
First-Aid: Surviving and Preventing Memory Management Bugs during
Production Runs

Qi Gao, Wenbin Zhang, Yan Tang, and Feng Qin
Department of Computer Science and Engineering

The Ohio State University
{gaoq, zhangwen, tangya, qin}@cse.ohio-state.edu

Abstract

Memory bugs in C/C++ programs severely reduce software
availability and security during production runs. This paper
presents First-Aid, a lightweight runtime system that survives
software failures due to common memory management bugs
and prevents future failures caused by the same bugs during
production runs. Upon failures, First-Aid diagnoses the occur-
ring bug types and bug-triggering memory objects by rolling
back the program to previous checkpoints and leveraging two
types of environmental changes that can prevent or expose
memory bug manifestation during re-execution. Based on the
accurate diagnosis, First-Aid generates and applies runtime
patches to avoid the occurring memory bugs and prevent the
recurrence of the same bugs. Furthermore, First-Aid validates
the consistent effectiveness of the runtime patches and gener-
ates on-site diagnostic reports for developers to fix the bugs.

We implemented First-Aid on Linux and evaluated it with
seven applications that contain various types of common mem-
ory bugs, including buffer overflow, uninitialized read, dan-
gling pointer read/write, and double free. The results show
that First-Aid can quickly diagnose the tested bugs and re-
cover failures within 0.084 to 3.978 seconds. Our evaluation
shows that the generated runtime patches effectively prevent
failures caused by the same bugs. Additionally, First-Aid pro-
vides detailed on-site diagnostic information to help program-
mers understand both the root cause and manifestation of the
occurring bugs. Furthermore, First-Aid incurs low overhead,
0.4-11.6% with the average of 3.73% during normal execution
for the above seven applications, SPEC INT2000, and four al-
location intensive programs.

1 Introduction
1.1 Motivation

Memory management bugs, a major type of common software
defects, severely affect system availability and security. Dur-
ing production runs, these bugs such as buffer overflows and
dangling pointers can corrupt memory data, leading to pro-
gram crashes or hangs. Furthermore, malicious users often
launch security attacks by exploiting these bugs. According to

CERT [35], memory management bugs dominate recent secu-
rity vulnerability reports.

Furthermore, it is a challenging task for developers to di-
agnose these bugs and release timely fixes because of ever-
increasing software complexity and lack of on-site failure in-
formation [34]. Previous studies [33, 2] showed that it takes
several weeks on average to diagnose bugs and generate fixing
patches. During this long time window, users have to choose
either running the software with bugs and tolerating problems
such as intermittent crashes and potential attacks, or not run-
ning the software and experiencing costly system downtime.
Neither option is desirable.

Therefore, it is critical to have a system that can quickly
recover programs from software failures caused by memory
bugs, protect program from future failures due to the same
bugs, and provide useful on-site failure information for devel-
opers to quickly fix the bugs.

While several recent proposals help programs survive fail-
ures caused by memory bugs, they suffer one or more the fol-
lowing limitations: unsafe speculation on programmers’ inten-
tion [28, 29], inability of preventing failures due to the same
bugs [4, 27], little diagnostic information to developers [20],
and large runtime and space overhead [23, 4, 20]. For exam-
ple, failure oblivious computing [28] discards out-of-bound
writes and manufactures an arbitrary value for out-of-bound
reads. While this approach may survive failures for certain
types of applications, the speculation on programmers’ inten-
tion could easily lead to programs’ misbehavior. DieHard [4]
and Exterminator [23] probabilistically prevent failures caused
by memory bugs via a randomized memory runtime system.
However, large time and space overheads restrict them from
being adopted for production runs.

Our previous work Rx [27] quickly recovers programs from
failures by re-executing program from previous checkpoints
with program execution environmental changes applied. For
example, adding paddings (an environmental change) to all
memory objects during recovery could avoid the occurring
buffer overflow bugs. While being effective and safe to avoid
the occurring memory bugs, Rx cannot prevent future failures
caused by the same bugs. This is because it will disable the en-

1

vironmental changes after surviving the current failures due to
potentially large overhead. Furthermore, the on-site failure re-
covery information (whether and what environmental change
work) is quite limited and may mislead developers because
the failure-surviving environmental change may not directly
related to the bug.

1.2 Our Contributions

In this paper, we propose a system called First-Aid that can
quickly recover programs from failures caused by memory
bugs, prevent future failures due to the same bugs, and provide
useful on-site diagnostic information to developers. The main
idea is to diagnose the occurring memory bugs upon failures
by leveraging efficient checkpointing-and-re-execution mech-
anisms and execution environmental changes. Based on diag-
nostic results, First-Aid generates and applies runtime patches
(environmental changes for bug-triggering memory objects) to
correct the occurring memory bugs. After recovering the pro-
grams, First-Aid further validates the runtime patches and gen-
erates detailed bug reports to developers.

To diagnose the occurring bugs, First-Aid rolls back the pro-
gram to previous checkpoints and re-executes the program.
During each re-execution, First-Aid dynamically applies two
types of environmental changes: exposing changes (forcing a
certain type of bug to manifest itself) and preventive changes
(preventing a certain type of bug from manifestation). Based
on the execution results such as failure symptoms and exposed
bug manifestation, First-Aid can conclude whether one bug
type is occurring or not. For example, to determine whether a
buffer overflow bug is occurring or not, First-Aid applies the
exposing change for buffer overflow, i.e., “padding each mem-
ory object with canary”, and the preventive changes for all
other memory bug types during re-execution. The term “ca-
nary” is referred to as certain memory content patterns that
unlikely appear during normal program execution. If the ca-
nary in some padding is corrupted, First-Aid knows that an
occurring buffer overflow bug is exposed. Additionally, ex-
posing changes can help First-Aid identify the bug-triggering
memory objects. In the same example, based on the corrupted
paddings, First-Aid can identify the overflowed memory ob-
jects.

Based on the identified bug type and bug-triggering mem-
ory objects, First-Aid generates and applies runtime patches to
a small set of memory objects that can potentially trigger the
previously-seen bugs. In this way, the patches only incurs very
small overhead and thereby are suitable for long term applica-
tion. As a result, First-Aid keeps these patches persistently so
that they not only help programs survive current failures but
also prevent future failures caused by the same bugs.

We have implemented First-Aid on Linux and evaluated its
functionality and performance with seven applications, includ-
ing three server applications (Apache, Squid, and CVS) and
four client applications (Pine, Mutt, M4, and BC). These ap-

plications contain various types of memory bugs, including
buffer overflow, dangling pointer read/write, double free, and
uninitialized read. Additionally, we evaluate First-Aid’s per-
formance with the SPEC INT2000 benchmark [30] and four
allocation intensive benchmarks [3]. Compared with previous
approaches, First-Aid has one or more of the following advan-
tages:
• Prevention on bug recurrence. First-Aid can apply the

runtime patches for the entire program execution and
thereby prevent future failures due to the recurrence of
the same bug. Furthermore, the patch generated by First-
Aid can be stored persistently to prevent bug occurrence
on subsequent runs and other process running the same
program. This improves the overall reliability.

• Fast failure recovery. First-Aid can quickly recover pro-
grams from failures due to its lightweight diagnostic al-
gorithm. Our evaluation with seven tested applications
shows that the recovery time ranges from 0.084 to 3.978
seconds with an average of 0.887 seconds.

• Safe recovery. The runtime patches generated by First-
Aid avoid bugs by legitimately changing the program’s
execution environments with conformance to the standard
memory allocator interface specifications.

• Low normal-run overhead. First-Aid incurs very
low runtime overhead during normal program execution
(without bugs being triggered). Our evaluation with ap-
plications and benchmarks shows that the runtime over-
head ranges from 0.4 to 11.6% with an average of 3.73%.
This indicates First-Aid is suitable for production runs.

• Informative bug report. First-Aid provides program-
mers with accurate and detailed bug information: the
occurring bug type, the bug-triggering memory objects,
their allocation/deallocation sites, and relevant illegal
memory accesses. This diagnostic information allows
programmers to easily understand both root causes and
manifestation of the occurring bugs. As a result, pro-
grammers can quickly diagnose the problems and fix the
bugs in source code.

2 Main Idea of First-Aid
Figure 1 shows the working scenario of First-Aid. During nor-
mal execution, First-Aid periodically takes checkpoints for the
application process. Upon failures, First-Aid diagnoses the
occurring bugs and generates corresponding runtime patches.
Then it applies the patches for recovering the programs from
the failure and preventing the programs from future failures
due to the same bugs. After failure recovery, First-Aid vali-
dates the patches and generates detailed bug reports.

Bug diagnosis. First-Aid diagnoses the occurring bugs by re-
executing the failed processes from previous checkpoints with
multiple iterations. In each iteration, First-Aid rolls back the

2

patch validation

application process

apply
patch

patch
list

patch
generation

allocation
deallocation

traces

illegal
access
traces

patch
details

re-execute multiple iterations
with randomization

bug
report

bug diagnosis

one diagnosis step
rollback to

a checkpoint

diagnosis
 log

checkpoint

re-execute
with change

result
analysis

Figure 1: Working scenario of First-Aid

program to a previous checkpoint, tentatively applies one or
multiple environmental changes to all or a subset of mem-
ory objects, and re-executes the program. Based on the re-
execution results, it narrows down the possible causes of the
occurring bugs. If First-Aid can identify the bug type and bug-
triggering memory objects, the diagnostic process stops. Oth-
erwise, First-Aid will repeat the above process until it identi-
fies the bug or times out.

To accurately diagnose the occurring bug, First-Aid utilizes
a combination of two types of environmental changes: the ex-
posing change for forcing a certain type of bug to manifest it-
self and the preventive change for preventing a certain type of
bug from manifestation. More specifically, to check the occur-
rence of a bug type A, First-Aid applies the exposing change
for A and the preventive changes for all other bug types during
re-execution. In this way, First-Aid ensures that only the bug
type A can manifest itself. If there is noticeable manifestation
of bugs with the type A after re-execution, First-Aid concludes
that the bug type A is occurring. Otherwise, First-Aid rules
out the bug type A. Furthermore, based on the noticeable bug
manifestation, First-Aid can identify the memory objects that
potentially trigger the bug.

Table 1 describes these two types of changes for each
bug type, including buffer overflow, double free, dangling
pointer read/write, and uninitialized read. For example, adding
paddings to both ends of each newly-allocated memory object
can prevent buffer overflow bugs, while adding canary-filled
paddings can manifest buffer overflow bugs as canary corrup-
tion. Delaying the recycling of freed memory objects can pre-
vent dangling pointer read bugs from accessing meaningless
data as well as prevent dangling pointer write bugs from cor-
rupting useful data. On the contrary, filling delay-freed mem-
ory objects with canary can manifest dangling pointer read
bugs as failures and manifest dangling pointer write bugs as
canary corruption. Furthermore, zero-filling new objects can
prevent uninitialized read bugs, while canary-filling new ob-
jects is likely to manifest uninitialized read bugs as failures.

At the end of the diagnostic process, there are three possible
results. First, the failure is caused by non-deterministic bugs,
(as indicated by a successful re-execution with only timing-
based changes and no memory management changes). In this

case, First-Aid lets program continue the normal execution.
Second, the failure is caused by deterministic memory man-
agement bugs. In this case, First-Aid passes the diagnostic
results to the next step for patch generation. The last case is
deterministic bugs that First-Aid cannot handle, e.g., semantic
bugs. In this case, First-Aid stops the program execution and
resorts to other recovery schemes.

Patch generation and application. Based on the bug diag-
nostic information, First-Aid generates runtime patches for re-
covering the programs from the failure and preventing future
failures caused by the same bugs. A runtime patch is a tu-
ple of a preventive change corresponding to the identified bug
type and a patch application point. The patch application point
is the allocation or deallocation call-site of the bug-triggering
memory objects. The call-site is referred to in this paper as
the multiple-level calling contexts on the stack. It can serve
as “signatures” of the bug-triggering memory objects because
memory objects with the same call-site of allocation or deal-
location often have similar characteristics such as leaking or
overflow [26, 23].

First-Aid stores the generated patches and applies them to
the application process at run time. More specifically, these
patches take effect when a later memory allocation or deallo-
cation call-site matches the patch application points. By ap-
plying identified preventive changes at these points, First-Aid
can protect programs from future failures caused by the same
bugs.

Runtime patches generated by First-Aid usually have a few
specific application points to apply and have little performance
and resource overhead. Therefore they are applied for the en-
tire program execution after failure recovery. Further more,
since the patches are specific to the program executable (not
only the running process), First-Aid applies them to the sub-
sequent runs of the same program and other processes running
the same executable. This effectively protects the programs
from future failures caused by the same bug and improves the
overall reliability.

Patch validation and bug report. After a runtime patch being
generated and applied for quick recovery, First-Aid performs
a further step to validate the patch and collects detailed infor-

3

Bug type Common reason(s) for the bug Preventive change Exposing change Patch
/Runtime patch (Bug manifestation) application point

buffer overflow 1. length underestimation add large padding to objects pad objects with canary allocation
2. offset miscalculation (canary corruption)

dangling pointer read 1.premature buffer free fill with canary (failure)
dangling pointer write 2.forget to set NULL fill with canary

delay free (canary corruption) deallocation
double free check parameters

(freed twice)
uninitialized read 1. assume zeros in buffers fill objects with zero fill with canary (failure) allocation

Table 1: Memory bug types and corresponding environmental changes

mation for the bug report.
To confirm that the applied patch is consistently effective,

First-Aid re-executes the buggy program region in multiple it-
erations with randomized memory allocation, and collects de-
tailed traces on memory management operations, patch trig-
gering, and illegal memory accesses, e.g., the accesses through
dangling pointer, the reads before initialization, etc. Then it
checks the traces to validate that the patch has consistent ef-
fects on the program execution, e.g., neutralizing the same
number of illegal accesses. If the validation fails, the cor-
responding patch will be removed, and the event will be re-
ported.

Instead of hiding bugs from developers, First-Aid assists
them in diagnosing and fixing the bugs off-site by providing
detailed on-site bug information. For example, the call-sites of
bug-triggering memory objects in the diagnosis log and patch
information can help developers easily locate the bug-related
memory management code. Additionally, the detailed exe-
cution traces on memory management operations and illegal
accesses can help developers to understand the manifestation
process of the occurring bugs.

3 First-Aid System Design
Figure 2 shows the software architecture of First-Aid. It con-
sists of six major user-level and kernel-level components: (1)
a lightweight memory allocator plug-in for assisting bug diag-
nosis, patch validation, and patch application, (2) failure/error
monitors for detecting errors or failures in applications, (3) a
checkpoint/rollback component for taking snapshots of run-
ning programs and performing rollbacks for diagnosis and re-
covery, (4) a patch management module for managing the gen-
erated runtime patches and controlling patch application, (5) a
diagnostic engine for diagnosing the occurring bugs and gen-
erates runtime patches (details in Section 4), and (6) a vali-
dation engine for validating the consistent effectiveness of the
patches and collecting on-site diagnostic information (details
in Section 5).

Memory allocator plug-in. The memory allocator plug-in
collects memory object information and applies preventive
and/or exposing changes for diagnosing bugs and surviving
failures. More specifically, it operates on one of the three

Application

Failure/Error
Monitors Lighweight

Checkpoint/
Rollback

Memory
Allocator Plug-in

Diagnostic
Engine

Patch
Management

Validation
Engine

First-Aid

Figure 2: Software architecture of First-Aid

modes: normal mode during normal execution, diagnostic
mode during First-Aid’s diagnostic procedure upon failures,
and validation mode during the validation procedure.

In the normal mode, it mainly just performs the standard
memory allocation and deallocation requests. Additionally, it
checks the availability of patches and applies them if the cur-
rent call-site matches any patch application points. This en-
sures that First-Aid incurs low overhead during normal execu-
tion (see Section 7.5).

In the diagnostic mode, the memory allocator plug-in per-
forms three functions during re-execution. First, it applies pre-
ventive and/or exposing changes, instructed by the diagnostic
engine, to all or a subset of memory objects. Second, it col-
lects call-site information for each memory object allocation
and deallocation. Such information is used for bug diagnosis
and future patch application. Third, it checks the validity of
parameters for each deallocation request for detecting invalid
free and double free bugs.

In validation mode, as controlled by the validation en-
gine, the memory allocator plug-in introduces randomization
in the allocation algorithm and keeps traces of memory alloca-
tion/deallocation as well as patch triggering information.

Failure/Error monitors. The failure/error monitors detect
failures or errors at runtime and notify the diagnostic engine
upon detection. The cheapest way is to catch assertion fail-
ures as well as exceptions (e.g., access violation) raised from
the kernel. Additionally, one can deploy more sophisticated
error detectors such as AccMon [39] as long as they incur low
overhead. Our current implementation is based on assertion
failures and exceptions.

4

Adaptive checkpoint/re-execution. First-Aid leverages the
lightweight checkpointing and re-execution runtime system
provided in Rx. More specifically, it takes in-memory check-
points using a fork-like operation and rolls back the program
by reinstating the saved task state. For handling files, it ap-
plies ideas similar to previous work [18, 31] by keeping a
copy of each accessed file and file pointers at the beginning
of each checkpoint and reinstating it for rollback. Addition-
ally, it leverages a network proxy to record network messages
during normal execution and replay them during re-execution.
More details can be found in Rx [27] and Flashback [31].

Instead of using fixed intervals as in Rx, First-Aid dynami-
cally adjusts the checkpointing intervals for balancing the low
normal execution overhead and quick recovery delay. It does
so by monitoring the copy-on-write (COW) page rate, which
directly affects the runtime overhead. If the runtime overhead
is higher than the threshold Toverhead specified by users, i.e.,
the COW page rate is too high, First-Aid will gradually in-
crease the interval so that the runtime overhead will decrease.
On the other hand, the recovery delay becomes longer when
the checkpoint interval is larger. Once the checkpoint interval
reaches the user-specified maximal interval Tcheckpoint, First-
Aid stops increasing the interval.

Patch management. This component manages the patches
and makes them available to all the processes that are running
the same program. Once the diagnostic engine generates a
patch, the patch management component stores it to a cen-
tral patch pool based on the call-site information. First-Aid
maintains a patch pool for each program so that the patches do
not mix for different programs. During normal execution, the
memory allocator plug-in queries the patch pool for a certain
call-site of allocation or deallocation.

4 Bug Diagnosis
The diagnostic engine uses two phases to diagnose the occur-
ring bugs. The first phase is to search for the best checkpoint
to apply the patches for surviving the occurring bugs. The
second phase is to perform in-depth diagnosis to identify the
memory bug type and the patch application points, i.e., alloca-
tion/deallocation call-sites of the bug-triggering memory ob-
jects. In subsection 4.3, we compare the First-Aid bug diagno-
sis with Rx.

4.1 Phase 1: Identify the Checkpoint for Patch-
ing

In order to be both effective and efficient, the patch should
start taking effect from the latest checkpoint before the bug-
triggering point. To identify that checkpoint, First-Aid rolls
back the program to previous checkpoints in a reverse chrono-
logical order and re-executes the program. It first re-executes
the program without any memory management change and if
the program succeeds, (the failure is likely caused by non-

deterministic bugs), then First-Aid only logs this event and lets
the program continue execution. If the program fails, First-Aid
will re-execute the program with all the preventive changes on
all memory objects from the same checkpoint. If the program
succeeds this time, i.e., some preventive change is effective,
First-Aid stops searching and reports this checkpoint as the
latest one before the bug-triggering point. Otherwise, First-
Aid continues searching on the checkpoint right before this
one. After trying a certain number of previous checkpoints,
First-Aid stops searching, reports it as a non-patchable bug,
and resorts to other recovery mechanisms. Note that the crite-
rion of failed or successful re-execution in First-Aid is based
on whether the program execution can pass the original fail-
ure region. Its end point is conservatively defined as a certain
number of checkpoint intervals after the failure point.

One key challenge in this scheme is the possible misidentifi-
cation of the latest checkpoint before the bug-triggering point.
In some occasions, when being applied to a checkpoint that is
after the bug-triggering point, the preventive changes can ap-
pear to be effective by temporarily avoiding the failure. This
is because the manifestation of some memory bugs may rely
on the heap layout which could be disturbed by the preventive
changes applied later.

Figure 3 shows such an example with the heap containing
a few objects. During the original execution, from (a) to (c),
the dangling pointer p appears at (b) the bug-triggering point,
when the object B is prematurely freed. After (b), a check-
point C1 is taken, and then the freed space of B is re-allocated
for an object E. At the end, a failure occurs since a write via
de-referencing p corrupts the data in the object E, illustrated
as the black dot in Figure 3(c). When the program re-executes
from the checkpoint C1, the preventive changes can avoid the
failure. This is because the preventive change for buffer over-
flow adds paddings to E, denoted as Epadded, and makes it
larger than the original B. As a result, shown in Figure 3 (d),
the freed space of B is not reused by Epadded, which avoids
memory corruption caused by the dangling pointer write.

To address this issue, First-Aid uses a technique called heap
marking to verify that the bug indeed occurs after the check-
point currently being tried. The key idea is to expose the bugs
that occur before the checkpoint. To this end, First-Aid marks
the old heap region before re-executing the program from the
checkpoint. More specifically, as shown in Figure 3 (e), First-
Aid marks all the empty (freed) chunks in the heap by fill-
ing their contents with canary. Additionally, it adds a padding
filled with canary after the last memory object in the heap.
With this change, if the failure originally caused by previously-
triggered dangling pointer or buffer overflow bugs is acciden-
tally avoided due to heap layout change, First-Aid can de-
tect corruption to the canary. For dangling pointer reads, the
heap marking technique makes the failure still occur during
re-execution due to the canary.

5

top

A

B
C
D

A

C
D

p p

top

E

(a) (b)

top

A

C
D

p

(c)

top

A

C
D

p

(d)

top

A

C
D

p

(e)

top

A

C
D

p

(f)

canary

(a) (b) (c)

(d)

(f)(e)re-execution after heap marking

original execution

re-execution with changes

Checkpoint C1

Epadded
Epadded

Figure 3: The issue in accurately identifying the checkpoint
for patching and the heap marking technique

4.2 Phase 2: Identify the Bug Type and Patch
Application Points

After identifying the latest checkpoint before the bug trigger-
ing point, First-Aid starts the phase 2 algorithm for more in-
depth analysis. It first identifies the types of the occurring bugs
and then identifies the allocation/deallocation call-sites of bug-
triggering memory objects. Note that First-Aid takes into con-
sideration the case where multiple types of bugs are triggered
in the execution and the program will not survive unless all of
them are avoided. Therefore, the algorithm needs to carefully
separate each type of the occurring bugs.

The basic procedure is to diagnose each bug type one by
one using a combination of preventive changes and exposing
changes. We define two sets of bug types, the undecided set
Su and the identified set Si. Initially, the undecided set Su

contains all the bug types and the identified set Si is empty.
For each bug type b from the undecided set Su, First-Aid ap-
plies the following changes to all memory objects: the expos-
ing change for the bug type b, and the preventive changes for
all other bug types in the set of Su ∪ Si − {b}. This way,
the bugs with the type b will manifest themselves during re-
execution and the potential interferences from other types of
bugs will be prevented. If the bugs with the type b do exist and
manifest themselves during re-execution, First-Aid will move
the bug type b from the undecided set Su to the identified set
Si, otherwise simply remove it from the undecided set Su. At
the end, the identified set Si contains all the types of the oc-
curring bugs.

To minimize the iterations of re-execution in diagnosis,
First-Aid checks whether the current identified set Si covers
all occurring bug types after each new bug type is identified.
If so, First-Aid stops searching for more bug types. First-Aid
performs such check by applying preventive changes for bug

types in the identified set along with exposing changes for the
undecided set in one iteration of re-execution.

After identifying the bug type, the next step is to identify the
call-sites of bug-triggering memory objects. For buffer over-
flow and dangling pointer write, First-Aid can directly identify
the bug-triggering memory objects by looking for canary cor-
ruption in paddings and freed memory objects, respectively.
For double frees, it identifies the bug-triggering memory ob-
jects by checking the parameters passed to free operations.

For uninitialized read and dangling pointer read, it is more
challenging to identify the call-sites through the bug-triggering
memory objects themselves, because these bugs only trig-
ger incorrect content reads. To address this problem, First-
Aid uses a binary search algorithm to identify such call-sites.
Specifically, starting with a search range covering all N call-
sites after the checkpoint, in each iteration of re-execution,
First-Aid applies the exposing change to half of the call-sites
in the search range and preventive change to the rest of call-
sites. Depending on whether the bug is exposed, i.e., whether
the program fails, it narrows down the search range by half and
starts another iteration until the search range contains only one
bug-triggering call-site. The number of iterations for this al-
gorithm is O(log N).

By also applying preventive changes in each iteration, First-
Aid can prevent the interferences from undiagnosed bug-
triggering call-sites that are outside of the current search range.
This is critical for handling the case where multiple call-sites
need to be patched at the same time to prevent a failure. In
this case, First-Aid needs to conduct multiple rounds of the
above binary search and remove the identified call-site from
the whole search range after each round. If there are M bug-
triggering call-sites, the search algorithm takes O(M ∗ log N)
re-executions in total.

4.3 Bug diagnosis comparison between First-
Aid and Rx

Our previous work, Rx [27], can also provide quick recovery
for failures caused by memory bugs. However, it does not
(and not intend to) perform in-depth diagnosis since it aims
for fast recovery. Differently, First-Aid’s goals are not only
recovering failures quickly, but also preventing recurrence of
the same bugs and providing on-site diagnostic information.
Therefore, First-Aid performs accurate diagnosis on memory
bugs in the following two aspects.

Correctness: First-Aid will not misdiagnose one type of
memory bug as another. It concludes one occurring bug type
by observing both failure symptoms and possible bug mani-
festation such as memory content corruption imposed by the
exposing change. In contrast, Rx makes decision based on
whether program survives or fails after applying preventive
changes only. This could misdiagnose one type of bug for an-
other type. For example, Rx may use padding, which is for
avoiding buffer overflow, to cure a dangling pointer write bug

6

when the memory write through dangling pointer happens to
corrupt some padding instead of useful data. In contrast, this
can not happen in First-Aid because when diagnosing buffer
overflow, the “delay free” is also applied to prevent dangling
pointer write from corrupting any other place, including the
paddings.

Exactness: First-Aid identifies a small set of bug-triggering
memory objects, while Rx applies environmental changes to
all memory objects during re-execution. For example, Rx
stops diagnosis if padding all the new objects can avoid the
bug during re-execution. In contrast, First-Aid pinpoints the
exact objects where the buffer overflow occurs by checking
canary in all the paddings.

5 Patch Validation and Bug Report
Although First-Aid’s diagnostic algorithm will not misdiag-
nose one type of memory bug as another, it may diagnose se-
mantic bugs as memory bugs if the bug manifestation depends
on memory layout. For example, if a memory write due to a
semantic bug happens at the address right after a newly allo-
cated object, it may be diagnosed as a buffer overflow. Even
though the chance of such misdiagnosis is small, it undermines
the safety and reliability of the program execution in the long
run and can mislead developers when they fix the bugs in the
source code.

To rule out the possibilities of such misdiagnosis, the ran-
dom side-effects of a patch must be distinguished from the de-
sired effects. First-Aid does so by checking the consistent ef-
fects of a runtime patch under memory layout randomization.
During validation, First-Aid re-executes the buggy region of
the program three more iterations with randomized allocation
algorithm. In each iteration, memory allocator’s activities and
illegal memory accesses are traced and logged. The allocator
plug-in provides its own logging and a dynamic instrumenta-
tion tool, Pin [19], is used to trace memory accesses. Specifi-
cally, for each memory allocation/deallocation, First-Aid logs
the object address and whether a patch is triggered at this op-
eration. If a patch is triggered, First-Aid also traces the illegal
accesses corresponding to the patch: the memory writes to the
padding, the memory reads/writes to delay-freed objects, and
the uninitialized reads. With these traces, First-Aid checks
whether the effects of the patch is consistent among multi-
ple re-executions based on following criteria: a) the patch is
triggered by the same number of times; b) there are the same
number of total illegal accesses prevented by the patch; and
c) each illegal access is made by the same instruction at the
same offset to the corresponding memory object (the memory
object address is randomized though). If the consistent check
fails, First-Aid will remove the runtime patch and report the
problem.

The traces collected in the above validation step will be or-
ganized into the bug report for the developers. Specifically,
besides the usual bug report package (core dump, event log,

etc.), First-Aid provides four pieces of new information in the
bug report: a) diagnosis log, which helps developers under-
standing the diagnostic process; b) runtime patch information,
which includes the bug type and accurate call-sites of the rel-
evant allocation/de-allocation operations, pointing developers
to the critical source code section related to the bug; c) al-
location/deallocation traces in the bug region, which shows
clearly when the runtime patch takes effect and what mem-
ory objects are affected; and d) illegal memory accesses in the
bug region, which shows the instructions that have made ille-
gal memory accesses. With the above information on both the
bug root causes and the bug manifestation process, developers
can quickly fix the bug.

6 Issues and Discussion
Common assumptions on memory bugs: Even though the First-
Aid’s diagnosis algorithm is comprehensive, it is based on sev-
eral assumptions on common characteristics of memory bugs.
These key assumptions include: the buffer overflow bugs must
corrupt data within a neighboring region of the memory object
instead of with an arbitrary offset; the canary must not be coin-
cidentally used in the buggy memory object as normal value;
programmers have the intention to initialize the newly allo-
cated buffers to zeros in the case of uninitialized read bugs.
These assumptions cover most common cases in real mem-
ory bugs and thereby are also used in previous work [27, 23].
However, exceptions can happen theoretically and result in
failed attempts to patch.

Customized memory allocator in applications: To avoid some
memory bugs or improve performance, many applications
use customized memory allocation wrappers or even their
own memory allocators. Memory allocation wrappers have
little impact on First-Aid because First-Aid’s diagnosis and
patching is based on multi-level call-sites. If an application-
specific allocator is used, the First-Aid memory allocator plug-
in should be ported to the allocator for reaching full capabil-
ity in handling memory bugs. Porting generally is straightfor-
ward.

7 Evaluation and Experimental Re-
sults

7.1 Experimental Setup
Our experimental platform consists of two machines with Intel
Xeon 3.00 GHz processors, 2MB L2 cache, 2GB of memory,
and a 100Mbps Ethernet connection between them. The oper-
ating system kernel was the Linux 2.4.22 kernel modified with
Flashback [31] checkpointing support. We ran servers on one
machine and clients on the other. We implemented the mem-
ory allocator plug-in based on Lea allocator [17], the default
memory allocator used in GNU C library.

We evaluated First-Aid with seven applications including
three server applications (Apache, Squid, and CVS) and four

7

Application Diagnosed bugs Runtime patch Recovery Avoid future No. of rollbacks Validation
(No. of call-sites applied) time (s) errors? for diagnosis time (s)

Apache dangling pointer read delay free(7) 3.978 Yes 28 9.620
Squid buffer overflow add padding(1) 0.386 Yes 7 14.198
CVS double free delay free(1) 0.121 Yes 6 3.887
Pine buffer overflow add padding(1) 0.722 Yes 7 18.276
Mutt buffer overflow add padding(1) 0.617 Yes 7 10.610
M4 dangling pointer reads delay free(2) 1.396 Yes 18 3.407
BC two buffer overflows add padding(3) 0.573 Yes 6 2.625
Apache-uir uninitialized read fill with zero(1) 0.102 Yes 9 5.750
Apache-dpw dangling pointer write delay free(1) 0.084 Yes 7 5.718

Table 3: Overall results for First-Aid in surviving and preventing memory bugs. The recovery time is from when the failure is
first caught to when the program changes back to normal mode with applied runtime patches. The validation time is the extra
time taken when enabling a three-iteration validation. Apache-uir and Apache-dpw correspond to the cases with injected
uninitialized read and dangling pointer write, respectively.

App. Ver. Bug LOC App. Desc.
Apache 2.0.51 dangling pointer read
Apache-uir 2.0.51 uninitialized read 263K web server
Apache-dpw 2.0.51 dangling pointer write
Squid 2.3 buffer overflow 93K proxy cache
CVS 1.11.4 double free 114K version control
Pine 4.44 buffer overflow 330K email client
Mutt 1.3.99i buffer overflow 86K email client
M4 1.4.4 dangling pointer read 17K macro processor
BC 1.06 buffer overflow 14K calculator

Table 2: Applications and bugs used in evaluation.

client applications (Pine, Mutt, M4, and BC), as shown in Ta-
ble 2. The applications contain various types of memory bugs,
including buffer overflow, dangling pointer read/write, double
free, and uninitialized read. Seven of these bugs were intro-
duced by original developers and we injected two bugs into
Apache httpd server: Apache-uir contains an uninitialized read
and Apache-dpw contains a dangling pointer write.

7.2 Overall Effectiveness

We executed these seven applications with First-Aid. To sim-
ulate bug triggering in real scenarios, we mixed the bug-
triggering inputs and normal inputs. For each application, we
measured the failure recovery time, number of rollbacks for
diagnosis, runtime patch, number of call-sites being patched,
validation time, and whether the patch can avoid future errors
caused by the same bug. Table 3 shows these results.

First-Aid is effective in diagnosing memory errors. As
shown in Table 3, for all the tested seven buggy applications,
First-Aid correctly identifies the occurring bug types and the
call-sites of bug-triggering memory objects. The diagnosis ac-
curacy is because First-Aid leverages both preventive and ex-
posing changes for separating the interferences among differ-
ent bugs.

First-Aid provides quick failure recovery and thereby hides
program failures from users. As shown in Table 3, the fail-
ure recovery time ranges from 0.084 to 3.978 seconds with
an average 0.887 seconds. This is because First-Aid’s effi-
cient diagnosis algorithm and lightweight checkpointing-and-
re-execution mechanism. For example, First-Aid quickly pin-
points the occurring bugs in seven cases after 6-9 iterations of
program re-execution, resulting in less than 1 second failure
recovery time. The relatively long recovery time for the dan-
gling pointer read case in Apache is because its bug-triggering
point is a little far (three checkpoints) from the failure point.
Fortunately, previous studies [12] show that the error propaga-
tion distance (the distance from the bug-triggering point to the
failure point) is very short for most cases and thereby First-Aid
can quickly recover programs from failures.

Table 3 shows that First-Aid is effective in avoiding future
errors caused by the same bug. In the experiments, we repet-
itively send the bug-triggering inputs. First-Aid successfully
prevents future memory errors due to the same bugs after ap-
plying the runtime patches. This is because First-Aid’s patch is
lightweight, i.e., applying to 1-7 call-sites in the experiments,
and thereby can be enabled for preventing future errors during
the entire program execution.

As shown in Table 3, First-Aid successfully validates the
generated patches within a small amount of time, i.e., 3-18
seconds, for the tested seven applications. During the valida-
tion process, the runtime patches show consistent effects, i.e.,
patches applied to the same number of memory objects and
each illegal access matches across different runs. The small
validation time is because First-Aid re-executes the program
from the checkpoint identified by the diagnostic engine instead
of from the very beginning.

7.3 Future Error Prevention
We evaluated First-Aid’s capability of future error prevention
and compared it with two alternatives, the restart method and

8

 0

 5

 10

 0 5 10 15 20 25

T
hr

ou
gh

pu
t (

M
B

/s
)

Elapsed Time (sec)

Restart 0

 5

 10
Rx 0

 5

 10
First-Aid

(a) Throughput for Apache

 0

 5

 10

 0 5 10 15 20 25

T
hr

ou
gh

pu
t (

M
B

/s
)

Elapsed Time (sec)

Restart 0

 5

 10
Rx 0

 5

 10
First-Aid

(b) Throughput for Squid

Figure 4: Comparison among First-Aid, Rx, and restart

Rx, using two representative server programs, Apache and
Squid. In the experiments, after a certain period in normal
execution, we periodically triggered the real bug by sending
bug-triggering requests mixed with normal inputs.

Figure 4 shows that First-Aid effectively prevents future er-
rors caused by the same bugs while the restart approach and
Rx cannot. In the case of Apache (Figure 4 (a)), First-Aid di-
agnoses the occurring and recovers the programs from the first
failure for around 4 seconds and then maintains stable perfor-
mance when facing the same bug-triggering inputs repetitively.
This is because the patch generated by First-Aid is correct and
accurate so that it can effectively avoid the same memory bug
during future program execution. On the contrary, Rx suffers
the same bug repetitively during subsequent program execu-
tion even though it can recover the program from the failure
for the first time. This is because Rx applies the environmental
changes to all the memory objects without accurate bug diag-
nosis. Consequently, it has to disable the potentially expen-
sive environmental changes after passing the buggy program
region. For the restart approach, it suffers the same bug repet-
itively since the occurring bug is deterministically triggered
during subsequent program execution. Figure 4 (b) shows sim-
ilar results for Squid. One difference is that First-Aid recovers
the program from the first failure faster for Squid because of
its shorter error propagation distance.

Table 4 further illustrates the accuracy of First-Aid’s patches
as well as the reason why Rx has to disable the environmen-
tal change after surviving failures. For the tested seven real
bugs, we compare patch application in First-Aid and environ-

Call-sites Objects
Name First Rx Ratio First Rx Ratio

-Aid -Aid
Apache 7 32 21.8% 315 2567 12.2%
Squid 1 61 1.64% 1 3626 0.028%
CVS 1 44 2.27% 17 306 5.56%
Pine 1 380 0.26% 11 2881 0.381%
Mutt 1 216 0.46% 2 5004 0.040%
M4 2 8 25.0% 3 183 1.64%
BC 3 34 8.82% 5 732 0.683%

Table 4: The call-sites and memory objects affected by the
runtime patch in the buggy region
Bug report:
1. Failure coredump: failure.core
2. Diagnosis summary: recovery: 3.978(s); validation: 9.620 (s),
 Diagnosis log: diag.log
3. Patch applied: delay free x 7 for dangling pointer read
 Patch 1: delay free on callsite: 0x4022f971@util_ald_free
 (triggered 44 times) 0x806437b@util_ald_cache_purge
 0x80646dc@util_ald_cache_insert
 Patch 2: delay free on callsite: 0x4022f971@util_ald_free
 (triggered 44 times) 0x8063eac@util_ldap_search_node_free
 0x8064372@util_ald_cache_purge
 Patch 3: ...
4. Illegal access trace in buggy region:
 Summary: patch 1: 68 accesses (68 read, 0 write):
 from 2 instructions in util_ald_cache_fetch
 from 4 instructions in util_ald_cache_purge
 patch 2: 90 accesses (90 read, 0 write):
 from 6 instructions in util_ldap_search_node_free
 patch 3: ...
 Detailed access log: illegal_access.log
5. Memory allocations/deallocations in buggy region:
 Without patch: mm_trace_orig.log, with patch: mm_trace_patched.log, diff:
 free(0x81865c0) | free(0x81865c0) (delayed, patch 2)
 free(0x8186360) | free(0x8186360) (delayed, patch 3)
 ...
 malloc(1000): 0x8186250 | malloc(1000): 0x818e4f8
 ...

Figure 5: The bug report generated by First-Aid for Apache
dangling pointer read bug

mental change application in Rx for the buggy region in terms
of the number of call-sites and objects being applied with the
changes. As shown in Table 4, the patch generated by First-
Aid is in much lighter weight. For example, First-Aid only
affects 1 to 7 call-sites and 1 to 315 objects, while Rx affects
8 to 380 call-sites and 183 to 5004 objects. Furthermore, after
passing the buggy region, First-Aid’s patches are less likely to
be triggered by normal user inputs. Therefore, First-Aid can
enable the lightweight patches all the time during program ex-
ecution for preventing future errors due to the same bugs.

7.4 Bug Report
Our manual inspection of the bug reports shows that the on-site
diagnostic information is helpful in fixing the bug. Figure 5
shows the report generated by First-Aid for the Apache bug. It
consists of five parts: a failure core-dump, a diagnosis log, run-
time patch information, an illegal access trace, and a memory
allocation/deallocation trace. The patch information clearly

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

ap
ac

he

sq
ui

d

cv
s

m
ut

t

pi
ne bc m
4

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rl

bm
k

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

cf
ra

c

es
pr

es
so

lin
ds

ay p2
c

A
ve

ra
ge

 1.05
N

or
m

al
iz

ed
 T

im
e

Applications SPECint2000
Allocation
 Intensive

original
allocator

overall

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

ap
ac

he

sq
ui

d

cv
s

m
ut

t

pi
ne bc m
4

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rl

bm
k

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

cf
ra

c

es
pr

es
so

lin
ds

ay p2
c

A
ve

ra
ge

 1.05
N

or
m

al
iz

ed
 T

im
e

Applications SPECint2000
Allocation
 Intensive

Figure 6: Overhead for First-Aid during normal execution. The ‘allocator’ bars show the overhead imposed by memory
allocator plug-in. The ‘overall’ bars show the combined overhead for First-Aid including both allocator and checkpointing.

indicates that the bug is the dangling pointer read and related
to the LDAP cache. This is because the bug can be avoided
by delaying free in the util_ald_cache_purge and
util_ldap_search_node_free, the callers of a wrap-
per free in Apache (util_ald_free). Additionally, the
multi-level call-sites show that all the delayed frees are issued
indirectly through the util_ald_cache_purge. By com-
paring the allocation/deallocation traces with and without run-
time patch applied, we can notice that without patch, the freed
memory is reallocated later. Based on all these hints, it is not
difficult to pinpoint the bug in util_ald_cache_purge:
dangling pointers are created in the cache cleanup operation.

7.5 Normal Execution Overhead
We evaluated the normal execution overhead incurred by First-
Aid using three sets of programs: the seven applications in Ta-
ble 3, SPEC INT2000 benchmarks [30], and four allocation
intensive benchmarks [3]. We executed First-Aid with nor-
mal user inputs in two configurations: enabling only the mem-
ory allocator plug-in, and enabling both the memory allocator
plug-in and checkpointing. The default checkpointing inter-
val in the adaptive checkpointing scheme is 200 milliseconds.
For SPEC benchmarks, we used the reference data sets as the
workload. For other programs, we either chose a large testing
program distributed along the package or constructed synthe-
sized workloads based on the commonly exercised operations,
e.g., fetching various sizes of html pages for Apache and Squid
servers, exporting a directory with files for CVS server, going
through mail box and reading each email for Pine and Mutt,
etc.

Figure 6 shows the overhead of First-Aid during normal ex-
ecution. For client programs, we compare the normalized ex-
ecution time, while for server programs, we compare the av-
erage response time. We show the overhead imposed by the
memory allocator (the second bar) and the overall overhead in-
curred by both memory allocator and checkpointing (the third
bar).

As shown in Figure 6, First-Aid incurs low overhead (0.4-

 0

 5

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
B

/s
)

Elapsed Time (sec)

server 3

 0

 5

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
B

/s
)

Elapsed Time (sec)

server 3 0

 5
server 2

 0

 5
server 2

 0

 5
server 1

 patch
applied

 0

 5
server 1

 patch
applied

Figure 7: Throughput for three Apache httpd processes un-
der First-Aid with bug triggering inputs sent to each process
started at different time

11.6% with an average of 3.73%) for most of the tested ap-
plications. This is because the memory allocator plug-in and
the checkpointing mechanism (two major sources for the run-
time overhead) are lightweight. Specifically, First-Aid incurs
less than 5% for 17 out of the 22 applications. Furthermore,
runtime overhead incurred by the allocator plug-in and check-
pointing mechanism varies for different programs. For some
programs that have large memory working-sets, such as SPEC
benchmarks, the checkpointing overhead is generally higher
due to the frequent copy-on-write page replication. For some
programs that perform intensive allocation and deallocation,
such as BC, cfrac, the memory allocator plug-in imposes rel-
atively larger overhead. This is mainly due to the time spent
on checking for available patches and maintaining additional
meta data on memory management. Since we did not spend
much effort on optimization, there is room for improving per-
formance.

7.6 Patch Sharing on Multiple Server Processes

We have evaluated First-Aid’s ability of protecting multiple
server processes that are executing the same program from

10

the same bug. In this experiment, we start three processes of
Apache httpd server on one host. The workload drives the
throughput of each server process to the maximum 4.1 MB/s,
which is limited by the network card maximal bandwidth 11.7
MB/s. We design a longer experiment and start mixing the
bug-triggering requests with normal user requests at different
time for different server processes. The arrows in Figure 7 in-
dicate the start sending time of bug-triggering requests to the
three servers.

Figure 7 shows that First-Aid can effectively prevent future
failures caused by the same bugs from occurring at all the
processes. For example, the bug-triggering inputs for all the
server processes only cause server 1’s crash at around the 11th
second. This is because First-Aid generates the patch at around
the 15th second for server 1 and immediately propagates it to
the other two processes. After applying the patch, all the three
processes can prevent future failures caused by the same bug.
This indicates that First-Aid can alleviate Denial-Of-Service
(DOS) attacks made to server farms.

7.7 Effectiveness to Multiple Bugs
To evaluate First-Aid’s ability of handling multiple bugs and
multiple crashes, we inject five bugs, i.e., one buffer over-
flow, one dangling pointer read, one dangling pointer write,
and two uninitialized reads, to Apache, and construct two
variants of Apache, denoted as Apache-mbug1 and Apache-
mbug2. In Apache-mbug1 and Apache-mbug2, a single re-
quest Rbugtrigger triggers all the five bugs. After that, in
Apache-mbug1, a single request Rcrash makes all the five trig-
gered bugs to manifest and crash the program. Differently, in
Apache-mbug2, a request Rcrash1 makes the dangling pointer
read, the dangling pointer write, and one uninitialized read
to manifest, while another request Rcrash2 makes the buffer
overflow and the other uninitialized read to manifest.

 0

 5

 10

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
)

Elapsed Time (sec)

Apache-mbug2
 0

 5

 10
Apache-mbug1

Figure 8: First-Aid with multiple bugs in Apache

Figure 8 shows the throughput when the multiple injected
bugs and multiple crashes are triggered. The results indi-
cate that First-Aid can successfully separate multiple bugs
and generate patches for each of the bugs, no matter there is
one or more crash-triggering requests of these bugs. In the

Apache-mbug1 case, as shown in the top part of Figure 8,
First-Aid performs a thorough diagnosis and generates patches
for all the five injected bugs. This is because all the five bugs
need to be fixed for avoiding the crash triggered by Rcrash.
The recovery time is 0.217 second with 23 rollbacks for diag-
nosis. In the Apache-mbug2 case, as shown in the bottom
part of Figure 8, the first crash can be avoided by only patching
three individual bugs (dangling pointer read/write, an unini-
tialized read). Therefore, First-Aid only focuses on these three
bugs when diagnosing the first crash, even though all the five
bugs are triggered at the same time. The recovery time for this
crash is 0.18 second. For the second crash, the recovery time
is longer (0.198 second) because of the longer distance from
the bug triggering point to the crash point.

7.8 Space Overhead in Normal Run
We have evaluated the space overhead incurred by First-Aid,
which mainly comes from the memory allocator plug-in and
the checkpointing module. Table 5 shows the detailed results
on the space overhead from the memory allocator plug-in. In
most cases, the memory allocator plug-in incurs very low over-
head, less than 5%. This is because the plug-in only adds 16
bytes meta data for each memory objects. However, there are
several cases where the relative heap overhead is large, e.g.,
93.17% for cfrac. The reason is that these applications have
a large number of small objects, which makes the relatively
space overhead large. We expect optimizations can reduce the
meta data size from 16 bytes to 8 bytes, which further reduces
space overhead incurred by the memory allocator plug-in.

Table 6 shows the space overhead for keeping the check-
points in memory. Our checkpointing tool uses copy-on-write
(COW) to save the dirty pages, so the space overhead is di-
rectly affected by the working set for each application. For
many applications we tested, the checkpointing space over-
head is low, less than 1 MB for each checkpoint. For ex-
ample, keeping 100 checkpoints for Apache and Squid only
takes 6.8MB and 21.1MB, respectively. However, for several
SPEC INT2000 benchmarks, such as vortex and bzip2, the
checkpointing overhead is large due to their large working set.
In these cases, First-Aid leverages the adaptive checkpointing
scheme to alleviate the overhead by increasing the checkpoint
intervals. As a result, the space overhead per second is kept
low. When the checkpoint interval is increased and old check-
points get discarded, First-Aid maintains the same length of
history while keeping less data in memory. The downside is
that the recovery time would be longer when the checkpoint
interval gets larger.

7.9 Trade-off between Recovery Time and Nor-
mal Run Overhead

We have evaluated the trade-off between recovery time and
normal run overhead in First-Aid with different checkpoint
intervals. Figure 9 shows the throughput and average recov-

11

Apache Squid CVS Mutt Pine M4 BC cfrac espresso lindsay p2c
Original heap (MB) 0.806 2.283 0.285 0.345 0.636 15.96 0.059 0.205 0.272 1.822 0.461
First-Aid heap (MB) 0.810 2.357 0.285 0.392 0.980 16.00 0.063 0.396 0.354 1.826 0.715
Overhead 0.49% 3.24% 0.0% 13.62% 54.09% 0.25 6.78% 93.17 % 30.15% 0.22% 55.10%

gzip vpr gcc mcf crafty parser eon perlbmk vortex bzip2 twolf
Original heap (MB) 180.4 20.11 83.68 94.91 0.856 30.11 0.346 56.92 108.6 184.9 3.224
First-Aid heap (MB) 180.4 20.66 83.75 94.91 0.856 30.11 0.352 63.05 109.4 184.9 5.251
Overhead 0.0% 2.75% 0.08% 0.0% 0.0% 0.0% 1.89% 10.76% 0.65% 0.0% 62.88%

Table 5: Space overhead incurred by memory allocator plug-in

Apache Squid CVS Mutt Pine M4 BC cfrac espresso lindsay p2c
MB/checkpoint 0.068 0.211 1.068 0.286 0.345 0.222 0.04 0.210 0.185 0.297 0.055
MB/second 0.341 1.056 4.942 1.429 1.728 1.113 0.200 1.049 0.923 1.484 0.273

gzip vpr gcc mcf crafty parser eon perlbmk vortex bzip2 twolf
MB/checkpoint 4.574 1.355 4.488 9.691 0.941 10.87 0.056 4.566 33.39 16.08 1.585
MB/second 6.852 6.765 7.074 7.035 4.657 6.836 0.28 6.732 7.120 6.945 6.305

Table 6: Space overhead incurred by checkpointing

 9

 9.4

 9.8

 10.2

 10.6

0.05 0.1 0.2 0.5 1 2 4
 0

 0.4

 0.8

 1.2

 1.6

T
hr

ou
gh

pu
t (

M
B

/s
)

A
vg

. R
ec

ov
er

y
T

im
e

(s
ec

)

Checkpoint Interval (sec)

throughput
avg. recovery time

Figure 9: Trade-off between checkpoint frequency and recov-
ery delay for Squid

ery time for Squid with different checkpoint intervals. We
can observe that as the checkpoint interval decreases to a cer-
tain level, it starts to show noticeable performance drop. In
the meantime, as the checkpoint interval decreases, the recov-
ery time becomes smaller. This is because the recovery time
largely depends on the time for re-execution. In many cases
including Squid, the re-execution time depends on the dis-
tance between the failure point and the last checkpoint. There-
fore, increasing checkpoint frequency will reduce the average
length to replay and thus effectively reduce the average re-
covery time. For users who consider failures as infrequent
events and are not willing to sacrifice normal execution perfor-
mance, a large checkpoint interval is recommended, especially
for memory intensive programs.

8 Related Work
Due to the space limit, this section briefly discusses the related
work that is not discussed in previous sections.
Fault tolerance. First-Aid is related to a large body of work
on fault tolerance, including restart [11, 32, 6, 7], software
rejuvenation [5, 9, 14] and checkpointing-based fault toler-

ance [25, 24]. Recently, based on virtual machine replica-
tion, Remus [8] achieves seamless recovery of the whole VM.
These methods are effective in addressing hardware errors
and non-deterministic software bugs. First-Aid complements
these approaches in that it diagnose and correcting memory
errors, which are often deterministically manifested. Further-
more, complementary to Dimmunix [15], which is for pre-
venting programs from re-encountering previously-seen dead-
locks, First-Aid prevents programs from future memory errors
caused by the same memory bugs.

Failure diagnosis. Many studies on failure diagnosis focus
on off-site tools, either incurring heavy overhead or relying
on extensive human effort. Examples of such tools are delta
debugging [21, 37], program slicing [1, 36, 38], interactive de-
bugging [10], and deterministic replay [31, 16]. Unlike these
approaches, First-Aid diagnoses memory bugs based on end-
user site information, which is unavailable at developers’ sites.
A recent work, Triage [34], focuses on on-site failure diagno-
sis. Unlike Triage, First-Aid’s diagnostic algorithm aims for
quick recovery and thus is more lightweight. In addition to
diagnosis, First-Aid generates online patches for avoiding the
same memory bug occurrences during subsequent production
runs.

Dynamic memory bug detection. Many dynamic memory
bug detection tools such as Purify [13] and Valgrind [22] are
mainly for in-house testing due to their heavy instrumentation
on every memory accesses. First-Aid, as an online tool for dif-
ferent purposes, focus on diagnosing and patching occurring
bugs instead of bug detection. Therefore, it uses a lightweight
diagnosis algorithm on demand. Furthermore, First-Aid can
benefit from other lightweight memory error detection tools,
such as AccMon [39], SafeMem [26], etc., by deploying them
as failure/error monitors.

12

Checkpointing and re-execution. Previous work relies on
checkpointing and re-execution for many different purposes,
including interactive debugging [31, 16], failure recovery [27,
24, 25], failure diagnosis [34]. First-Aid exploits lightweight
checkpointing and re-execution mechanisms for diagnosing
and preventing failures caused by memory bugs.

9 Conclusions
In summary, First-Aid is a lightweight runtime system that
provides accurate bug diagnosis, failure recovery, and future
failure prevention to common memory bugs, including buffer
overflow, uninitialized read, dangling pointer read/write, and
double free. By leveraging exposing and preventive envi-
ronmental changes, First-Aid can accurately identify the bug
types and bug-triggering memory objects. Based on such di-
agnostic information, First-Aid generates runtime patches and
applies them to a minimal set of memory objects to tolerate the
occurring bugs and prevent future failures caused by the same
bugs.

Our evaluation with seven applications shows that First-Aid
can successfully diagnose and generate runtime patches for
common memory bugs. It provides fast recovery, i.e., 0.084-
3.978 seconds recovery time. The results also show that First-
Aid is effective in preventing future bug occurrences. Ad-
ditionally, First-Aid provides detailed on-site bug report that
helps developers understand the root cause and manifestation
of the occurring bugs. Furthermore, our evaluation with the
seven applications, SPEC INT2000, and four allocation inten-
sive benchmarks shows that First-Aid incurs low overhead (0.4
to 11.6% with an average of 3.73%) during normal program
execution.

References
[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. An execution-

backtracking approach to debugging. IEEE Softw., 1991.
[2] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of

vulnerability: A case study analysis. Computer, 2000.
[3] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.

Hoard: a scalable memory allocator for multithreaded applica-
tions. In ASPLOS ’00.

[4] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory
safety for unsafe languages. In PLDI ’06.

[5] A. Bobbio and M. Sereno. Fine grained software rejuvenation
models. In ICPDS ’98.

[6] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Garg, and R. Gowda.
Reducing recovery time in a small recursively restartable sys-
tem. In DSN ’02.

[7] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot – A technique for cheap recovery. In OSDI ’04.

[8] B. Cully, G. Lefebvre, D. T. Meyer, A. Karollil, M. J. Feeley,
N. C. Hutchinson, and A. Warfield. Remus: High availability
via asynchronous virtual machine replication.

[9] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. On the anal-
ysis of software rejuvenation policies. In CA ’97.

[10] GNU. Gdb: The gnu project debugger.
[11] J. Gray. Why do computers stop and what can be done about it?

In RDS ’86.
[12] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang. Characterization

of linux kernel behavior under errors.
[13] R. Hasting and B. Joyce. Purify: Fast Detection of Memory

Leaks and Access Errors. In USENIX Winter ’92.
[14] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software

rejuvenation: Analysis, module and applications. In FTC ’95.
[15] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Microreboot

– A technique for cheap recovery.
[16] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating

systems with time-traveling virtual machines. In USENIX ’05.
[17] D. Lea. A Memory Allocator, 1996.
[18] D. E. Lowell and P. M. Chen. Discount checking: Transpar-

ent, low-overhead recovery for general applications. Technical
report, CSE-TR-410-99, University of Michigan, 1998.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building cus-
tomized program analysis tools with dynamic instrumentation.

[20] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn.
Archipelago: trading address space for reliability and security.
In ASPLOS ’08.

[21] G. Misherghi and Z. Su. Hdd: hierarchical delta debugging. In
ICSE ’06.

[22] N. Nethercote and J. Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In PLDI ’07.

[23] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: au-
tomatically correcting memory errors with high probability. In
PLDI ’07.

[24] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and
implementation of zap: a system for migrating computing envi-
ronments. In OSDI ’02.

[25] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Trans-
parent checkpointing under Unix.

[26] F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting ECC-memory
for detecting memory leaks and memory corruption during pro-
duction runs. In HPCA ’05.

[27] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating Bugs
as Allergies – A Safe Method to Survive Software Failure. In
SOSP ’05.

[28] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee, Jr. Enhancing Server Availability and Security Through
Failure-oblivious Computing. In OSDI ’04.

[29] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis.
Building a reactive immune system for software services.

[30] SPEC. http://www.spec.org/cpu2000.
[31] S. Srinivasan, C. Andrews, S. Kandula, and Y. Zhou. Flashback:

A light-weight extension for rollback and deterministic replay
for software debugging. In USENIX ’04.

13

[32] M. Sullivan and R. Chillarege. Software defects and their im-
pact on system availability – A study of field failures in operat-
ing systems. In FTC ’91.

[33] Symantec. Internet security threat report.
http://www.symantec.com/enterprise/threatreport/index.jsp,
Sept 2006.

[34] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:
diagnosing production run failures at the user’s site. In SOSP
’07.

[35] US-CERT. US-CERT vulnerability notes database.
http://www.kb.cert.org/vuls.

[36] M. Weiser. Programmers use slices when debugging. Commun.
ACM, 1982.

[37] A. Zeller. Isolating cause-effect chains from computer pro-
grams. In FSE ’02.

[38] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing
algorithms. In ICSE ’03.

[39] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and
J. Torrellas. Accmon: Automatically detecting memory-related
bugs via program counter-based invariants. In MICRO ’04.

14

