming for large graphs. Each mobile node starts
at one end of a randomly selected road segment. The node
then moves towards another randomly selected intersection by
following a shortest path. Once the destination is reached, the
node pauses shortly, then starts another move and so on. We
add one more constraint such that the source and destination
of each move must have a distance at least α since we are
interested in providing performance guarantee to these moves.
The movements of different mobile nodes are independent.
The speed of a mobile node on a road segment is set to the
speed limit of that segment with a leeway of 5 miles/hour. The
mean of the pause time is set to 5 sec. The number of mobile
nodes are fixed to be 5. Each simulation lasts for 1 hour.

c) Generating Deployments:: We compare αP -coverage
with the following three random deployment techniques that
use the same number of APs as our approach: 1) each AP is
deployed on a randomly selected vertex of G; 2) each AP is
deployed on a randomly selected point of a randomly selected
edge of G; 3) the region spanned by G is first divided into
50m×50m squares; each AP is then deployed at the center of
a randomly selected square. At most one AP can be deployed
at a vertex or within a square. We name the three random
schemes as rand-1, rand-2, and rand-3, respectively. Given a
deployment output by our algorithm, 10 random deployments
are generated for rand-1, 2, and 3, respectively. For a given α,
10 movement files with constant speed limit and 10 movement
files with variable speed limit are generated. The simulations
are carried over a 4000m × 4000m region around the center
of the Franklin county including about 1000 intersections and
1300 road segments, and the graph diameter is about 7300m.
The transmission range of each AP is set to be 100m.

B. Simulation results
Figure 3(left) shows the cdf of the interconnection time of

αP -coverage and three random deployments, where α equals

to 3000m and the speed limit is 55 miles/hour. 21 APs are
used in all the deployments. The data is accumulated over
all the five mobile nodes and 10 movement patterns. The
maximum gap for αP -coverage is about 214 sec, while that
for a random deployment can be as large as 1866 sec for
rand-1, 1446 sec for rand-2, and 2210 sec for rand-3. The
fact that rand-3 performs worst verifies that APs should be
deployed as close to road centerlines as possible to achieve
the best coverage. Notice that, the maximum gap for αP -
coverage is larger than α divided by the speed limit, which
is about 122 sec. This is because of the moving pattern we
use. Since each move follows a shortest path of length at
least α, αP -coverage guarantees that at least one AP will be
touched within a move. However, an interconnection gap may
span two adjacent moves, and therefore in the worst case,
the gap can be as large as the time spent on two adjacent
moves. Figure 3(right) shows the standard deviation of the
interconnection time under various α and the constant speed
limit, where the number of APs used for α = 2500m, 3000m,
3500m is 28, 21, and 15, respectively. We can clearly see that
the standard deviation for αP -coverage is much smaller than
that for a random deployment.

In Figure 4, the cdf of the connection duration of different
deployments are shown. We can see that rand-3 performs
slightly worse than others since the APs are not as close to
the roads as in other deployments.

Figure 5 shows the cdf of the interconnection time under
variable speed limit and α = 3000m. All the deployments have
larger maximum interconnection gaps compared with the case
of constant speed limit, but αP -coverage still performs best.

VIII. RELATED WORK

The idea of Drive-thru Internet was first introduced in the
seminal paper [21], which shows that a single moving vehicle
connected via 802.11b with an AP located at roadside of
an empty street can access several megabytes of TCP or
UDP traffic, even when the velocity is as high as 180km/h.
Thereafter, evaluations in various controlled environments [6],
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[14], [20], [22] and in situ Wi-Fi networks [6], [10], [11],
[20] were conducted, which further confirm the feasibility
of WiFi-based Vehicular Internet Access for non-interactive
applications. The possibility and challenges to support certain
interactive applications, such as Web browsing, have also been
studied [6], [7].

Vehicular communication through Wi-Fi infrastructure is
characterized by short-lived and intermittent connections,
which challenges both the 802.11 MAC and the transport
protocols. It was shown in [21] that the channel quality when
a vehicle moving through an AP can be roughly divided into
three phases: the entry phase when connectivity is weak and
loss and delay are both high, the production phase when
effective communication can take place, and the exit phase
when loss and delay are high again. The initial setting of
parameters and the default behavior of 802.11 and TCP can
lead to performance loss in all the three phases as shown
in [18]. In [10], the time spent on each stage of connection
setup was measured, and a simple IP caching approach was
proposed to reduce the delay induced by DHCP. It was
reported in [11] that the mean connection setup time can be
reduced from over 10s to 400ms by using a streamlined client-
side connection setup process, which also increases the number
of usable short connections significantly. Transport protocols

that hide the wireless losses from the wired side, and the
temporary unavailability of connections from the client were
proposed in [11], [22]. Interesting ideas have been proposed
regarding the scenarios where a moving vehicle is in the
transmission ranges of multiple APs [6], [20] and vice verse,
multiple vehicles are associated with a single AP [17]. In
particular, [20] shows that the use of directional antennas
at vehicle side and beaming steering techniques can improve
the performance of 802.11 link via carefully designed handoff
algorithms. In [6], a lightweight coordination protocol was
designed that allows a vehicle to communicate with multiple
APs simultaneously to reduce disruption in connectivity. It
was noted in [17] that multiple vehicles associated with the
same AP may choose different transmission rates and therefore
suffer from the 802.11 performance anomaly, that is, the date
rates of all these vehicles will eventually be slowed down to the
lowest one. A medium access protocol that grants the channel
to the vehicle with best SNR was suggested in [17].

It should be noted that the deployment issues with respect to
WiFi-based Vehicular Internet Access have not been carefully
studied so far. Instead, an unplanned deployment of APs is
commonly assumed in most previous works. A simple non-
uniform strategy that places more stationary nodes in the
network core was considered in a recent work [8]. However,
it was completely based on intuition without providing any
performance guarantees.

IX. CONCLUSION

In this paper, we propose α-coverage, a new notion of
intermittent coverage for mobile users that guarantees the
interconnection gap of vehicular Internet access. We provide
algorithms to verify whether a given deployment provides α-
coverage and if not, to find the optimal places to deploy new
APs so that α-coverage can be ensured. Both the networking
protocols and applications may explore such guarantees to
optimize their behaviors. Furthermore, α-coverage is the first
step towards a scalable deployment that guarantees the worst
case data service that a mobile user can expect.
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