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ABSTRACT 

A lot of effort has been made in computational auditory scene analysis (CASA) to segregate speech 

from monaural mixtures. The performance of current CASA systems on voiced speech segregation is 

limited by lacking a robust algorithm for pitch estimation. We propose a tandem algorithm that performs 

pitch estimation of a target utterance and segregation of voiced portions of target speech jointly and 

iteratively. This algorithm first obtains a rough estimate of target pitch, and then uses this estimate to 

segregate target speech using harmonicity and temporal continuity. It then improves both pitch estimation 

and voiced speech segregation iteratively. Systematic evaluation shows that the tandem algorithm extracts 

a majority of target speech without including much interference, and it performs substantially better than 

previous systems for either pitch extraction or voiced speech segregation. 
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I. INTRODUCTION 

Speech segregation, or the cocktail party problem, is a well-known challenge with important 

applications. For example, automatic speech recognition (ASR) systems perform substantially worse in 

the presence of interfering sounds [25] [33] and could greatly benefit from an effective speech 

segregation system. Background noise also presents a major difficulty to hearing aid wearers, and noise 

reduction is considered a great challenge for hearing aid design [12]. Many methods have been proposed 

in monaural speech enhancement [26]. These methods usually assume certain statistical properties of 

interference and tend to lack the capacity to deal with a variety of interference. While voice separation has 

proven to be difficult, the human auditory system is remarkably adept in this task. The perceptual process 

is considered as auditory scene analysis (ASA) [6]. Psychoacoustic research in ASA has inspired 

considerable work in developing computational auditory scene analysis (CASA) systems for speech 

segregation (see [36] for a comprehensive review).  

Natural speech contains both voiced and unvoiced portions, and voiced portions account for about 75-

80% of spoken English [19]. Voiced speech is characterized by periodicity (or harmonicity), which has 

been used as a primary cue in many CASA systems for segregating voiced speech (e.g. [8] [16]). Despite 

considerable advances in voiced speech separation, the performance of current CASA systems is still 

limited by pitch (F0) estimation errors and residual noise. Various methods for robust pitch estimation 

have been proposed [31] [37] [11] [22]; however, robust pitch estimation under low signal-to-noise 

(SNR) situations still poses a significant challenge. Since the difficulty of robust pitch estimation stems 

from noise interference, it is desirable to remove or attenuate interference before pitch estimation. On the 

other hand, noise removal depends on accurate pitch estimation. As a result, pitch estimation and voice 

separation become a “chicken and egg” problem [11].  

We believe that a key to resolve the above dilemma is the observation that one does not need the entire 

target signal to estimate pitch (a few harmonics can be adequate), and without perfect pitch one can still 

segregate some target signal. Thus, we suggest a strategy that estimates target pitch and segregates the 
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target in tandem. The idea is that we first obtain a rough estimate of target pitch, and then use this 

estimate to segregate the target speech. With the segregated target, we should generate a better pitch 

estimate and can use it for better segregation, and so on.  In other words, we propose an algorithm achieve 

pitch estimation and speech segregation jointly and iteratively. We call this method a tandem algorithm 

because it alternates between pitch estimation and speech segregation.  This idea was present in a 

rudimentary form in our previous system for voiced speech segregation [16] which contains two 

iterations. 

The separation part of our tandem system aims to identify the ideal binary mask (IBM). With a time-

frequency (T-F) representation, the IBM is a binary matrix along time and frequency where 1 indicates 

that the target is stronger than interference in the corresponding T-F unit and 0 otherwise (see Fig. 5 later 

for an illustration).  To simplify notations, we refer to T-F units labeled 1 and those labeled 0 as active 

and inactive units, respectively. We have suggested that the IBM is a reasonable goal for CASA [16] [34], 

and it has been used as a measure of ceiling performance for speech separation [24] [29] [30]. Recent 

psychoacoustic studies provide strong evidence that the IBM leads to large improvements of human 

speech intelligibility in noise [9] [23]. 

This paper is organized as follows. Sect. II describes T-F decomposition of the input and feature 

extraction. The tandem algorithm has two key steps: estimating the IBM given an estimate of target pitch 

and estimating the target pitch given an estimated IBM. We describe these two steps in Sects. III and IV. 

The tandem algorithm is then presented in Sect. V. Systematic evaluation of this algorithm on pitch 

estimation and speech segregation is given in Sect. VI, followed by concluding remarks in Sect. VII. 

 

II. T-F DECOMPOSITION AND FEATURE EXTRACTION  

We first decompose an input signal in the frequency domain with a bank of 128 gammatone filters 

[28], with their center frequencies equally distributed on the equivalent rectangular bandwidth rate scale 

from 50 Hz to 8000 Hz (see [36] for details). In each filter channel, the output is divided into 20-ms time 
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frames with 10-ms overlap between consecutive frames. The resulting T-F representation is known as a 

cochleagram [36]. At each frame of each channel, we compute a correlogram, a running autocorrelation 

function (ACF) of the signal, within a certain period of time delay. Each ACF represents the periodicity 

of the filter response in the corresponding T-F unit. Let ucm denote a T-F unit for channel c and frame m 

and x(c,t) the filter response for channel c at time t.  The corresponding ACF of the filter response is given 

by  
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Here, τ  is the delay and n denotes discrete time. Tm = 10 ms is the frame shift and Tn is the sampling time. 

The above summation is over 20 ms, the length of a time frame. The periodicity of the filter response is 

indicated by the peaks in the ACF, and the corresponding delays indicate the periods. We calculate the 

ACF within the following range: τTn∈[0, 15 ms], which includes the plausible pitch frequency range 

from 70 Hz to 400 Hz [27].  

It has been shown that, cross-channel correlation, which measures the similarity between the responses 

of two adjacent filters, indicates whether the filters are responding to the same sound component [8] [35]. 

Hence, we calculate the cross-channel correlation of ucm with uc+1,m by 
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where A  denotes the average of A. 

When the input contains a periodic signal, high-frequency filters respond to multiple harmonics of the 

signal and these harmonics are called unresolved. Unresolved harmonics trigger filter responses that are 

amplitude-modulated, and the response envelope fluctuates at the F0 of the signal [14]. Here we extract 

envelope fluctuations corresponding to target pitch by half-wave rectification and bandpass filtering, and 

the passband corresponds to the plausible F0 range of target speech. Then we compute the envelope ACF, 
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),,( τmcAE , and the cross-channel correlation of response envelopes, , similar to Eqs. (1) and 

(2). 

),( mcCE

 

III. IBM ESTIMATION GIVEN TARGET PITCH 

A. Unit Labeling with Information within Individual T-F Units  

We first consider a simple approach: a T-F unit is labeled 1 if and only if the corresponding response 

or response envelope has a periodicity similar to that of the target. As discussed in Sect. II, the periodicity 

of a filter response is indicated by the peaks in the corresponding ACF. Let τS(m) be the estimated pitch 

period at frame m. When a response has a period close to τS(m), the corresponding ACF will have a peak 

close to τS(m). Previous work [16] has shown that A(c, m, τS(m)) is a good measure of the similarity 

between the response period in ucm and estimated pitch.  

Alternatively, one may compare the instantaneous frequency of the filter response with the estimated 

pitch directly. However, in practice, it is extremely difficult to accurately estimate the instantaneous 

frequency of a signal [3] [4], and we found that labeling T-F units based on estimated instantaneous 

frequency does not perform better than using the ACF-based measures.  

We propose to construct a classifier that combines these two kinds of measure to label T-F units. Let 

),( mcf  denote the estimated average instantaneous frequency of the filter response within unit ucm. If the 

filter response has a period close to )(mSτ , then )(),( mmcf Sτ⋅  is close to an integer greater than or 

equal to 1. Similarly, let ),( mcfE  be the estimated average instantaneous frequency of the response 

envelope within ucm. If the response envelope fluctuates at the period of )(mSτ , then )(),( mmcf SE τ⋅  is 

close to 1.  Let  
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be a set of 6 features, the first 3 of which correspond to the filter response and the last 3 to the response 

envelope. In (3), the function int(x) returns the nearest integer. Let H0 be the hypothesis that a T-F unit is 

target dominant and H1 otherwise. ucm is labeled as target if and only if  

  )))((|()))((|( 10 mrHPmrHP ScmScm ττ >                  (4) 

Since  

  )))((|(1)))((|( 10 mrHPmrHP ScmScm ττ −= ,            (5) 

Eq. (4) becomes 

  5.0)))((|( 0 >mrHP Scm τ        (6) 

In this study, we estimate the instantaneous frequency of the response within a T-F unit simply as half 

the inverse of the interval between zero-crossings of the response [4], assuming that the response is 

approximately sinusoidal. Note that a sinusoidal function crosses zero twice within a period.  

For classification, we use a multilayer perceptron (MLP) with one hidden layer to compute 

P(H0|rcm(τ)) for each filter channel. The desired output of the MLP is 1 if the corresponding T-F unit is 

target dominant and 0 otherwise (i.e. the IBM). When there are sufficient training samples, the trained 

MLP yields a good estimate of P(H0|rcm(τ)) [7]. In this study, the MLP for each channel is trained with a 

corpus that includes all the utterances from the training part of the TIMIT database [13] and 100 

intrusions. These intrusions include crowd noise and environmental sounds, such as wind, bird chirp, and 

ambulance alarm.1 Utterances and intrusions are mixed at 0 dB SNR to generate training samples; the 

target is a speech utterance and interference is either a nonspeech intrusion or another utterance. We use 

Praat [5] to estimate target pitch. The number of units in the hidden layer is determined using cross-

validation. Specifically, we divide the training samples equally into two sets, one for training and the 

other for validation. The number of units in the hidden layer is chosen to be the minimum such that 

adding more units in the hidden layer will not yield any significant performance improvement on the 

                                                           
1 The intrusions are posted at http://www.cse.ohio-state.edu/pnl/corpus/HuCorpus.html 
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validation set. Since most obtained MLPs have 5 units in their hidden layers, we let every MLP have 5 

hidden units for uniformity. 

Figs. 1(a) and 1(b) show the sample ACFs of a filter response and the response envelope in a T-F unit. 

The input is a female utterance, “That noise problem grows more annoying each day,” from the TIMIT 

database. This unit corresponds to a channel with the center frequency of 2.5 kHz and a time frame from 

790 ms to 810 ms. Fig. 1(c) shows the corresponding P(H0|rcm(τ)) for different τ  values. The maximum of 

P(H0|rcm(τ)) is located at 5.87 ms, the pitch period of the utterance at this frame.   
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Figure 1. (a) ACF of the filter response within a T-F unit in a channel centered at 2.5 kHz. (b) 
Corresponding ACF of the response envelope. (c) Probability of the unit being target 
dominant given target pitch period τ. 

The obtained MLPs are used to label individual T-F units according to Eq. (6). Fig. 2(a) shows the 

resulting error rate by channel for all the mixtures in a test corpus (see Sect. V.B). The error rate is the 
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rror percentage in T-F unit labeling using different subsets of 6 features (see text for 
) given target pitch. (a) Comparison between all 6 features. (b) Comparison between 
eatures. (c) Comparison between the last 3 features. 
lse acceptance and false rejection. As shown in the figure, with features derived from 

 units, we can label about 70% – 90% of the units correctly across the whole frequency 

ral, T-F units in the low-frequency range are labeled more accurately than those in the high-

e. Fig. 2 also shows the error rate by using only subsets of the features from the feature set, 
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rcm(τ). As shown in this figure, the ACF values at the pitch point and instantaneous frequencies provide 

complementary information. The response envelope is more indicative than the response itself in the 

high-frequency range. Best results are obtained when all the 6 features are used. 

Besides using MLPs, we have considered modeling the distribution of rcm(τ) using a Gaussian mixture 

model as well as a support vector machine based classifier [15]. However, the results are not better than 

using the MLPs. 

  

B. Multiple Harmonic Sources 

When interference contains one or several harmonic signals, there are time frames where both target 

and interference are pitched. In such a situation, it is more reliable to label a T-F unit by comparing the 

period of the signal within the unit with both the target pitch period and the interference pitch period. In 

particular, ucm should be labeled as target if the target period not only matches the period of the signal but 

also matches better than the interference period, i.e.,  
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where )(mSτ ′  is the pitch period of the interfering sound at frame m. We use Eq. (7) to label T-F units for 

all the mixtures of two utterances in the test corpus. Both target pitch and interference pitch are obtained 

by applying Praat to clean utterances. Fig. 3 shows the corresponding error rate by channel, compared 

with using only the target pitch to label T-F units. As shown in the figure, better performance is obtained 

by using the pitch values of both speakers.  

 

C. Unit Labeling with Information from a Neighborhood of T-F Units 

Labeling a T-F unit using only the local information within the unit still produces a significant amount 

of error. Since speech signal is wideband and exhibits temporal continuity, neighboring T-F units 

potentially provide useful information for unit labeling. For example, a T-F unit surrounded by target-
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dominant units is also likely target dominant. Therefore, we consider information from a local context. 

Specifically, we label ucm as target if 
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Figure 3. Percentage of error in T-F unit labeling for two-voice mixtures using target target 
pitch only or both target and interference pitch. 

where Nc and Nm define the size of the neighborhood along frequency and time, respectively, and 

)))}((|({ ''0 mrHP Smc ′τ  is the vector that contains the P(H0|rcm(τ S(m))) values of T-F units within the 

neighborhood. Again, for each frequency channel, we train an MLP with one hidden layer to calculate the 

probability )))})((|({|( ''00 mrHPHP Smc ′τ  using the P(H0|rcm(τ S(m))) values within the neighborhood as 

features.  

The key here is to determine the appropriate size of a neighborhood. Again, we divide the training 

samples equally into two sets and use cross-validation to determine Nc and Nm. This cross-validation 

procedure suggests that Nc = 8 and Nm = 2 define an appropriate size of the neighborhood. By utilizing 

information from neighboring channels and frames, we reduce the average percentage of false rejection 

across all channels from 20.8% to 16.7% and the average percentage of false acceptance from 13.3% to 

8.7% for the test corpus. The hidden layer of such a trained MLP has 2 units, also determined by cross-
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validation. Note that when both target and interference are pitched, we label a T-F unit according to Eq. 

(7) with probability )))})((|({|( ''00 mrHPHP Smc ′τ  and )))})((|({|( ''11 mrHPHP Smc ′′τ . 

Since P(H0|rcm(τ S(m))) is derived from rcm(τ S(m)), we have also considered using rcm(τ S(m)) directly as 

features. The resulting MLPs are much more complicated, but yield no performance gain. 

 

IV. PITCH DETERMINATION GIVEN TARGET MASK 

A. Integration across Channels 

Given an estimated mask of the voiced target, the task here is to estimate target pitch. Let L(m) = 

{L(c, m), ∀c} be the set of binary mask labels at frame m, where L(c, m) is 1 if ucm is active and 0 

otherwise. A frequently used method for pitch determination is to pool autocorrelations across all the 

channels and then identify a dominant peak in the summary correlogram – the summation of ACFs across 

all the channels [11]. The estimated pitch period at frame m, τ S(m), is the lag corresponding to the 

maximum of the summary ACF in the plausible pitch range. This simple method of pitch estimation is not 

very robust when interference is strong because the autocorrelations in many channels exhibit spurious 

peaks not corresponding to the target period. One may solve this problem by removing interference-

dominant T-F units, i.e., calculating the summary correlogram only with active T-F units: 

  ),(),,(),( mcLmcAmA
c
∑= ττ           (9)  

Similar to the ACF of the filter response, the profile of the probability that unit ucm is target dominant 

given pitch period τ, P(H0|rcm(τ )), also tends to have a significant peak at the target period when ucm is 

truly target dominant (see Fig. 1(c)). One can use the corresponding summation of P(H0|rcm(τ )), 

   ∑=
c

cmm mcLrHPSP ),())(|()( 0 ττ ,      (10) 

to identify the pitch period at frame m as the maximum of the summation in the plausible pitch range.  

We apply the above two methods for pitch estimation to two utterances from the test corpus, one from 

a female speaker and the other from a male speaker. These two utterances are mixed with 20 intrusions at 

 11



0 dB SNR. In this estimation, we use the IBM at the voiced frames of the target utterance to estimate a 

pitch period at each frame. The percentages of estimation error for the two methods are shown in the first 

row of Table 1. We use the pitch contours obtained by applying Praat to the clean target as the ground 

truth of the target pitch. An error occurs when the estimated pitch period and the pitch period obtained 

from Praat differ by more than 5%. As shown in the table, using the summation of P(H0|rcm(τ)) performs 

much better than using the summary ACF for the female utterance. Both methods, especially the one 

using the summary ACF, perform better on the male utterance. This is because the ACF and P(H0|rcm(τ )) 

in target-dominant T-F units all exhibit peaks not only at the target pitch period, but also at time lags 

multiple the pitch period. As a result, their summations have significant peaks not only at the target pitch 

period, but also at its integer multiples, especially for a female voice, making pitch estimation difficult. 
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Summary 
ACF 

Summary 
P(H0|rcm(τ )) Classifier 

Method 
F M F M F M 

ut temporal continuity 39.6 17.1 18.1 17.2 15.6 17.6 

emporal continuity 31.8 16.3 14.8 15.8 12.7 16.8 
ting True Pitch Period from Its Integer Multiples 

iate a target pitch period from its integer multiples for pitch estimation, we need to take the 

ns of possible pitch candidates into consideration. Let τ 1 and τ2 be two pitch candidates. 

P-based classifier that selects the better one from these two candidates using their relative 

Pm(τ ) as features, i.e., (τ 1/τ2,  SPm(τ1), SPm(τ 2)). In constructing the training data, we 

t each time frame from all the target-dominant T-F units. In each training sample, the two 

s are the true target pitch period and the lag of another peak of SPm(τ ) within the plausible 

thout loss of generality, we let τ 1 < τ 2. The desired output is 1 if τ 1 is the true pitch period 
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and 0 otherwise. The obtained MLP has 3 units in the hidden layer. We use the obtained MLP to select 

the better one from the two candidates as follows: if the output of the MLP is higher than 0.5, we consider 

τ1 as the better candidate; otherwise, we consider τ 2 as the better candidate.  

The target pitch is estimated with the classifier as follows:  

• Find all the local maxima in SPm(τ ) within the plausible pitch range as pitch candidates. 

Sort these candidates according to their time lags from small to large and let the first 

candidate be the current estimated pitch period, τS(m). 

• Compare the current estimated pitch period with the next candidate using the obtained 

MLP and update the pitch estimate if necessary. 

The percentage of pitch estimation errors with the classifier is shown in the first row in Table 1. The 

classifier reduces the error rate on the female utterance but slightly increases the error rate on the male 

utterance. 

 

C. Pitch Estimation Using Temporal Continuity 

Speech signals exhibit temporal continuity, i.e., their structure, such as frequency partials, tends to last 

for a certain period of time corresponding to a syllable or phoneme, and the signals change smoothly 

within this period. Consequently, the pitch and the ideal binary mask of a target utterance tend to have 

good temporal continuity as well. We found that less than 0.5% of consecutive frames have more than 

20% relative pitch changes for utterance in our training set [15]. Thus we utilize pitch continuity to 

further improve pitch estimation as follows. 

First, we check the reliability of the estimated pitch based on temporal continuity. Specifically, for 

every three consecutive frames, m−1, m, and m+1, if the pitch changes are all less than 20%, i.e.,   

           (11) 
⎩
⎨
⎧
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−<−−
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the estimated pitch periods in these three frames are all considered reliable. 
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Second, we re-estimate unreliable pitch points by limiting the plausible pitch range using neighboring 

reliable pitch points. Specifically, for two consecutive time frames, m−1 and m, if τ S(m) is reliable and 

τS(m−1) is unreliable, we re-estimate τS(m−1) by limiting the plausible pitch range for τS(m−1) to be 

[0.8τ S(m), 1.2τ S(m)], and vice versa. Another possible situation is that τ S(m) is unreliable while both 

τS(m−1) and τS(m+1) are reliable. In this case, we use τ S(m−1) to limit the plausible pitch range of τ S(m) 

if the mask at frame m is more similar to the mask at frame m−1 than the mask at frame m+1, i.e., 

  ∑∑ +>− cc mcLmcLmcLmcL )1,(),()1,(),( ;          (12) 

otherwise, τ S(m+1) is used to re-estimate τ S(m). Then the re-estimated pitch points are considered as 

reliable and used to estimate unreliable pitch points in their neighboring frames. This re-estimation 

process stops when all the unreliable pitch points have been re-estimated. 

The second row in Table 1 shows the effect of incorporating temporal continuity in pitch estimation 

with the methods described above. Using temporal continuity yields consistent performance 

improvement, especially for the female utterance.  

 

V. ITERATIVE PROCEDURE 

Our tandem algorithm first generates an initial estimate of pitch contours and binary masks for up to 

two sources. It then improves the estimation of pitch contours and masks in an iterative manner.  

 

A. Initial Estimation 

In this step, we first generate up to two estimated pitch periods in each time frame. Since T-F units 

dominated by a periodic signal tend to have high cross-channel correlations of the filter response or the 

response envelope, we only consider T-F units with high cross-channel correlations in this estimation. Let 

τS, 1(m) and τS, 2(m) represent two estimated pitch periods at frame m, and L1(m) and L2(m) the 

corresponding labels of the estimated masks. We first treat all the T-F units with high cross-channel 

correlations as dominated by a single source. That is: 
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We then assign the time delay supported by most active T-F units as the first estimated pitch period. A 

unit ucm is considered supporting a pitch candidate τ  if the corresponding P(H0|rcm(τ )) is higher than a 

threshold. Accordingly we have: 

  ∑ −⋅= c PcmS rHPmcLm )))(|(sgn(),(maxarg)( 011, θττ
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and θP is a threshold. Intuitively, we can set θP to 0.5. However, such a threshold may not position the 

estimated pitch period close to the true pitch period because P(H0|rcm(τ )) tends to be higher than 0.5 in a 

relatively wide range centered at the true pitch period (see Fig. 1(c)). In general θP needs to be much 

higher than 0.5 so that we can position τ S,1(m) accurately. On the other hand, θP cannot be too high, 

otherwise most active T-F units cannot contribute to this estimation. We found that 0.75 is a good 

compromise that allows us to accurately position τS,1(m) without ignoring many active T-F units.  

The above process yields an estimated pitch at many time frames where the target is not pitched. The 

estimated pitch point at such a frame is usually supported by only a few T-F units unless the interference 

contains a strong harmonic signal at this frame. On the other hand, estimated pitch points corresponding 

to target pitch are usually supported by many T-F units. In order to remove spurious pitch points, we 

discard a detected pitch point if the total number of channels supporting this pitch point is less than a 

threshold. We found that an appropriate threshold is 7 from analyzing the training data set (see Sect. 

III.A). Most spurious pitch points are thus removed. At the same time, some true pitch points are also 

removed, but most of them will be recovered in the following iterative process.  

With the estimated pitch period τ S,1(m), we re-estimate the mask L1(m) as: 
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Then we use the T-F units that do not support the first pitch period τ S,1(m) to estimate the second pitch 

period, τS,2(m). Specifically,  
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We let  

  ∑ −⋅= c PcmS rHPmcLm )))(|(sgn(),(maxarg)( 022, θττ
τ

        (17) 

Again, if fewer than 7 T-F units support τS,2(m), we set it to 0. Otherwise, we re-estimate L2(m) as: 

       (18) 
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Here we estimate up to two pitch points at one frame; one can easily extend the above algorithm to 

estimate pitch points of more sources if needed. 

After the above estimation, our algorithm combines the estimated pitch periods into pitch contours 

based on temporal continuity. Specifically, for estimated pitch periods in three consecutive frames, 

)1(
1, −mkSτ , )(

2, mkSτ , and )1(
3, +mkSτ , where k1, k2, and k3 are either 1 or 2, they are combined into one 

pitch contour if they have good temporal continuity and their associated masks also have good temporal 

continuity. That is, 

         (19) 
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The remaining isolated estimated pitch points are considered unreliable and set to 0. Note that requiring 

only the temporal continuity of pitch periods cannot prevent connecting pitch points from different 

sources, since the target and interference may have similar pitch periods at the same time. However, it is 

very unlikely that the target and interference have similar pitch periods and occupy the same frequency 
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region at the same time. In most situations, pitch points that are connected according to (19) do 

correspond to a single source. As a result of this step, we obtain multiple pitch contours and each pitch 

contour has an associated T-F mask. 

 

B. Iterative Estimation 

In this step, we first re-estimate each pitch contour from its associated binary mask. A key step in this 

estimation is to expand estimated pitch contours based on temporal continuity, i.e., using reliable pitch 

points to estimate potential pitch points at neighboring frames. Specifically, let τ k be a pitch contour and 

Lk(m) the associated mask. Let m1 and m2 be the first and the last frame of this pitch contour. To expand 

τ k, we first let Lk(m1−1) = Lk(m1) and Lk(m2+1) = Lk(m2). Then we re-estimate τ k from this new mask 

using the algorithm described in Sect. IV.B. Re-estimated pitch periods are further verified according to 

temporal continuity as described in Sect. IV.C except that we use Eq. (19) instead of Eq. (11) for 

continuity verification. If the corresponding source of contour τ k is pitched at frame m1−1, our algorithm 

likely yields an accurate pitch estimate at this frame. Otherwise, the re-estimated pitch period at this 

frame usually cannot pass the continuity check, and as a result it is discarded and τ k still starts from frame 

m1. The same applies to the estimated pitch period at frame m2+1.  After expansion and re-estimation, two 

pitch contours may have the same pitch period at the same frame and therefore they are combined into 

one pitch contour.  

Then we re-estimate the mask for each pitch contour as follows. First, we compute the probability of 

each T-F unit dominated by the corresponding source of a pitch contour k, )))}),((|({|( ''00 mrHPHP kmc ′τ  

as described in Sect. III.C. Then we estimate the mask for contour k according to the obtained 

probabilities: 
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Usually the estimation of both pitch and mask converges after a small number of iterations, typically 

smaller than 20. Sometimes this iterative procedure runs into a cycle where there are slight cyclic changes 

for both estimated pitch and estimated mask after each iteration. In our implemention, we stop the 

procedure after it converges or 20 iterations. 

 

C. Incorporating segmentation 

So far, unit labeling does not take into account of T-F segmentation, which refers to a stage of 

processing that breaks the auditory scene into contiguous T-F regions each of which contains acoustic 

energy mainly from a single sound source [36]. By producing an intermediate level of representation 

between individual T-F units and sources, segmentation has been demonstrated to improve segregation 

performance [16]. Here, we apply a segmentation step after the iterative procedure stops. Specifically, we 

employ a multiscale onset/offset based segmentation algorithm [18] that produces segments enclosed by 

detected onsets and offsets. After segments are produced, we form T-segments which are segments within 

individual frequency channels. T-segments strike a reasonable balance between accepting target and 

rejecting interference [15] [19]. With obtained T-segments, we label the T-F units within a T-segment 

wholly as target if (a) more than half of T-segment energy is included in the voiced frames of the target, 

and (b) more than half of the T-segment energy in the voiced frames is included in the active T-F units 

according to (9). If a T-segment fails to be labeled as the target, we still treat individual active T-F units 

as the target.  

Fig. 4 shows the detected pitch contours for a mixture of the female utterance used in Fig. 1 and crowd 

noise at 0 dB SNR. The mixture is illustrated in Fig. 5, where Figs. 5(a) and 5(b) show the cochleagram 

and the waveform of the female utterance and Figs. 5(c) and 5(d) the cochleagram and the waveform of 

the mixture. In Fig. 4, we use the pitch points detected by Praat from the clean utterance as the ground 

truth of the target pitch. As shown in the figure, our algorithm correctly estimates most of target pitch 

points. At the same time, it also yields one pitch contour for interference (the one overlapping with no 

target pitch point). Figs. 5(e) and 5(g) show the obtained masks for the target utterance in the mixture 
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re 4. Estimated pitch contours for the mixture of one female utterance and crowd noise. 
nd with incorporating segmentation, respectively. Comparing the mask in Fig. 5(e) with the 

ry mask shown in Fig. 5(i), we can see that our system is able to segregate most voiced portions 

et without including much interference. These two masks yield similar resynthesized targets in 

 intervals, as shown in Figs. 5(f) and 5(j). By using T-segments, the tandem algorithm is able to 

ven more target energy, but at the expense of adding a small amount of the interference, as 

Figs. 5(g) and 5(h). Note that the output consists of several pitch contours and their associated 

o determine whether a segregated sound is part of the target speech is the task of sequential 

[6] [36], which is beyond the scope of this paper. The masks in Fig. 5(e) and Fig. 5(g) are 

y assuming perfect sequential grouping.  

VI. EVALUATION 

 estimation 

rst evaluate the tandem algorithm on pitch determination with utterances from the FDA 

n Database [1]. This database was collected for evaluating pitch determination algorithms and 

accurate target pitch contours derived from laryngograph data. The database contains utterances 
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Figure 5. Segregation illustration. (a) Cochleagram of a female utterance showing the energy of each 
T-F unit with brighter pixel indicating stronger energy. (b) Waveform of the utterance. (c) 
Cochleagram of the utterance mixed with a crowd noise. (d) Waveform of the mixture. (e) Mask of 
segregated voiced target where 1 is indicated by white and 0 by black.  (f) Waveform of the target 
resynthesized with the mask in (e). (g) Mask of the target segregated after using T-segments. (h) 
Waveform of the target resynthesized with the mask in (g). (i) Ideal binary mask. (j) Waveform 
resynthesized from the IBM in (i). 



from two speakers, one male and one female. We randomly select one sentence that is uttered by both 

speakers. These two utterances are mixed with a set of 20 intrusions at different SNR levels. These 

intrusions are: N1 – white noise, N2 – rock music, N3 – siren, N4 – telephone, N5 – electric fan, N6 – 

clock alarm, N7 – traffic noise, N8 – bird chirp with water flowing, N9 – wind, N10 – rain, N11 – 

cocktail party noise, N12 – crowd noise at a playground, N13 – crowd noise with music, N14 – crowd 

noise with clap, N15 – babble noise (16 speakers), N16~N20 – 5 different utterances (see [15] for details). 

These intrusions have a considerable variety: some are noise-like (N9, N11) and some contain strong 

harmonic sounds (N3, N5). They form a reasonable corpus for testing the capacity of a CASA system in 

dealing with various types of interference. 

Fig. 6(a) shows the average correct percentage of pitch determination with the tandem algorithm on 

these mixtures at different SNR levels. In calculating the correct detection percentage, we only consider 

estimated pitch contours that match the target pitch: an estimated pitch contour matches target pitch if at 

least half of its pitch points match the target pitch, i.e., the target is pitched at these corresponding frames 

and the estimated pitch periods differ from the true target pitch periods by less than 5%. As shown in the 

figure, the tandem algorithm is able to detect 69.1% of target pitch even at -5 dB SNR. The correct 

detection rate increases to about 83.8% as the SNR increases to 15 dB. In comparison, Fig. 6(a) also 

shows the results using Praat and from a multiple pitch tracking algorithm by Wu et al. [37], which 

produces competitive performance [21] [22]. Note that the Wu et al. algorithm does not yield continuous 

pitch contours. Therefore, the correct detection rate is computed by comparing estimated pitch with the 

ground truth frame by frame. As shown in the figure, the tandem algorithm performs consistently better 

than the Wu et al. algorithm at all SNR levels. The tandem algorithm is more robust to interference 

compared to Praat, whose performance is good at SNR levels above 10 dB, but drops quickly as SNR 

decreases.  

Besides the detection rate, we also need to measure how well the system separates pitch points of 

different sources. Fig. 6(b) shows the percentage of mismatch, which is the percentage of estimated pitch 

points that do not match the target pitch among pitch contours matching the target pitch. An estimated 
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pitch point is counted as mismatch if either target is not pitched at the corresponding frame or the 

difference between the estimated pitch period and the true period is more than 5%. As shown in the figure, 

the tandem algorithm yields a low percentage of mismatch, which is slightly lower than that of Praat 

when the SNR is above 5 dB SNR. In lower SNR levels, Praat has a lower percentage of mismatch 

because it detects fewer pitch points. Note that the Wu et al. algorithm does not generate pitch contours, 

and the mismatch rate is 0. In addition, Fig. 6(c) shows the average number of estimated pitch contours 
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Figure 6. Results of pitch determination for different algorithms. (a) Percentage of correct 
detection. (b) Percentage of mismatch. (c) Number of contours that match the target pitch. 
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that match target pitch contours. The actual average number of target pitch contours is 5. The tandem 

algorithm yields an average of 5.6 pitch contours for each mixture. This shows that the algorithm well 

separates target and interference pitch without dividing the former into many short contours. Praat yields 

almost the same numbers of contours as the actual ones at 15 dB SNR. However, it detects fewer contours 

when the mixture SNR drops. Overall, the tandem algorithm yields better performance than either Praat 

or the Wu et al. algorithm, especially at low SNR levels. 

To illustrate the advantage of the iterative process for pitch estimation, we present the average 

percentage of correct detection for the above mixtures at -5 dB with respect to the number of iterations in 

the first row of Table 2. Here 0 iteration corresponds to the result of initial estimation, and “convergence” 

corresponds to the final output of the algorithm. As shown in the table, the initial estimation already gives 

a good pitch estimate. The iterative procedure, however, is able to improve the detection rate, especially 

in the first iteration. Overall, the procedure increases the detection rate by 6.1 percentage points. It is 

worth pointing out that the improvement varies considerably among different mixtures, and the largest 

improvement is 22.1 percentage points.  

 

Table 2. Performance of the tandem algorithm with respect to the number of iteration 

 
Iteration No. 0 1 2 3 4 Convergence
Percentage of 
detection 63.0 66.3 67.8 68.8 68.9 69.1 

SNR (dB) 6.97 7.44 7.62 7.77 7.89 8.04 
 

B. Voiced Speech Segregation 

The performance of the system on voiced speech segregation has been evaluated with a test corpus 

containing 20 target utterances from the test part of the TIMIT database mixed with the 20 intrusions 

described in the previous section.  

The estimated target masks are obtained by assuming perfect sequential grouping. Since our 

computational goal here is to estimate the IBM, we evaluate segregation performance by comparing the 
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estimated mask to the IBM with two measures [16].  

• The percentage of energy loss, PEL, which measures the amount of energy in the active T-F units 

that are labeled as interference relative to the total energy in active units.  

• The percentage of noise residue, PNR, which measures the amount of energy in the inactive T-F 

units that are labeled as target relative to the total energy in inactive units. 

PEL and PNR provide complementary error measures of a segregation system and a successful system 

needs to achieve low errors in both measures.  

In addition, to compare waveforms directly we measure the SNR of the segregated voiced target in 

decibels [16]: 
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where s(n) is the target signal resynthesized from the IBM and ŝV(n) is the segregated voiced target. 

The results from our system are shown in Fig. 7. Each point in the figure represents the average value 

of 400 mixtures in the test corpus at a particular SNR level. Figs. 7(a) and 7(b) show the percentages of 

energy loss and noise residue. Note than since our goal here is to segregate voiced target, the PEL values 

here are only for the target energy at the voiced frames of the target.  

As shown in the figure, our system segregates 78.3% of voiced target energy at -5 dB SNR and 99.2% 

at 15 dB SNR. At the same time, 11.2% of the segregated energy belongs to intrusion at -5 dB. This 

number drops to 0.6% at 15 dB SNR. Fig. 7(c) shows the SNR of the segregated target. Our system 

obtains an average 12.2 dB gain in SNR when the mixture SNR is -5 dB. This gain drops to 3.3 dB when 

the mixture SNR is 10 dB. Note that at 15 dB, our system does not improve the SNR because most 

unvoiced speech is not segregated. Figure 7 also shows the result of the algorithm without using T-

segments in the final estimation step (“Neighborhood”). As shown in the figure, the corresponding 

segregated target loses more target energy, but contains less interference. The SNR performance is a little 

better by incorporating T-segments. 

Fig. 7 also shows the performance using our previous voiced speech segregation system [16], which is 
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a representative CASA system. Because the previous system can only track one pitch contour of the 

target, in this implementation we provide target pitch estimated by applying Praat to clean utterances. As 

shown in the figure, the previous system yields a lower percentage of noise residue, but has a much higher 

percentage of energy loss. Even with provided target pitch, the previous system does not perform as well 

as the tandem algorithm, especially at higher input SNR levels.  

To illustrate the effect of iterative estimation, we present the average SNR for the mixtures of two 

utterances and all the intrusions at -5 dB SNR in the second row of Table 2. On average, the tandem 

algorithm improves the SNR by 1.07 dB. Again, the SNR improvement varies considerably among 

different mixtures, and the largest improvement is 7.27 dB. 
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Figure 7. Results of voiced speech segregation. (a) Percentage of energy loss on voiced target. (b) 
Percentage of noise residue. (c) SNR of segregated voiced target. 
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Figure 8. SNR results for segregated speech and original mixtures for a corpus of voiced 
speech and various intrusions. 

As an additional benchmark, we have evaluated the tandem algorithm on a corpus of 100 mixtures 

composed of 10 target utterances mixed with 10 intrusions [10]. Every target utterance in the corpus is 

totally voiced and has only one pitch contour. The intrusions have a considerable variety; specifically they 

are: N0 – 1 kHz pure tone, N1 – white noise, N2 – noise bursts, N3 – “cocktail party” noise, N4 – rock 

music, N5 – siren, N6 – trill telephone, N7 – female speech, N8 – male speech, and N9 – female speech. 

The average SNR of the entire corpus is 3.28 dB. This corpus is commonly used in CASA for evaluating 

voiced speech segregation [8] [16] [24]. The average SNR for each intrusion is shown in Fig. 8, compared 

with those of the original mixtures, our previous system, and a spectral subtraction method. Note that here 

our previous system extracts pitch contours from mixtures instead of using pitch contours extracted from 

clean utterances with Praat. Spectral subtraction is a standard method for speech enhancement [20] (see 

also [16]). The tandem algorithm performs consistently better than spectral subtraction, and our previous 

system except for N4. On average, the tandem algorithm obtains a 13.4 dB SNR gain, which is about 1.9 

dB better than our previous system and 8.3 dB better than spectral subtraction. 
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VII. CONCLUDING REMARKS 

This study concentrates on voiced speech, and does not deal with unvoiced speech. In a recent paper, 

we developed a model for separating unvoiced speech from nonspeech interference on the basis of 

auditory segmentation and feature-based classification [19]. This unvoiced segregation system operates 

on the output of voiced speech segregation, which was provided by Hu and Wang [17] assuming the 

availability of target pitch contours. The system in [17] is a simplified and slightly improved version of 

[16]. We have substituted the voiced segregation component of [19] by the tandem algorithm [15]. The 

combined system produces segregation results for both voiced and unvoiced speech that are as good as 

those reported in [19], but with detected pitch contours rather than a priori pitch contours (see [15] for 

details).  

A natural speech utterance contains silent gaps and other intervals masked by interference. In practice, 

one needs to group the utterance across such time intervals. This is the problem of sequential grouping [6] 

[36]. This study does not address the problem of sequential grouping. The system in [19] handles the 

situation of nonspeech interference but not applicable to mixtures of multiple speakers. Sequentially 

grouping segments or masks could be achieved by using speech recognition in a top-down manner (also 

limited to nonspeech interference) [2] or by speaker recognition using trained speaker models [32]. 

Nevertheless, these studies are not yet mature, and substantial effort is needed in the future to fully 

address the problem of sequential grouping.  

To conclude, we have proposed an algorithm that estimates target pitch and segregates voiced target in 

tandem. This algorithm iteratively improves the estimation of both target pitch and voiced target. The 

tandem algorithm is robust to interference and produces good estimates of both pitch and voiced speech 

even in the presence of strong interference. Systematic evaluation shows that the tandem algorithm 

performs significantly better than previous CASA systems. Together with our previous system for 

unvoiced speech segregation [19], we have a complete CASA system to segregate speech from various 

types of nonspeech interference. 
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