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ABSTRACT

To analyze time-varying data sets, tracking features over time is
often necessary to better understand the dynamic nature of the un-
derlying physical process. Tracking 3D time-varying features, how-
ever, is non-trivial when the boundary of the features cannot be eas-
ily defined. In this paper, we propose a new framework to visualize
time-varying features and their motion without explicit feature seg-
mentation and tracking. In our framework, a time-varying feature is
described by a time series or Time Activity Curve (TAC). To com-
pute the distance, or similarity, between a voxel’s time series and
the feature, we use the Dynamic Time Warping (DTW) distance
metric. The purpose of DTW is to compare the shape similarity be-
tween two time series with an optimal warping of time so that the
phase shift of the feature in time can be accounted for. After ap-
plying DTW to compare each voxel’s time series with the feature, a
time-invariant distance field can be computed. The amount of time
warping required for each voxel to match the feature provides an
estimate of the time when the feature is most likely to occur. Based
on the TAC-based distance field, several visualization methods can
be derived to highlight the position and motion of the feature. In ad-
dition, a vector field, called Feature Motion Field, can be derived to
indicate the motion tendency of the feature in the local regions. Var-
ious flow visualization techniques can be applied to this vector field
to create additional visualization. We present several case studies
to demonstrate and compare the effectiveness of our framework.

1 INTRODUCTION

While creating animations is a standard method to visualize time-
varying data, analyzing complex time-dependent features in detail
via animations alone still presents several major challenges. For
instance, due to the 2D nature of the computer display, compar-
ing the size and shape and tracking the motion paths of small 3D
time-evolving features can be difficult. Identifying complex tempo-
ral patterns in animations can be difficult for the users too since the
users are required to infer quantitative information from images and
to memorize the trends for multiple data points simultaneously. Fi-
nally, the transfer functions used in direct volume rendering (DVR)
are often not designed to track data values of high dynamic ranges
spanned across a long time sequence. As a result, important tempo-
ral features can be easily missed.

To overcome these problems, feature-based visualization tech-
niques such as [15] [16] [13] [6] [1] [18] [5] and [2] have been
studied in the past. With those techniques, not only a large data
set can be reduced down to a smaller number of salient features,
but also the complex dynamic of the time-varying data can be suc-
cinctly described by the features’ characteristics in space and time.
Most of the feature-based visualization techniques require extract-
ing the features in the spatial domain and then tracking the evolu-
tion of the features by matching their positions over time. Feature
extraction, nevertheless, can be nontrivial when the boundaries and

∗e-mail: leeten@cse.ohio-state.edu
†e-mail: hswhen@cse.ohio-state.edu

the properties of the features are not well defined. The extraction
and tracking of features can also be very time consuming.

In this paper, we propose a novel visualization framework to ana-
lyze time-varying data sets. A major goal of this framework is to al-
low the user to perform detailed analysis of a data set’s temporal be-
havior, and to identify regions that exhibit different spatiotemporal
properties. Specifically, we are interested in time-varying features
that can be described as time series or calledTime Activity Curves
(TAC). TACs are common as feature representation in medical data,
such as electrical signals of the heart via electrocardiography, brain
signals via positron emission tomography (PET) imaging or func-
tional Magnetic Resonance Imaging (fMRI), and electromagnetic
radiation from dynamic SPECT. Previously, researchers have uti-
lized TACs for analysis and visualization in various medical appli-
cations [20] [4] [3]. In scientific simulations, features of interest are
also commonly represented as TACs. In an earthquake simulation,
for example, the seismic wave measured at a fixed point over time
forms a time series, whose shape can be used to determine the ge-
ometrical properties (e.g. the distance to the earthquake source) or
the geological properties (e.g. the material) at the point.

To identify regions that exhibit a particular temporal trend repre-
sented by a user-specified feature TAC, we propose a novel method
in our framework to convert the original time-varying volume into a
distance field, calledTAC-based Distance Field. The distance field
stores the dissimilarity of each voxel’s time series to the feature
TAC, from which various visualization techniques can be applied to
reveal the spatial distribution of the temporal feature. To measure
the dissimilarity/distance between TACs, several issues need to be
addressed. First, because the feature travels through space at a fi-
nite speed, different data points in space will encounter the feature
at different times. This phenomenon can be observed as a shift of
time in the data points’ respective TACs. The width of the feature
on the TAC can also be stretched/compressed because the feature
may travel at different speeds in different regions. Another point of
consideration is that as the feature travels in space, its property, for
example the magnitude of the earthquake wave, may also gradually
change over time. This will cause the shape of feature TAC to de-
form at the points along the feature’s motion path. As an example,
the three TACs shown in Figure 5 (a) illustrate how the feature TAC
can change over time. It can be seen that the temporal patterns have
different lengths, and the peaks appear in different positions inside
the TACs.

Previously,L1 distance metric,L2 distance metric and cross-
correlation were used to compare TACs, but these distance metrics
cannot adequately address the issues mentioned above. To tackle
the problems, we employ a metric calledDynamic Time Warping
(DTW) to calculate the shift- and deform-invariant dissimilarity.
DTW is a dynamic programming algorithm that aligns two time
series with the smallest distortion. With DTW, TACs of similar
shapes but with different temporal shifts and time spans can still
be identified. Meanwhile, because DTW also provides a mapping
between the time steps of two TACs, it is possible to estimate when
the feature of interest emerges at different points in the spatial do-
main. As a result, the spatiotemporal revolution of the feature can
be effectively depicted.

This paper is organized as follows. We review related works on
time-varying data visualization and feature-tracking in Section 2.



Detail about the TAC-based distance field is described in Section 3,
including the TAC-based feature description, computation of DTW,
and construction of the TAC-based distance field. The visualization
algorithms are described in Section 4, including the design of trans-
fer functions for volume rendering, and the derivation and visual-
ization of the feature motion traces. Because the time complexity
of DTW is quadratic to the input size, it is accelerated on GPUs,
as described in Section 5. Section 6 presents the case studies us-
ing two time-varying data sets. Section 7 concludes this paper and
presents possible future work.

2 RELATED WORKS

Visualizing time-varying data has been a focus of visualization re-
search for the past decade. While there are several issues related
to this research topic such as interactive rendering or efficient data
compression, here we are mainly focusing on techniques that are
targeted at effective displaying and tracking of time-varying phe-
nomena.

2.1 Time-varying Data Visualization

To visualize time-varying features in illustrative styles, Postet al
proposed a technique to render time-varying data as iconic sym-
bols to represent the essential attributes of salient features [12].
In [17], Svakhineet al. proposed various techniques to visualize
time-varying 3D flow or scalars by displaying the contour volumes
with different visual enhancements. To render the motion of a time-
varying feature, Joshi and Rheingans [7] draw the motion with con-
ventional illustrative techniques such as speedlines to create visual-
ization in different styles; this technique, however, requires a priori
feature tracking stage to create the traces.

Several works have been proposed to visualize time-varying data
sets without animation. In [21], similar to the Chronophotogra-
phy technique, Woodring and Shen described an algorithm called
Choronvolume to visualize data of multiple time steps in a single
image. Another way to visualize time-varying 3D data is to con-
sider the whole data set as a 4D volume, and then visualization
can be achieved by rendering a 3D hyperplane in the 4D domain
from different perspectives, as proposed by Woodringet al. in [22].
Compared to the previous works above, which are focused on visu-
alizing isosurfaces or interval volumes, our framework provides a
more general representation of the temporal features by using TACs
with more rendering options.

Visualizing time-varying data by displaying salient features has
been widely studied especially for large scale data sets since fea-
tures require much less storage than the raw data. Feature-based vi-
sualization requires several components: feature definition, feature
extraction and segmentation, feature tracking and visual represen-
tation of the features. In the next section several feature tracking
algorithms are reviewed.

2.2 Feature Tracking

To track time-varying isosurfaces, Wang and Silver proposed sev-
eral algorithms for regular grid [15] and unstructured grid [16] vol-
umes. Their assumption is that there exists spatial overlap among
corresponding isosurfaces in consecutive time steps. This assump-
tion means that a series of overlapped isosurfaces is equivalent to a
connected isosurface in 4D space. Jiet al. proposed an algorithm
to take advantage of this property, where the tracking of 3D isosur-
faces is reduced to generation and slicing of isosurfaces in 4D space
[6].

To satisfy the assumption that there exists spatial overlap among
corresponding features, the data needs to be sampled at a higher
temporal resolution, which requires much larger storage space.
To relax this constraint, different algorithms have been proposed.
Reinderset al. proposed a tracking framework by predicting the

variation of feature attributes, such as centroid, shape, size, orienta-
tion, etc. to estimate the temporal behavior of the features [13]. In
[1], Bauer and Peikert transformed the input data into scale space,
and then the non-overlaping features in the original scale can be
tracked by searching in different scales.

One difference between feature tracking in scientific data and
video data is that the features in scientific data can be merged from
a set of features or split into disjoint features over time. By taking
advantage of the fact that the corresponding sets of disjoint features
often have similar shapes, Ji and Shen utilized the Earth Mover
Distance [14] and decision trees to match sets of features without
spatial overlap [5].

All of the related works above assumed that the feature segmen-
tation before tracking can take place. However, except isosurfaces,
segmentation of features may not be trivial. To track features in
2D unsteady flow, Theisel and Seidel [18] proposed a concept that
transforms the original dynamic flow data into a steady 3D vector
field called Feature Flow Field, where the tracking in the original
domain is equivalent to creating streamlines in the new vector field.
Joshi and Rheingans [2] proposed a texture-based tracking method
by treating the time-varying volumes as 3D textures and tracking
the features by mapping overlapped subvolumes with similar textu-
ral patterns.

3 TAC-BASED DISTANCE FIELDS

Detail about the TAC-based distance field is described in this sec-
tion, including the representation of features as TACs, the algorithm
of DTW, and the construction of the TAC-based distance field.

3.1 TAC-based Feature Description

To allow a detailed analysis of time-varying data, it is necessary to
separate the data points that demonstrate different temporal trends.
Here we create a framework to allow visualization of time-varying
features modeled as TACs. TAC-like features are commonly en-
countered in medical applications since the time-varying signals
captured by medical imaging devices already can be thought of as
a set of time series. For data from scientific simulations, sometimes
additional transformation may be needed to convert the raw data
into TACs. A vector field, for example, needs to be converted into a
scalar field such as velocity magnitudes, from which the TACs can
be created.

To specify a feature, the TAC can be manually edited by the users
or automatically extracted from the input data. As an example, in
our experiment we generated the feature TAC by firstK-mean clus-
tering the time series from all voxels. After the TACs have been
grouped into distinct sets, one of the mean TACs from theK clus-
ters is chosen as the feature of interest. The user can switch the
TACs from one cluster to another and visualize the spatial distribu-
tions of different temporal features. This allows the user to perform
detailed analysis of the time-varying data in a more systematic way.

3.2 DTW Distance Metric

Once the feature has been specified as a TAC, in order to detect
the regions that exhibit a similar temporal trend, a distance metric
is needed to measure the dissimilarity to the feature TAC at each
data point. To design such a distance metric for two TACs, we first
use DTW to align them with the smallest distortion and then use
L2 distance between the warped TACs as the final distance. We
call this distance metric as theDTW distance metric. DTW is an
algorithm to nonlinearly align two data sequences, which has also
been used in some other disciplines [8]. As mentioned previously,
the reason for us to employ the DTW distance metric is to account
for the possible time shift and shape deformation that can occur to
the TACs as the feature travels through space and time.

To compute the DTW distance between two data sequences,
three constraints need to be considered, which results in a dynamic



0 20 40 60 80 100
0

0.5

1
Data sequence 2

00.51
0

20

40

60

80

100
Data sequence 1 DTW distance and path

Figure 1: DTW between two synthesized data sequences. The two
data sequences are normalized Gaussian functions with different
means and variances. The warping is plotted as a red line in the
lower right subfigure. The distance table is drawn as an image.

programming algorithm. First, the first and last data points in one
sequence is always mapped to the first and last data points in the
other sequence, respectively. Second, the warping should preserve
the original order of data in the sequence. Third, two adjacent data
points in the same sequence cannot be mapped to non-adjacent lo-
cations.

Based on these constraints, given two data sequences denoted as
x[1..m] andy[1..n], DTW can be modeled as a recursive equation:

D[i, j] = dist(x[i],y[ j])+min{D[i−1, j],D[i−1, j −1],D[i, j −1]}
(1)

for i = 2. . .m and j = 2. . .n, whereD[i, j] denotes the optimal
distance after the warping between two subsequencesx[1. . . i] and
y[1. . . j] has been done, anddist(·, ·) denotes the distance function
between two data items,which is theL2 distance metric here. By
storing the distancesD[i, j] for i = 1. . .m and j = 1. . .n in a 2D
tableD, the entries can be computed according to Equation 1 from
D[1,1] to D[m,n] in scanline order. The warping can be then found
by backtracking fromD[m,n] to D[1,1]. Figure 1 presents the result
of DTW between two synthesized data sequences. The distances
are plotted as a 2D image, and the warping is plotted as the red line.

The main benefit of DTW is that it can consider both the shifting
and deformation of the time series, while other distance metrics ei-
ther consider no transformation at all (e.g.L1 andL2 distance met-
rics) or only the shift of time steps (e.g. cross-correlation). Mean-
while, DTW allows the shifting and deformation to be non-linear.
The main drawback of DTW is its computation complexity, which
is O(mn) to align two sequences of lengthsm andn. While there
exist other acceleration or approximation techniques, we accelerate
it using GPUs, as described in Section 5.

3.3 Construction of TAC-based Distance Field

By computing the DTW distance from every data point to the fea-
ture TAC, the original time-varying volume is transformed into a
distance field. This distance field can be visualized using conven-
tional scalar data visualization techniques such as isosurfaces and
DVR, as will be described in the next section.

In addition to visualizing the distance field, which is to show
the spatial distribution of data points that exhibit a similar tempo-
ral trend to the feature TAC, additional information such as when
the main feature in the feature TAC moves through space can also
be revealed. Using the seismic waves as an example, it is impor-
tant to know when the peak of the earthquake wave passes through

(a) (b) (c)

(d) (e) (f)

Figure 2: Visualization of the TAC-based distance field of a synthe-
sized data set. This data set is a Gausian kernel moving over time.
(a): the centers of the Gaussian kernels. (b): the isosurface. (c)
and (d): DVR images where the opacities are decided according to
Equation 2 with the drop-off parameter p of 8 and 16, respectively.
(e) and (f): DVR images with discrete and continuous, respectively,
color textures.

different areas. To highlight this information, along with the fea-
ture TAC the user can also indicate where the main feature of in-
terest, the peak of the earthquake wave in this case, appears on the
TAC by providing two bounding time steps, which is calledfeature
time range. Since DTW will warp the time sequences when match-
ing two TACs, the user-specified feature time range can be warped
according to the local data point’s TAC. The warped feature time
range then indicates when the main feature occurs in the local re-
gion. We call the centroid of the warped time range asfeature time
step.

To summarize, in the TAC-based distance field, two attributes
are computed for each data point: the DTW distance to the feature
TAC and the feature time step when the main feature of interest
occurs at that point. The DTW distance records the time-invariant
shape dissimilarity between the point’s TAC and the feature TAC.
The feature time step records the estimated time when the feature
passes through that point. By considering both attributes during
the visualization process, spatial and temporal distribution of the
feature can be revealed.

4 VISUALIZATION OF TAC-BASED DISTANCE FIELD

Once the TAC-based distance field has been constructed, the time-
varying feature can be visualized using various visualization tech-
niques. In this section, we use a synthesized data set to illustrate
the concepts. This data set was created by moving a 3D Gaussian
kernel in different locations over time. The path of the Gaussian
kernel is shown in Figure 2 (a). The feature TAC is a 1D Gaussian
kernel.

Isosurface To locate voxels that have similar TACs to the fea-
ture TAC, isosurfaces of small DTW distances can be extracted.
Figure 2 (b) shows an isosurface of the test data set. The isosur-
face reveals the moving path of the Gaussian kernel, although no
information about when the kernel moves through each data point
is shown.

Volume Rendering via 1D and 2D Transfer Functions To
reveal the temporal information of the feature, we can use DVR to
display both the DTW distances and the feature time steps stored in
the distance field. This is done using 2D transfer functions to map
them to opacity and color.
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Figure 3: Creating motion trail via DVR. (a), (b) and (c): repeated
patterns in different frequencies via discrete color map. (d), (e) and
(g): repeated patterns in different frequencies via continuous color
map.

When mapping the DTW distance to opacity, our goal is to hide
the regions that have too dissimilar TACs to the feature TAC. We
use the following equation to calculate the alpha channel for each
voxel:

α = (1−s)p (2)

whereα is the opacity,s is the DTW distance normalized to [0,1]
range, andp is a parameter to control the drop-off rate of the opacity
as the voxel becomes more dissimilar to the feature TAC. Figure
2 (c) and (d) show images obtained from using different drop-off
values. Regions of different sizes are shown to indicate the levels
of similarity to the feature.

To map the feature time step to color, there exist several possi-
bilities. One way is to map the feature time steps by a 1D transfer
function. Figures 2 (e) and (f) present the DVR images via simple
1D transfer functions that map ’past’ to ’red,’ ’current’ to ’green,’
and ’future’ to ’blue.’ Note that in the figures, the 2D transfer func-
tions are displayed in a small window at the lower left corner. Be-
cause the alpha value will drop to a small value near zero as the
distance to the feature TAC gets larger, only about a quarter of the
color bar is visible.

Another option is to use 2D textures to create different styles of
images. The textures can be indexed by using the DTW distance as
the row index and the feature time step as the column index. One
desired effect is to show the feature’s motion trail. To create this
effect, the 2D texture can have texels with non-zero opacities ar-
ranged as a band covering the distances of interest. The opacities
on those texels are controlled by the feature time step to emphasize
a certain time range. Figure 3 (a) shows an image generated with
this 2D texture. In addition, similar to conventional texture map-
ping, the texture coordinates can be scaled to created repeated pat-
terns. Figures 3 (b) and (c) show images obtained by using scales
of 4 and 16, respectively. Figures 3 (d), (e) and (f) show the im-
ages created by using textures with different color channels. Also,
effects of contour volumes can be created by using a texture whose
opacity channel contains horizontal strips. The examples of contour
volumes will be shown in Section 6.

Finally, even though our goal is not to rely on animations to visu-
alize time-varying data, animated effect can be easily incorporated
in our framwork. By periodically shifting the column index when
accessing the transfer functions, a dynamic trace of the feature can
be produced.

(a) (b)

Figure 4: Visualization of the feature motion field for the data set in
Figure 2 (a). (a): the streamlines from the feature motion field. (b):
combination of both DVR and streamlines.

Motion Visualization over Feature Motion Field In addition
to showing the feature in a spatiotemporal manner, we can also cre-
ate motion traces to depict the feature’s movement since such traces
provide intuitive cues, as pointed out by Joshi and Rheingans in [7].
While Joshi and Rheingans have used illustration techniques such
as speedlines to depict the traces, a feature segmentation stage fol-
lowed by a feature tracking stage is required. As we mentioned in
Section 1, a precise segmentation of time-varying features could be
nontrivial. To create motion traces without explicit feature segmen-
tation, our framework converts the TAC-based distance field into a
vector field indicating the directions in which the feature may move
in the local area. We can then visualize this vector field to infer how
the feature may propagate from one data point to another.

We call this derived vector fieldFeature Motion Field. To cre-
ate the feature motion field, for each voxelx, its motion vector is
calculated based on the distances and the feature time steps of the
voxel’s neighborhoodN(x). For a neighboring voxely, if its feature
time step is smaller than or equal to that ofx, it is discarded because
it indicates thaty is in the past as far as the history of the feature
is concerned. Otherwise, the vector~xy is multiplied by a weight
and accumulated to the vector onx. This weight is inversely pro-
portional to the feature distance stored iny because voxels whose
TACs are more similar to the feature TAC should contribute more to
characterize the feature’s motion. The weight is calculated accord-
ing to Equation 2, where the inputs is replaced by the DTW dis-
tance, and the output alpha is now treated as the weight, denoted as
ws(y). After all neighboring voxels aroundx have been examined,
the final vector’s magnitude atx is weighted byws(x) according
to Equation 2. Once the feature motion field has been created, we
can create the traces using streamlines. Figure 4 shows the derived
streamlines for the synthesized Gaussian’s kernel, which apparently
provide the path of the kernel.

Our feature motion field is similar to theFeature Flow Fieldpro-
posed by Theisel and Seidel [18]. Both techniques rely on conven-
tional streamlines over an intermediate vector field to trace features
without explicit feature segmentation. While the concepts are sim-
ilar, feature flow field can only be derived from a vector field, but
our feature motion field can be constructed from any type of time-
varying data sets, provided the feature of interest can be described
as a TAC.

5 GPU-BASED DTW IMPLEMENTATION

As mentioned in Section 3, the computation of DTW can be expen-
sive. In this section, we describe how GPUs can be used to acceler-
ate the DTW compuation using nVidia’s CUDA library [10]. Other
than accelerating the warping between the feature TAC and a single
input TAC, we also want to increase the throughput by computing
the warping of more TACs to the feature TAC in parallel.

In principle, DTW between the feature TAC and all TACs can
be accelerated by executing the TACs on multithreads in parallel.



The following properties make DTW suitable to be implemented
on GPUs. First, the execution of DTW between each pair of TACs
is independent of that of other pairs. Second, according to the re-
cursive Equation 1, elements with the same index will be simultane-
ously accessed by all threads from all tables; thus this programming
flow is suitable for the SIMD architecture of GPUs.

In practice, however, special care should be taken when access-
ing the tables for dynamic programming due to the high memory
access penalty on graphic hardware. Since the warping of feature
time ranges needs the resulting table from dynamic programming,
the tables for all TACs must be maintained when executing DTW,
requiring an enormous memory space that can be only stored in
the device memory (calledglobal memoryin CUDA terminology).
Accessing the global memory, however, is slow since there is no
cache. If these tables are unfolded and cascaded together to form
a long vector, one instruction to access the elements of the same
index will issue multiple memory requests to the global memory,
thus causing high memory access penalty. In our experiment, such
GPU-based implementation was even slower than the CPU-based
implementation on a quad-core system, in spite that GPUs can si-
multaneously execute DTW for more TACs.

To address the issue, the tables for all TACs are interleaved by
cascading the elements with the same index into a contiguous mem-
ory address. Therefore, the instruction to access the elements of the
same index will issue only one memory request. This modification
can made the GPU-based implementation at least ten times faster
than the CPU-based implementation in our experiment. For exam-
ple, for a data set of 150×62×62 voxels with 200 time steps, the
CPU-based implementation took 135 seconds on a workstation with
two Dual Core AMD Opteron processors and 8GB system mem-
ory, while this optimized GPU-based implementation took only 10
seocnds on an nVidia GeForce 8800GTX card.

6 CASE STUDIES

To demonstrate the utility of our framework, we applied it to
data generated from two different applications. One data set is
TeraShake 2.1[11], the benchmark for the IEEE Visualization De-
sign Contest 2006. The other data set is the benchmark for the IEEE
Visualization Design Contest 2008, generated by a simulation that
models ionization front instability [19].

6.1 Earthquake Wave Simulation

The data set TeraShake 2.1 records a simulated earthquake in 250
seconds on the Southern San Andreas Fault. During the first 60 sec-
onds of simulation, a magnitude 7.7 earthquake began from South
of Palm Springs toward Northwest on the San Andreas Fault, then
the fault rupture stopped while the earthquake waves kept prop-
agating. The original data set is a vector field at a resolution of
750×375×100 voxels with 227 time steps. In our test, the orig-
inal data set was down-sampled, to reduce the overall storage, by
approximately a factor of four in all three dimensions yielding a
data set of 188×94×25 voxels with 227 time steps.

The first property in which we were interested is the propagation
of the seismic energy. We used the magnitude of seismic wave
to create the TACs. Figure 5 (a) presents the mean TACs from
three clusters, while the chosen feature TAC is plotted in blue. It
shows that all three mean TACs contain a peak in different loca-
tions, followed by a tailing signal of different lengths. This dif-
ference suggests that using DTW to calculate the dissimilarity will
obtain a smaller distance thanL1 distance,L2 distance, or the cross-
correlation metrics.

Figure 5 (b) shows the joint histogram of the feature time step
and DTW distance. The DTW distance and the feature time step
are represented asx and y coordinates, respectively. The occur-
rence of each bin is normalized to [0, 1] and then mapped to color
from ’blue’ to ’red.’ The bins with zero occurrence are not drawn.

In the joint histogram, after the 100th time step, the horizontal dis-
tance between they-axis and the first non-empty bin is increasing
as they coordinate increases, which means the number of voxels
that contain wave magnitudes closer to the maximal magnitude of
the feature TAC is decreasing in time, indicating that the strength of
the earthquake is reducing after the 100th time step. This is consis-
tent with the simulation setting that the fault rupture was terminated
at the 60th second or equivalently the 55th time step.

Figure 5 (c) presents the DVR image of the TAC-based distance
field. Here the transition of color indicates the propagation paths
of the earthquake energy. For instance, the path where the color
varies from red to yellow is along the structure of the basin plotted
as the isosurfaces. The wavefronts of the reflected waves are also
depicted. Figure 5 (d) provides the streamlines computed from the
feature motion field. Compared to Figure 5 (c), those streamlines
show clearer propagation paths of the earthquake waves. It sug-
gests that streamlines allow a better inference about the propaga-
tion paths than DVR images. On the other hand, volume rendering
depicts better the temporal transition of the energy using colors. To
combine their advantages, Figure 5 (e) shows both the DVR result
and the streamlines.

The types of the seismic waves are another interesting phenom-
ena. Our focus was to reveal when and where the types of waves
changed from body waves (S- or P- waves) to surface waves (L-
or R- waves) and vice versa. Because the types of waves are de-
termined by the vector’s orientation, the original vector field was
transformed into a scalar field calledorientation fieldas a measure-
ment of the orientation disparity between consecutive vectors. In
the orientation field, the scalar stored in each voxelx at time step
t is the product of the magnitudes of the two vectors at time steps
t andt +1 at the voxelx multiplied by an indicator constant. This
indicator constant is+1 if the disparity is larger than 45 degree or
−1 otherwise.

Figure 6 (a) presents the feature TAC. Since a dramatic change of
the orientation will cause a negative value in the orientation field,
the feature TAC contains a negative peak. Figure 6 (b) presents
the joint histogram of the TAC-based distance field. In this joint
histogram, voxels with distances smaller than 0.1 are mainly dis-
tributed before the 70th time step. This distribution indicates that
the change of wave types occurred at the first one-third of the sim-
ulation.

Figure 6 (c) shows the DVR image. Compared to Figure 5 (c),
even though a 2D transfer function with a larger support of non-
zero opacity was used, Figure 6 (c) still appears more transparent
than Figure 5 (c), which makes it difficult to find exactly where the
wave types changed. The streamlines from the feature motion field
are shown in Figure 6 (d). Compared to volume rendering in Fig-
ure 6 (c), streamlines suggest a clearer view of the orientation field
and indicate where the wave types changed. Figure 6 (e) shows two
sets of streamlines computed from the feature motion fields: one
was generated by the magnitude and the other by the orientation.
As shown in Figure 6 (e), both sets are propagating along a simi-
lar direction, although the streamlines derived from the orientation
field are less correlated with the direction than the streamlines de-
rived from the magnitude field.

6.2 Ionization Front Instability

Our second case study is to visualize the turbulence of ionization
front instability. This data set was used for the 2008 IEEE Visu-
alization Design Contest, whose aim is to reveal the influence of
the I-front instabilities during the formation of the structure in early
universe [19].

The data set is a multifield time-varying volume. Each voxel
records 10 fields and a 3D velocity vector. This data set contains
200 time steps of 600× 248× 248 voxels. We downsampled the
data set by a factor of four in all three dimensions to reduce the
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Figure 5: Visualization of the magnitude field of the TeraShake 2.1
data set. (a): the mean TACs from three clusters; the selected feature
TAC is plotted in blue. (b): the joint histogram. (c): a DVR image. (d):
streamlines from the feature motion field. (e): combination of the
DVR image in (c) and the streamlines in (d).

storage. Because the scale of the turbulence is related to the scale
of the curl field, we converted the velocity field into the curl field,
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Figure 6: Visualization of the orientation field of the TeraShake 2.1
data set. (a): the feature TAC. (b): the joint histogram. (c): a DVR
image. (d): streamlines from the feature motion field. (e): combi-
nation of the streamlines from the magnitude field (green) and the
orientation field (red).

from which the TACs were created.
Figure 7 (a) shows the feature TAC in blue. This feature TAC
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Figure 7: The feature TAC for the ionization front instability simula-
tion. (a): the mean TACs of all clusters (red) and the feature TAC
(blue). (b): the joint histogram of the respective TAC-based distance
field.

was extracted via K-mean clustering. The mean TACs from the
clusters are plotted in red. It can be seen that most mean TACs
show an impulse at different time steps and with different durations.
Figure 7 (b) shows the joint histogram of the corresponding TAC-
based distance field. In the joint histogram, after the 70-th time step,
the number of voxels with distances smaller than 0.25 is increasing
over time. This indicates that the turbulence mainly occurred after
the 70th time step, and its structure was expanding over time.

We are mainly interested in the spatiotemporal structure of the
turbulence. Figure 8 (a) presents a DVR image. The colors of vox-
els from left (−x) to right (+x) vary from red to blue, indicating the
propagation path of the turbulence. This is consistent with the sim-
ulation setting that the I-front propagated along thex axis. While
Figure 8 (a) provides an overview of the propagation, it cannot re-
veal the detail of the turbulence structure. Thus a texture with hor-
izontal strips was applied to create contour volumes. The result
is shown in Figure 8 (b). The contours show that the structure of
the turbulence was distorting as the I-front propagated. Figure 8
(c) shows the streamlines generated from the corresponding feature
motion field. It can be seen that there is no streamline near the left
side of the bounding box, which is the source of the I-front. This
lack of streamlines suggests that there was no turbulence at the be-
ginning of the simulation. It is noteworthy that in Figure 8 (c), the
streamlines in the middle part are longer than the streamlines in the
right side, which suggests that the propagation of the turbulence
was obstructed near the end of the simulation.

The symmetry of the turbulent structure is also of interest. Fig-
ure 9 contains subfigures rendered from a viewing direction parallel
to thex− axis. The contours in Figure 9 (a) indicate that the ma-
jor structure of the turbulence is symmetric about thex axis. When
the image is enlarged, however, minor non-symmetry is apparent
as shown in Figure 9 (b). Figure 9 (c) shows the streamlines com-
puted from the feature motion field. From the distribution, it can be
seen that more non-symmetry is revealed. Figure 9 (d) shows the
combination of the streamlines and the DVR result.

7 CONCLUSION

In this paper, we present a new framework for visualizing time-
varying data sets. We are interested in those features that can be
modeled as time series patterns. Since the shapes of the patterns
could be shifted, stretched, or compressed over time, we use DTW
as the time-invariant distance metric. By converting the original
sequence of volumes into a distance field to a specified feature, we
can visualize the spatiotemporal behavior of the feature via volume
rendering. To emphasize the propagation of the feature, we apply
flow visualization techniques over an intermediate feature motion
field derived from the distance field to create the motion traces of
the feature.

The benefit of our framework is multifold. By using DTW,
The distance between feature descriptors represented as TACs can
be computed invariantly under time warp. DTW also provides a

(a)

(b)

(c)

Figure 8: Visualization of the ionization front instability simulation.
(a): a DVR image with continuous color map. (b): a DVR image with
contour volumes. (c): streamlines from the feature motion field.

scheme to enable precise temporal inference to the feature. An
overview of the time-varying feature can be displayed in a single
image rather than in animation, and different visualization styles
can be created.

Despite the advantages, there exist several limitations in our cur-
rent framework. First, the TAC-based distance field cannot be cre-
ated until the entire volume of time sequences becomes available.
Thus our method could be inadequate for online visualization. Sec-
ond, our algorithm prefers data that exhibits spatial coherence. For
features with little spatial overlap in adjacent time steps, discontin-
uous patterns may appear in the visualization. Third, streamlines
computed from the feature motion field might not reveal whether
the features are splitting or merging. Finally, even though DTW
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Figure 9: Visualization of the ionization front instability simulation.
Compared to Figure 8, the subfigures here were rendered along a
viewing direction parallel to the x axis, thus providing better cue about
the symmetricity of the turbulence structure. (a): a DVR image . (b):
the enlarged image of subfigure (a). (c): the streamlines from the
feature motion field. (d): combination of the DVR image in (a) and
the streamlines in (c).

metric is invariant under the shift of time, it does not encounter the
change of scales in the TACs.

In the future, in order to define more types of features, the use of
TACs in multi-dimensions rather than 1D scalars should be studied.
In the applications where TAC patterns with the same shape but in
different scales are considered equivalent, modified DTW such as
Derivative Dynamic Time Warping [8] will be needed. Moreover,
currently only the DTW distances and the feature time steps are
considered. The feature time ranges can also be embedded in the
rendering process to create more effective visualization. Creating
a more robust feature motion field should be studied too in order
to trace features that do not spatially overlap. Yet other direction
is to transform the distance field into the scale space, where a fea-
ture can be detected across different scales. One example of such
techniques is the SIFT feature detector [9] used in computer vision
applications.
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