
On the Use of Viewpoint Neighborhoods for Dynamic
Graph Analysis

Sitaram Asur and Srinivasan Parthasarathy #

Department of Computer Science, Ohio State University

Columbus, OH 43210, U.S.A
#Contact Author

(asur,srini)@cse.ohio-state.edu

ABSTRACT
Recent innovations have resulted in a plethora of social ap-
plications on the Web, such as blogs, social networks, and
community photo and video sharing applications. Such ap-
plications can typically be represented as evolving interac-
tion graphs with nodes denoting entities and edges repre-
senting their interactions. The study of entities and com-
munities and how they evolve in such large dynamic graphs
is both important and challenging.

While much of the past work in this area has focused on
static analysis, more recently researchers have investigated
dynamic analysis. In this paper, we focus on dynamic graph
analysis, but in a departure from recent efforts, we consider
the problem of analyzing patterns and critical events that
affect the dynamic graph from the viewpoint of a single node,
or from the viewpoint of a selected subset of nodes. Defin-
ing and extracting a relevant viewpoint neighborhood effi-
ciently, while also quantifying the key relationships among
nodes involved are the key challenges we address. We also
examine the evolution of viewpoint neighborhoods for differ-
ent entities over time to identify key structural and behav-
ioral transformations that occur. We illustrate the benefits
of such an analysis on two real-world graphs - the DBLP
co-authorship network and the Wikipedia webgraph.

1. INTRODUCTION
The trend in online computing has shifted to a social con-

text, with social communities such as Facebook, MySpace
and Orkut, weblogs and community photo and video sharing
applications gaining tremendous popularity. These online
social networks share common attributes with other real-
world networks such as co-authorship networks and the Web,
in that, they can be efficiently represented as an interaction
graph, where nodes denote entities of interest, and the ties
among entities can be modeled as edges. The study of such
interaction networks can provide insight into the structure
and function of such systems ([4, 3, 17]), potentially allow-
ing one to predict interesting aspects of their behavior. Such
analysis is critical to online applications such as search ([2,
20, 14]) and advertising ([1, 15]).

An important challenge is that these networks are usu-
ally evolving in nature, with the addition and deletion of
edges and nodes representing changes in the interactions
among the modeled entities. Characterizing and modeling

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.
.

the changes that occur can go a long way in aiding the devel-
opment of generic models for understanding and reasoning
about these evolving networks ([4, 3, 24, 17, 19]).

An important aspect of analyzing these graphs is to un-
derstand the dynamic behavior of nodes over time. The
changing interactions of nodes, and their influence on other
nodes ([10, 16, 3]), can assist in inferring future interactions
as well as predicting trends in community evolution. Also,
one may be interested in analyzing or reasoning about how
the connectivity of the interaction graph changes over time
from the view point of a single node, a group of nodes or a
community. This enables one to study the isolated effects
caused by global changes to particular nodes in the graph.

In the setting of targeted advertising on an on-line social
network like Facebook, advertisers targeting an individual
can glean useful information regarding the propensity of the
person being responsive to a product by studying the local
neighborhood of that individual, the presence of influential
members in the immediate friend- circle as well as the na-
ture of the relationships among them. The key challenge
is to identify and quantify these relationships for different
nodes based on the topology of the graph. Also, most online
communities provide facilities for storing content apart from
link information [2]. We would like to consider how content
information such as semantic features can be incorporated
along with link information to capture relationships among
nodes. In the first half of the paper, we concern ourselves
with the following important question. How can we iden-
tify the local neighborhood of interest for a particular source
node, and also quantify the impact or importance of differ-
ent nodes in the constructed neighborhood, with regard to the
source node?

To obtain a satisfactory answer to this question, we for-
mally define the notion of a Viewpoint Neighborhood of a
node, which represents the immediate neighborhood of in-
terest for a particular node. We then discuss the properties
that need to be modeled to measure importance and effect,
and arrive at an activation spread model for identifying the
members of a node’s immediate neighborhood. The pro-
posed model uses an activation function to select nodes of
interest with respect to a particular source node, and also
to quantify the level of their involvement using commitment
values. We show how different activation functions can be
employed capturing different intrinsic and extrinsic proper-
ties of nodes in the graph. We also extend this problem to
one where we wish to identify the common shared neigh-
borhood for a set of nodes, which is important in keyword
search and influence maximization applications.

Since the graphs are evolving, the neighborhoods as well
as the relationships will change over time. A crucial prob-
lem in this context is to characterize the changes occurring
in these neighborhoods over time and show how they can be
used to build models for dynamic behavior. For this pur-
pose, we define certain temporal events that can characterize
changes and measure important structural and behavioral
patterns such as stability and popularity over time.

Also, changes typically impact different entities in the
graph in different ways. How can one identify important
changes that have a large effect on the nodes of the graph?
We show how the effect of changes on specific nodes in the
graph can be gleaned by temporal analysis on the View-
point Neighborhoods for nodes in the evolving graph. In this
regard, we introduce core subgraphs, which represent sta-
ble sections of a node’s neighborhood, and transformation

subgraphs which represent changing sections of the neigh-
borhood. We show how frequent subgraph mining can be
leveraged to capture these motifs. To provide illustrations,
we make use of two real-world interaction graphs - the DBLP
co-authorship network and the Wikipedia webgraph.

To sum up, the key contributions of this work include:

• The description and formalization of Viewpoint Neigh-
borhoods to represent the neighborhood of interest for
a node.

• A general activation model for identifying Viewpoint
Neighborhoods for a node. Presentation of different
activation functions to capture topological and seman-
tic properties.

• Extension to the multi-source case, with an algorithm
to identify the shared Viewpoint Neighborhood of a
group of query nodes.

• The identification of key temporal events and incre-
mental behavioral measures to characterize changes
that occur in neighborhoods over time.

• Introduction of core subgraphs and transformation sub-
graphs to capture different effects of changes to the
neighborhoods of nodes over time.

The paper is organized as follows. We will describe some
related work in the next section. In Section 3, we will outline
the details of the datasets we employ in this work. In Sec-
tion 4, we provide a formal definition of Viewpoint Neigh-
borhoods and the Activation spread model. In Section 5,
we describe temporal analysis on the Viewpoint Neighbor-
hoods and the temporal events and behavioral measures in
this context. We conclude in Section 6.

2. RELATED WORK
Recently, there has been considerable interest in analyz-

ing dynamic interaction graphs. Leskovec et al [19] studied
the evolution of graphs based on various topological proper-
ties, such as the degree distribution and small-world prop-
erties of large networks and proposed the Forest-Fire graph
generation model. In later work, Leskovec and others [18]
studied individual node arrival and edge creation processes
that collectively lead to macroscopic properties of dynamic
social networks. In particular, they investigated the role of
edge locality in network evolution. Kumar and others [17]
have analyzed the evolution of structure in social networks,
providing measurements on two real-world networks. Back-
strom et al [4] have focused on the formation of groups and
the ways they grow and evolve over time. Yahia and oth-
ers [2] have surveyed search tasks on social communities

and discussed relevance measures for efficient searching and
ranking of social content. Tantipathanandh and others [25]
have developed a framework for detecting dynamic commu-
nity structure in evolving graphs. They make use of dynamic
programming and heuristics to optimize the structure dis-
covered. Sun and others [24] have proposed GraphScope
for parameter-free pattern mining of time-evolving graphs.
Longitudinal analysis of time-varying networks has also at-
tracted some attention. Snijders has a large body of work
on inferential statistics for longitudinal network analysis fo-
cusing particularly on actor-oriented modeling of dynamic
data ([23]).

Event-based methods have been applied for target track-
ing [22] and studying the evolution of spatial data [27]. In
our earlier work [3], we proposed an event-based framework
for characterizing evolving interaction graphs. In this re-
gard, we examined clusters of graphs and outlined events
for their changes over time. However, clusters are depen-
dent on the clustering algorithm applied and are restricted
by the fact that they do not capture local relationships. All
the nodes within a cluster are treated the same, without
any structure information. This makes it infeasible to study
local relationships and their evolution over time, which is
the main aspect of this work. Here, we focus on identifying
neighborhoods making use of topological and semantic in-
formation, while retaining local structural information. This
enables us to examine and quantifying relationships within
local neighborhoods and how they evolve over time.

Faloutsos and others [11] have examined an electric cur-
rent based approach to identify connection subgraphs. Also,
Tong and Faloutsos [26] have presented the notion of center-
piece subgraphs, where the goal is to identify a small but rep-
resentative connection subgraph, given a set of query nodes.
The Center-piece subgraph for a set of nodes represents the
important nodes with close connections to all or some of
them, similar to the notion of centrality. The authors have
used random walks with restart from the query nodes to
identify important nodes using a path-based goodness score
function. Although, this is similar to the multi-source neigh-
borhoods that we discuss in Section 4.5, a key difference is
that our algorithm makes use of additional constructs such
as local topological properties as well as semantic informa-
tion to construct neighborhoods. Also, our activation spread
algorithm is general, in that, activation functions making use
of different properties or even a combination of properties
can be employed to extract neighborhoods efficiently.

Activation models have been studied for complex networks
specifically in the context of influence maximization ([15, 16,
7, 1, 9]). Kempe et al ([15, 16]) discuss two models for the
spread of influence through social networks. Their model
however is computed by simulation on a static network. It
does not consider the addition and deletion of nodes and
edges in the network. There has also been research on us-
ing activation functions in keyword search.([20, 14, 7]). In
this work, we develop an activation model for the important
problem of identifying neighborhoods for nodes in dynamic
graphs and quantifying relationships within them as well as
their evolution over time. For this purpose, we introduce
a general model along with three different activation func-
tions.

3. DATASETS
We use two different real-world interaction graphs for our

experimental analysis.
DBLP co-authorship network: We used the DBLP com-
puter science bibliography data to generate a co-authorship
network representing authors publishing in several impor-
tant conferences in the field of databases, data mining and
AI. We chose all papers over a 10 year period (1997-2006)
that appeared in 28 key conferences spanning mainly these
three areas. The conferences we considered are - (PKDD,
ACL, UAI, NIPS, KR, KDD, ICML, ICCV, IJCAI, CVPR,
AAAI, ER, COOPIS, SSDBM, DOOD, SSD, FODO, DAS-
FAA, DEXA, ICDM, IDEAS, CIKM, EDBT, ICDT, ICDE,
VLDB, PODS, SIGMOD). We converted this data into a
co-authorship graph, where each author is represented as
a node and an edge between two authors corresponds to a
joint publication by these two authors 1. The graph span-
ning 10 years contained 23136 nodes and 54989 edges. We
chose the snapshot interval to be a year, resulting in 10 con-
secutive snapshot graphs. As researchers have noted ([15,
5]), a collaboration network exhibits many of the structural
properties of large social networks and is hence a good rep-
resentative dataset for this analysis.

Wikipedia Revision History Dataset: The Wikipedia
online encyclopedia is a large collection of webpages pro-
viding comprehensive information concerning various top-
ics. The dataset we employ represents the Wikipedia revi-
sion history and was obtained from Berberich [6]. It consists
of a set of webpages as well as links among them. It com-
prises of the editing history from January 2001 to December
2005. The temporal information for the creation and dele-
tion of nodes (pages) and edges (links) are also provided.
To perform semantic analysis,we make use of a category hi-
erarchy, which we have obtained from Gabrilovich [13]. We
chose a large subset of the provided dataset, consisting of
779005 nodes (webpages) and 32.5 M edges. We constructed
snapshots of 3 month intervals, and considered the first 10
snapshots for our analysis.

4. VIEWPOINT NEIGHBORHOODS
In this section, we introduce the notion of Viewpoint Neigh-

borhoods and discuss algorithms to find them.

4.1 Problem Definition
Our goal here is to identify a neighborhood of interest for

a given source node as well as quantify the relationship or
effect of different nodes in the neighborhood on the source
node.

Definition: We can define a Viewpoint neighborhood (VPN)
for a given source node x as the graph (or a tree in the special
case) rooted at x containing only nodes with some degree of
importance to x and their interconnections.

The above definition refers to nodes of importance to the
given source node. Our goal in this section is to devise an
efficient algorithm for identifying these nodes that make up
the neighborhood of interest, and quantify their relative im-
portance. We begin by presenting a simple algorithm based
on distance, and then discuss its shortcomings, which leads
us to a better and more efficient algorithm.

1Note that edges are unweighted i.e if two authors had at
least one publication, they would be represented by an edge.

A

F

A

DB C

F

G

H

F

I

(a)

(b)
(c)

I

HGD

B C

Figure 1: Example of a k-viewpoint neighborhood.
(a) represents the original graph. (b) corresponds
to 2-viewpoint of node A. (c) represents 2-viewpoint
neighborhood of node H

4.2 Depth-limited VPN
Consider a social network where nodes represent people

and links represent the friendship ties among them. Since
the network captures real-world behavior, a node’s real-life
friends are likely to be linked either directly to the node or
within two hops. Since nodes that are closer to x are likely
to have a greater effect on x than nodes further away, our ini-
tial attempt at an algorithm would be to consider all nodes
within a particular distance as part of the neighborhood,
formally defined as follows.

Definition: Let dist(a,b) represent the shortest distance in
hops from node a to node b. A k-viewpoint neighborhood of
node i for a graph G=(V,E), is a subgraph consisting of only
vertices, V ′ ∈ V such that ∀v ∈ V ′, dist(v, i) <= k, and all
edges E′ ∈ E such that ∀(vi, vj) ∈ E′, vi ∈ V ′ and vj ∈ V ′.

Algorithm 1 Find-kVPN(G,src,k)

Input: Graph G = (V, E), k, the size of the neighborhood
required and src, the source node.
Mark src as visited
if depth + 1 ≤ k then

for each neighbor j of node src do

Add edge (src, j) to VPN
if j has not been visited then

Find-kVPN(G,j,k)
end if

end for

end if
return(VPN)

For example, consider the graph in Figure 1 (a) consisting
of 8 nodes and their connections. Figure 1 (b) and (c) rep-
resent the 2-viewpoint neighborhoods of nodes A and H re-
spectively. Note that the structure and members of the two
neighborhoods differ greatly with only node F in common.
A k-Viewpoint neighborhood for a node can be computed
in a straightforward manner by performing depth-limited
search from that node, as shown in Algorithm 1. Given a

S

A B

D

F G

E
C

Figure 2: In this example, nodes D and E are at the
same distance from the query node S but their link
structure differs.

value of k, the traversal is carried out until the required
depth is attained. However, the above definition is rela-
tively naive since it makes the assumption that all nodes
are considered equal in terms of their involvement in the
neighborhood, and in particular all nodes within a partic-
ular distance k from the source node will all belong to the
k-VPN. This assumption is not true, as two nodes that are
the same depth away, may not necessarily impact the source
node in the same way. One of them might be well-connected
and hence linked to many other nodes within the neighbor-
hood, while the other might be a singleton, with a degree
of 1. An example is shown in Fig 2. We can see that nodes
D and E are at the same distance from source node S but
while D is well-connected with other nodes in S’s neighbor-
hood, E is connected to just one node. We can justly argue
that D and E impact node x differently and this needs to be
implicitly captured by the algorithm. Hence, while finding
the VPN for a node, we need to not only consider whether
or not a node belongs to a neighborhood, but also its de-
gree of commitment towards that particular neighborhood.
Note that, this is not an edge weight. Instead, we associate
a commitment or importance value for a node with respect
to each neighborhood (VPN) in its environs. Depending
on the application, the measure for computing this quantity
can vary.

Also, given the above intuition, it is clear that, to identify
nodes that are important to a particular node in a social
network, we need to concentrate not only on distance from
the source node but also local connectivity information.

A third thing to consider in this context is that, in small-
world graphs, hub nodes have interactions with most nodes
in the graph. This makes path lengths from one end of the
graph to another very small. Hence, even for small values
of k, the VPN for a node might include a large portion of
the graph, which is not likely to be useful. Not only are
the neighborhoods going to be unnecessarily large to store,
but it severely impacts the analysis that can be done over
them. A close friend who is connected to a lot of people
can be important to a node, but if a friend is connected to
a hub, who is in turn connected to a bunch of people whom
the source does not know, then that hub is not likely to be
important. We need to differentiate these cases.

4.3 Activation Spread
Considering the discussion presented above, the algorithm

for constructing the Viewpoint neighborhood of a node needs
to satisfy three important criteria.

• Inverse Distance weighting : The probability of
involvement of a node to a neighborhood should be
inversely proportional to its distance from the source.
The intuition is that a node is likely to be affected more
by changes occurring near itself than those occurring
some distance away.

• Link Structure : Nodes that are well-connected ,i.e
having links to many other nodes within the neigh-
borhood, should have high commitment or importance
values. These are nodes that have high influence within
the neighborhood.

• Hub nodes : As mentioned above, hub nodes dis-
tort neighborhoods by bringing ‘uninvited guests’ - a
host of other nodes that do not belong. The algorithm
should expand such hub nodes with low probability.

We propose a general activation spread model which is
designed to satisfy the above three criteria, and construct
a VPN for a given source node. To simplify matters, we
consider undirected graphs in this paper, although the al-
gorithms do not make any such assumptions. The general
model is as follows. Activation begins at the source node.
We assume that a budget M is initially available. The source
node distributes this amount among its immediate neigh-
bors, initiating the activation process. Each node then re-
tains some amount for itself and splits the remainder among
its other neighbors (siblings and descendants). By descen-
dants, we mean all nodes that are farther away (have greater
distance in terms of hops) from the source node than the cur-
rent node. Thus a node is expanded only once. If a node
has already been activated, it is not expanded a second time.
To handle the inverse-weighting of nodes, we decay the ac-
tivation as it proceeds farther away from the source node.
Each time the activation touches a node, it decays by a fac-
tor of the number of the links the node has. This ensures
that nodes closer to the source node are more probable to
be chosen. When the spread reaches a node, the node is
chosen to belong in the VPN based on certain criteria such
as its degree or topology or even semantic features. A node
that is well-connected will thus benefit from having multi-
ple connections. Key to the effectiveness of the spread is
an activation function that serves as a distribution mecha-
nism. At each node, the activation function determines the
amount assigned to the node. We will discuss different acti-
vation functions later in this section. The spread algorithm
is presented as Algorithm 2.

The activation proceeds with the amount constantly de-
caying until reaching a minimum threshold, at which it is
deemed indivisible. At the end of the activation process,
the total of the amounts at each node sums to M . Hence,
the fraction of the total amount that each node has received
gives the commitment value for a node in this particular
VPN. Thus the importance of a node is proportional to its
local connectivity and also depends on its path from the
source node.

Theorem 4.1. The spread algorithm outlined above sat-
isfies the three criteria provided earlier.

Proof. During activation spread, the amount transmit-
ted by the source is constantly decayed as it moves fur-
ther and further away, since each node retains a portion
(> 0) and distributes the rest, satisfying the inverse dis-
tance weighting criterion. Also it will satisfy condition 2
since common-neighbors of nodes will receive portions from
each of the nodes, thereby ending up with higher amounts
than nodes that are connected to only one of the earlier
nodes. Finally, hubs will have low importance since a node
retains only one portion after dividing among all its neigh-
bors. So if a node has a large number of neighbors it will

Algorithm 2 Find-VPN(Adjlist, src, M , min thresh)

Input: Adjacency list Adjlist , src, the
start node, M , the budget and min thresh the stopping threshold
Output: Commitment P
Initialize commitment values P (x) = 0 for all nodes
for each neighbor y of source src do

/* Push the node along with the amount it needs to receive into
queue */
Push (y,Act(y, M))

end for

while queue is not empty do

Pop node-amount pair from the queue as (x,m)
if x has already been expanded or m

deg(x)
< min thresh then

Add amount Act(x, m) to P (x)
Continue

end if

/* Expand node x */
for each descendant or sibling neighbor y of x do

if Act(y, m) < min thresh then

/* No need to expand that node */
Add amount Act(y, m) to P (x)

else

/* Enqueue for activation */
if y is already on the queue and its predecessor is the same
level as x then

Add amount Act(y, m) to what y is going to receive
else

Push (y,Act(y, m)) into the queue
end if

end if

end for

Mark x as expanded
end while

for each expanded node do

P (x) = P (x)
M

end for

Return P

split up what it has received over all of them and will be left
with a very small portion.

Corollary 4.2. The activation spread algorithm converges
in finite time due to the perpetual decay of the amount being
propagated 2.

Note that, in the above algorithm we considered each edge
to be the same. If edge weights are available, then during
the activation propagation, a node can consider edge weights
while dividing the amount among its neighbors. Each neigh-
bor node will not receive the same share in that case.

4.4 Activation Functions
The activation function is used by the spread algorithm

to perform the distribution of different amounts to different
nodes depending on topological or semantic features. We
will next present three different activation functions, the first
based on inverse-degree, the second based on local Between-
ness Centrality and the third based on semantic content.
Note that, it is possible to design a function to incorporate
multiple features.

Inverse Degree Activation: This is a simple activation
function that down-weights nodes with high degrees. Let
downlinks(x) represent the siblings and descendants of a
node x. When each node x, except the source node, receives
some amount, it retains 1

|downlinks(x)|+1
and distributes the

same fraction to each of its siblings and descendants. Note
that, hub nodes that are connected to a large number of

2We are using a threshold to hasten the convergence

Figure 3: In this example, using Inverse Degree acti-
vation, node B is going to get higher weight although
it is poorly connected.

nodes, will retain small amounts using this function.

Act(x,m) = InvDeg(x,m) =
m

|downlinks(x)| + 1

This activation function satisfies the three criteria we dis-
cussed previously, with inverse weighting of nodes taken care
of by the decay, common neighbors getting higher weights
and hubs down-weighted. However, it does not completely
capture the link structure in the graph. We can illustrate
this with an example, shown in Fig 3. Nodes A and B are
both going to receive M

2
from the source node. While A has 2

downlinks, and hence retains only M
6

, node B will retain the
M
2

it received since it does not have any descendants. Node
A is connected to all other nodes in the neighborhood and
should receive better recognition than it does using this ac-
tivation function. Hence, the activation function at a node
needs to consider not only immediate links but also more
global topological information. We will show how this can
be improved with the use of the Betweenness topological
measure next.

Betweenness-based Activation: The Shortest-path Edge
betweenness centrality measure, captures an important topo-
logical property, and was first introduced by Freeman[12]. It
is a global topological measure and computes, for each node
in the graph, the fraction of shortest paths that pass through
it. In our case, we are interested in the reachability of nodes
in the neighborhood from a given source node. Hence, we
need to favor nodes that have high Shortest-path Edge Be-
tweenness in terms of paths from the source to other nodes in
the neighborhood. These nodes have high centrality within
the VPN and thus can be considered important nodes.

The Shortest-path Edge Betweenness centrality for a given
node x with respect to a source node S given a neighborhood
of nodes N = (V, E) can be calculated as :

B(x, S) =
SPx

|V | − 1
(1)

where SPx is the number of shortest paths passing through
edge x from source S to the nodes of the neighborhood V .

The shortest-path edge betweenness centrality can be com-
puted by performing BFS from the source node, building
the shortest path tree for nodes in the neighborhood. Since
we are considering local neighborhoods, we are interested
only in betweenness centrality within the VPN. This quan-
tity is less expensive to compute than the global between-
ness centrality in the graph. However, we need to know

the key members of the VPN before computing between-
ness. For this, we simulate an activation spread, using the
Inverse-degree activation function and simultaneously com-
pute shortest paths. The algorithm FindBet is shown in
Alg 3.

Once the betweenness values are obtained for nodes in
the neighborhood, they can be used in the activation func-
tion. When a node receives an amount, it evaluates its own
betweenness and the betweenness values of its siblings and
descendants, and distributes the amount as a ratio of these
values. Let the amount received by a node x be m. Let the
sum of the betweenness of its siblings and descendants be
denoted as B(downlinksx). The amount retained by node
x is given as:

Act(x,m) =
B(x) ∗ m

B(downlinksx) + B(x)

The amount received by each of its siblings and descendants
y is given similarly as :

Act(y,m) =
B(y) ∗ m

B(downlinksx) + B(x)

In the example shown in Fig 3, A will receive a larger amount
(5M

6
) than B (M

6
) from S.

Algorithm 3 Find-Bet(Adjlist, src, M , min thresh)

Input: Adjacency list Adjlist , src, the
start node, M , the budget, Activation Function InvDeg and
min thresh the stopping threshold
Output: Betweenness B
Initialize depths D(x) = Inf for all nodes
Initialize predecessor list Pr
for each neighbor y of source src do

Push (y,InvDeg(y, M),1,src) into queue
end for

while queue is not empty do

Pop node-amount-depth-predecessor tuple from the queue as
(x,m,d,p)
if D(x) = d then

/* Alternate predecessor to x along the shortest path from the
source src */
Add predecessor p to Pr(x)

else if D(x) > d then

/* Found shorter path to x */
Clear predecessor list Pr(x)
Add p to Pr(x)
Set D(x) to d

end if

if InvDeg(x, m) < minthresh then

Do not expand node x

else

/* Expand node x */
for each descendant or sibling neighbor y of x do

if D[y] < D[x] + 1 and previous maximum amount received
by y > InvDeg(x, m) then

/* No need to expand that node */
else

/* Enqueue for activation */
Push (y,InvDeg(y, m),D[x] + 1,x) into the queue

end if

end for

end if

end while

for each expanded node x do

Use predecessor list Pr to find path to source and update be-
tweenness B of nodes along the way

end for

Return B

Semantic Activation: Apart from topological features, it
is possible to incorporate semantic properties of nodes to
encode the activation function. This is of particular impor-
tance in personalized and keyword search applications ([2,

20, 14]), where one is interested in identifying subgraphs
that match given sets of keywords [20]. To obtain efficient
local neighborhoods when nodes are annotated with seman-
tic terms, we need to consider the similarity of nodes with
the source node. Let us consider two nodes x and y each
associated with sets of terms denoted as Kx and Ky where
Kx = {kx

1 , kx
2 , ..., kx

|Kx|}. A simple way to compute simi-
larity for the two nodes would be to consider the Jacquard
measure of their term sets.

SS(x, y) =
|Kx ∩ Ky|

|Kx ∪ Ky|

However, the relationship between two nodes cannot typi-
cally be inferred by merely comparing their term sets since
different terms are associated with different semantic mean-
ings. One needs to consider the distribution of topics and the
relationships among them. When the terms are organized
in a category hierarchy, we can use the notion of semantic
similarity to serve our purpose. To begin with, the Infor-
mation Content (IC) of a term (category or keyword-set),
using Resnik’s definition [21], is given as:

IC(ki) = −ln
F (ki)

F (root)

where ki represents a term and F (ki) is the frequency of
encountering that particular term over all the entire corpus.
Here, F (root) is the frequency of the root term of the hi-
erarchy. Note that frequency count of a term includes the
frequency counts of all subsumed terms in an is-a hierar-
chy. Also note that terms with smaller frequency counts
will therefore have higher information content values (i.e.
more informative). Using the above definition, the Seman-
tic Similarity (SS) between two terms (categories) can be
computed as follows:

SS(ki, kj) = IC(lcs(ki, kj))

where lcs(ki, kj) refers to the lowest common subsumer of
terms ki and kj . The semantic similarity between the two
nodes can be formulated as follows :

SS(x, y) =

|Kx|
X

i=1

|Ky |
X

j=1

SS(kx
i , k

y
j) (2)

While performing activation spread, we are interested in the
semantic similarity between the source node and all other
nodes in its neighborhood. While distributing amounts among
nodes, we need to provide higher preference to nodes that
are semantically more similar with the source node. Let
s denote the source node. Let the amount received by a
node x be m, and the sum of the semantic similarity of
each of its siblings and descendants with the source node
be S(downlinksx) =

P

i∈downlinksx
SS(s, i). The amount

retained by node x can then be given as:

Act(x,m) =
SS(s, x) ∗ m

S(downlinksx) + SS(s, x)

Similarly, the amount received by each of its siblings and
descendants, denoted as y, is computed as:

Act(y,m) =
SS(s, y) ∗ m

S(downlinksx) + SS(s, x)

We present an example of a VPN using semantic acti-
vation on the Wikipedia webgraph in Fig 4. The source

Bugzilla

Computing

Computer

Computer science

Computer network

Computer program

List of computer scientists

Customer relationship management

Data warehouseDatabaseDatabase management system

Internet

Information

Metadata

Python programming language

Relational database

Relational model
Turing Award

Complementary network service

Disengagement originator

Dispersion−limited operation

Distributed database

Signal transition

Data mining

Ontology (computer science)

Robin Milner

Customer privacy

Concurrency control

Database transaction
Usability

Sales force management system

Charles Bachman

Parsing

Protocol (computing)
T = 7

Figure 4: Example of a semantic viewpoint neigh-
borhood. The source node ”Database” is shown in
yellow. The relatively important nodes are shown
in blue.

node is ”Database” (shown in yellow), and the nodes with
high importance (> 0.025) are shown in blue. The node
”Database” had a high degree in that particular snapshot,
and was connected to a host of extremely unrelated nodes
in the Wikipedia webgraph, such as ”Communications in
Israel”, ”430 BC”, ”Denver-Aurora metropolitan area” and
”The Chicago Manual of Style”. This is due to spurious links
among webpages. Making use of the semantic similarity can
help extract a relevant neighborhood for a node, which is
extremely important in search ([2, 20, 14]) and spam appli-
cations. Note, that it is also possible to find the neighbor-
hood for a node based on a particular input keyword-set.
In that case, the activation function needs to consider the
semantic similarity of nodes with the source as well as with
the query keywords.

As we mentioned previously, it is possible to construct an
activation function to consider both the betweenness as well
as the semantic features, using weights to tune the relative
importance of each property. Figure 5 gives the distribu-
tion of the VPNs obtained for the DBLP and Wikipedia
datasets using the Betweenness-based and Semantic Activa-
tion functions respectively. We can observe that for DBLP,
the neighborhood size distributions across time are close and
overlapping. In the case of Wikipedia, the number of nodes
increases constantly across timestamps, which causes the
sizes of the neighborhoods and their number to increase,
but the distribution pattern remains similar.

4.5 Multi-source Neighborhoods
Note, that our definition can be extended to the multi-

source case, where we are interested in identifying the shared
central neighborhoods given multiple source nodes. The
problem can be stated as follows.

Problem : Given a set of n source nodes S = (s1, s2, ..., sn),
the problem is to find the VPN that represents the intersec-
tion of at least k of their neighborhoods.

This is important again in keyword search applications,
where one wishes to compute a subgraph to satisfy a given
keyword-set. The nodes that have high importance in this
shared neighborhood should represent those that have in-
volvement with the VPNs of at least k of the source nodes.
On the other hand, nodes that occur in only a few of the
VPNs should have 0 importance. We would like to design

Algorithm 4 MultiVPN(Adjlist, srclist, M , min thresh,
k)

Input: Adjacency list Adjlist , srclist, the
list of source nodes, M the budget, min thresh the stopping
threshold
and k the minimum number of VPNs the node should belong to
Output: Commitment Values P
/* Find individual neighborhoods for the source nodes as described
previously */
for each source node src do

BTempsrc = Find-Bet(Adjlist, src, M , min thresh)
PTempsrc = Find-VPN(Adjlist, src, M , min thresh)

end for

/* Coalesce individual betweenness and commitment values to ob-
tain betweenness and importance with regard to the different source
VPNs */
for each node x do

Betall(x) =

q

P|srclist|
i=1 BTempi(x)2

/* Prune all nodes that do not belong to at least k out of |srclist|
neighborhoods */
if x belongs to at least k out of |srclist| VPNs then

Pall(x) =
p

|srclist| −

q

P|srclist|
i=1 (1 − PTempi(x)2)

else

Pall(x) = 0
end if

end for

Initialize final commitment values P (x) = 0 for all nodes
for each node y that belongs to at least k out of |srclist| neighbor-
hoods do

/* Begin activating from the node with amount proportional to
its importance wrt. all source nodes */

Amt =
Pall(y)∗M

P

i∈nodelist Pall(i)

Py = Find-VPN(Adjlist, srclist, Amt, min thresh)
Update commitment values of nodes with Py

end for

for each node x do

P (x) = P (x)
M

end for

Return P

an activation model that results in the nodes well connected
to the neighborhoods of the source nodes having high cen-
trality and thus high weights. Such an activation model
would proceed in a different vein from the one discussed
previously, since we are now concerned with nodes that are
along multiple paths between the different source nodes.
The algorithm is shown as Algorithm 4. Each of the source
nodes construct their neighborhoods as in the single source
case. Subsequently, the nodes at the intersection that have
some level of involvement in at least k of the neighborhoods
are identified. Activation is performed from these nodes,
with amounts proportional to their importance in the differ-
ent neighborhoods. We show an example of a multi-source
VPN from the DBLP graph in Fig 6. We use three source
nodes, shown in yellow - Xifeng Yan, Adam Silberstein and
Jessica Lin. The red nodes indicate the members of the
multi-source VPN and they are labeled with their commit-

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

Size of Neighborhood

Fr
eq

ue
nc

y

1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

Size of Neighborhood

Fr
eq

ue
nc

y

 Jan−Mar 2001
 Apr−Jun 2001
 Jul−Sep 2001
 Oct−Dec 2001
 Jan−Mar 2002
 Apr−Jun 2002

Figure 5: Distribution of neighborhood sizes for a)DBLP b)Wikipedia

Philip S. Yu 0.211

Jiawei Han 0.039

Jian Pei 0.018

Xuemin Lin

Jun Yang 0.021

Jeffrey F. Naughton 0.013

ChengXiang Zhai

Jeffrey Xu Yu 0.062

Eamonn J. Keogh 0.183

Carla Schlatter Ellis

Haixun Wang 0.058

Wei Fan 0.009

Bing Liu 0.011 Ke Wang 0.016

Sudipto Guha

Kamesh Munagala

Marios Hadjieleftheriou 0.014
Aris Anagnostopoulos 0.006

Rajeev Motwani

Jennifer Widom

Charu C. Aggarwal 0.006

Michail Vlachos 0.029

Nick Koudas

Zhongfei (Mark) Zhang 0.006

Xifeng Yan Hong Cheng 0.017

Jessica Lin

Dong Xin 0.034

Chen Chen 0.008

Zografoula Vagena 0.006

Utkarsh Srivastava

Adam Silberstein

Rebecca Braynard

Feida Zhu

T = 10

Figure 6: Example of a multi-source neighborhood. Members of the multi-VPN are shown in red.

Figure 7: Illustration of events in a VPN rooted at
A.

ment or importance values. We see that Philip Yu is the
most central node in terms of these source nodes, and it
is activated with higher values than the others. Note that
the values represent importance in the shared neighborhood
and not the neighborhood they are most involved in. Other
nodes that are shown are nodes that exist in the individual
neighborhoods but do not have a reasonable commitment
value (> 0.005) with respect to the multi-VPN.

5. EVOLUTION OF VPNS
An interaction graph G is said to be evolving if its inter-

actions vary over time. Let G = (V, E) denote a tempo-
rally varying interaction graph where V represents the total
unique entities and E the total interactions that exist among
the entities. We define a temporal snapshot Si = (Vi, Ei)
of G to be a graph representing only entities and interac-
tions active in a particular time interval [Tsi

, Tei
], called the

snapshot interval.
As the graph evolves, new nodes and edges can appear.

Similarly, nodes and edges can also cease to exist. This dy-
namic behavior of a graph over time can thus be represented
as a set of S equal, non-overlapping temporal snapshots.

We are interested in understanding how neighborhoods
evolve over time, in particular identifying key changes that
occur and discovering motivations for these changes. For
each snapshot Si, there can be a set of |Ni| Viewpoint neigh-

borhoods represented as Ni = {N1
i , N2

i , . . . , N
ki
i }. To char-

acterize the changes occurring in neighborhoods over time,
we require the use of certain measures, which we term crit-
ical events. These events capture the behavior of nodes
and neighborhoods over time. In an earlier work [3], we
composed events for clusters. Here, we consider Viewpoint
neighborhoods and make use of the importance and depth
information to quantify key changes. Note that, the corre-
spondence across snapshots is not an issue here, since we are
looking at viewpoints of certain nodes over time, as opposed
to clusters. Hence, we consider successive viewpoints for a
node and find events across pairs of them.

5.1 Events for Viewpoint Neighborhoods
We define six basic events for neighborhoods. We use the

VPN shown in Fig 7 to illustrate the events we describe.

• Growth : This event captures the size of the neigh-
borhood increasing over time.

Growth(Nk
i) = 1 iff |V k

i | < |V k
i+1|

Growth in a VPN indicates that more nodes are in-
vested in the viewpoint of a particular node. In Fig 7

at T2, the size of the neighborhood of A increases.

• Shrinkage : This is the opposite of the above event
and signifies the reduction of the size of a node’s neigh-
borhood.

Shrinkage(Nk
i) = 1 iff |V k

i | > |V k
i+1|

Shrinkage can be caused by either edge deletions in
the node’s immediate neighborhood or the deletion of
an influential hub node in its VPN. In Fig 7 at T3, the
size of the neighborhood of A decreases.

• Continuity : A VPN is said to continue if the mem-
bers of the neighborhood do not change. Note that,
this does not place any restrictions on the link struc-
ture among the members. It conveys the information
that the nodes invested in this particular neighborhood
remain unchanged.

Continuity(Nk
i) = 1 iff V k

i = V k
i+1

Since the evolution of an interaction graph does not
uniformly affect all nodes, this event serves the purpose
of determining the range of such changes within the
graph. If a node’s neighborhood satisfies a Continuity

event, it demonstrates that the changes occurring in
the graph do not affect this particular node in any
way. Note that this is a stability measure for a node.
In Fig 7 at T4, the nodes in the neighborhood of A

remain the same as the previous timestamp. Note,
that there is an edge now between nodes B and C.

• Mutate : This event is the opposite of the above
event and indicates major changes within the View-
point neighborhood of a node. If more than half of
the members of a node’s VPN are different over two
successive snapshots, it indicates significant change in
the VPN and hence can be considered a Mutate event.

Mutate(Nk
i) = 1 iff |V k

i ∩ V k
i+1| < 0.5 ∗ |V k

i |

Using this event, one can identify nodes whose neigh-
borhoods are affected severely by changes occurring
in the graph over time. Note that, a node’s sociabil-
ity can be quantified based on the number of Mutate

events, the node participates in. We provide more de-
tails at the end of this section. In Fig 7, at T5, we find
drastic changes in the VPN of A indicating a Mutate

event.

• κ-Attraction : This event signifies positive change
in the Viewpoint neighborhood of a node with κ% of
the nodes moving closer than before. Let Dep(m)k

i

represent the depth (minimum distance from the root)
of node m in the VPN of k at time i.

S = {m ∈ V
k
i |Dep(m)k

i > Dep(m)k
i+1}

Att(Nk
i , κ) = |S|iff(|S| > κ ∗ |V k

i |)

If a node experiences this event, it reflects positively on
the influence of that particular node. In the example,
at T6, we find that nodes H, E and L are closer to
node A than previously. This signifies an Attraction

event on the part of A.

• κ-Repulsion : This event is the opposite of the previ-
ous event. It signifies the increase in distance between

a node and the members of its VPN in the previous
time stamp. If κ% of the nodes in the VPN of a node x

are farther away in the next timestamp, x is considered
to partake in this event.

S = {m ∈ V
k

i |Dep(m)k
i < Dep(m)k

i+1}

Rep(Nk
i , κ) = |S|iff(|S| > κ ∗ |V k

i |)

This event demonstrates a negative influence of the
node in question. It intrinsically represents the fact
that the changes, that are occurring in the graph as a
whole, have an adverse effect on the relations of this
node with its neighbors. In the figure, at T6, the nodes
F and G which were close to A are now at a greater
distance from A, indicating a Repulsion event.

Note that the events we describe above are not mutually
exclusive. For instance, it is common for a neighborhood
to undergo a Growth event and an Attraction event at the
same time. To find the events, we consider two snapshots
of VPNs at a time. We build an index on the root of the
neighborhoods, so that correspondence is not an issue. We
compare the corresponding neighborhoods of a node to iden-
tify all events for that node.

The number of events discovered for the two datasets are
shown in Table 1. We can observe that in DBLP, the size-
based events (Growth and Shrinkage) are both frequent,
while Continue events are rare. In the case of Wikipedia,
Growth and Attract events far outnumber Shrinkage and
Repel events. This is due to the fact that in Wikipedia,
nodes (pages) and links are added but not frequently deleted,
which causes neighborhoods to increase rather than decrease.
Also, Continue events are quite frequent in Wikipedia, sug-
gesting that semantic neighborhoods do not change much
over time.

5.2 Behavioral Measures
We can use the events described in the previous subsec-

tion to build behavioral measures to signify key behavioral
patterns that occur over time. We define three measures -
Stability, Sociability and Popularity as follows. Note that,
it is possible to define measures for capturing other types of
behavior as well using the above mentioned events.

5.2.1 Stability
Stability is a measure of how the changes to the graph

affect a particular node. If a node’s principal neighborhood
(VPN) does not change much over time, then it is believed
to be stable.

Stability(x) =

PT

i=1 Continuity(Nx
i)

|Activity(x)|
(3)

Here, Activity(x) denotes the number of pairs of succes-
sive timestamps this particular node is active in. We used
the measure shown above on authors of the DBLP dataset.
We found the authors with top values of this measure. The
author who had the highest stability score was Juho Rousu
and the second author was Tapio Elomaa. When we exam-
ined the DBLP bibliography entry for Prof Juho Rousu, we
found that from 1996 to 2003, every paper that this author

published 3 was with Prof Tapio Elomaa. Hence, the fact
that these two authors are at the top of the Stability list is
justified.

5.2.2 Sociability
Sociability is a measure of how many different nodes are

affected by or cause effect to this particular node over time.
It can be described using the Mutate event as follows:

Sociability(x) =

PT

i=1 Mutate(Nx
i)

|Activity(x)|
(4)

It is calculated as the ratio of the number of timestamps
its neighborhood changes drastically to the number of pairs
of successive timestamps it is active in.

5.2.3 Popularity
Popularity is a measure of how many nodes are attracted

to the node’s neighborhood. It can be described using the
κ-Attraction and κ-Repulsion events.

Popularity(x) =

PT

i=1 Att(Nx
i , κ) − Rep(Nx

i , κ)

|Activity(x)|
(5)

If a node attracts several nodes over time and does not
have high repulsion rates, it is considered popular. In the
case of Wikipedia, popularity reflects a buzz around a par-
ticular topic page, as more pages and links are added to
it. This buzz can be identified by a spike in the popular-
ity trend graph. We computed the popularity for VPNs (as
Att(Nx

i , κ)−Rep(Nx
i , κ)) at different timepoints. We identi-

fied interesting real-world events in the 2001-2002 period and
analyzed the corresponding trend plots. Note that, we are
not considering new pages created based on new events. An
example for this would be the September 11 attacks (which
did have high popularity when created). We consider neigh-
borhoods that already existed but spiked at a particular
timepoint, indicating a buzz.

The trend plots are shown in Table 2. The event that
inspires the popularity is shown in the first column. The
root nodes of the VPNs under consideration are presented
in Column 2 with their corresponding popularity scores in
the subsequent columns. The value spikes at the time cor-
responding to the particular event in each case.

Note that, the above measures can be computed incre-
mentally from the events discovered at each timestamp.

5.3 Impact on Node Neighborhoods
We would like to consider which nodes have high impact

on most VPNs. This would also allow us to verify our activa-
tion model of assigning importance or committment values
to nodes with respect to neighborhoods. Our hypothesis
is that the nodes that impact or influence a neighborhood
would have high importance values for that particular neigh-
borhood. Since, a node may be involved in different neigh-
borhoods in differing capacities, we define the impact or
influence of a node as the weighted sum of its committment
values in all neighborhoods it is a part of.

Impact(x) =

T
X

i=1

|Ni|
X

k=1

P (x,N
k
i) (6)

3in the conferences we considered

DBLP Wikipedia
Time Growth/Shrinkage Continue/Mutate Attract/Repel Growth/Shrinkage Continue/Mutate Attract/Repel
1-2 434/347 58/743 426/377 1146/16 570/867 851/12
2-3 527/428 75/855 473/403 6640/256 1409/4799 4543/171
3-4 500/404 49/893 491/484 19773/869 2628/16563 15783/877
4-5 540/437 60/914 525/502 39410/3646 3273/27051 22487/2319
5-6 450/466 40/849 474/549 51899/7718 9561/19135 13532/1579
6-7 587/474 42/1059 636/662 65683/10695 7189/34880 26487/4155
7-8 739/664 44/1396 858/851
8-9 947/681 57/1617 1037/976
9-10 672/930 37/1556 762/1088

Table 1: Event Occurrences for DBLP and Wikipedia. For Attrack and Repel we use κ of 0.5.

Event VPN Root Apr-Jun 2001 Jul-Sep 2001 Oct-Dec 2001 Jan-Mar 2002 Apr-Jun 2002
Jun 1 - Nepal Royal Nepal 0 111 0 0 0

Family Massacre
Jun 20 - Pervez Musharraf Pervez Musharraf 0 100 0 0 0

becomes president of Pakistan Politics of Pakistan 0 35 0 0 0
History of Pakistan 0 68 0 0 0

Aug 25 - R&B singer Aaliyah Aaliyah 0 281 0 298 0
dies in a plane crash

Sept 11 Terrorism 0 107 68 0 0
Patterns of Global Terrorism 0 106 98 0 140

Osama Bin Laden 0 0 92 116 35
World Trade Center 0 0 53 0 0
Islamist Terrorism 229 268 137 0 0

Sept 18-Oct 9 Anthrax Anthrax 0 0 248 0 0
attacks using letters

Dec 19 - Lord of the Rings: Fellowship of the Ring 0 0 27 31 0
Fellowship of the ring Peter Jackson 0 0 226 0 506

released in US J.R.R Tolkein 0 95 105 0 0
Dec 22 - Hamid Karzai Democratic Republic 0 0 70 257 0
sworn in as President of Afghanistan

of Afghanistan Foreign Relations 0 0 316 0 0
of Afghanistan

Mar 24 - Oscars 74th Academy Awards 0 0 0 280 95
A Beautiful Mind 0 0 0 96 0

Denzel Washington 0 0 400 850 744
Halle Berry 0 0 0 177 681

Jennifer Connelly 0 0 0 1132 79
June - Serena Williams Wimbledon 0 0 0 214 275

wins Wimbledon Serena Williams 0 0 0 0 50

Table 2: Popularity Trends in Wikipedia.

Figure 9: Two snapshots (2003 and 2004) of Philip Yu’s evolving VPN. The core subgraphs are shown in red.

Zhongfei
ZhangPhilip S. Yu

Wei Fan

Wei Wang Jiong Yang

Haifeng Jiang

Jeffrey Xu Yu

Fang Chu

Haixun Wang

Chang Luo

0

0

0

0

0

0

0

1

0

1

Vivek R.
Narasayya

0

0

1

1 0Surajit
Chaudhuri

Ramakrishnan
Srikant

Guy M.
Lohman

Sunita
Sarawagi

Rakesh
Agrawal

Figure 10: Largest maximal frequent transformation subgraphs in the VPNs of a) Philip S. Yu b) Vivek R.
Narasayya.

Impact

Philip S. Yu
Jiawei Han

Elke A. Rundensteiner
Christos Faloutsos
Hans-Peter Kriegel
Surajit Chaudhuri
Divesh Srivastava

Daphne Koller
Raghu Ramakrishnan

Beng Chin Ooi
Divyakant Agrawal
Sebastian Thrun

Table 3: Top 12 Values for the Impact measure

When we computed this quantity for the DBLP co-authorship
dataset, we observed that most of the authors who had high
values were authors who could be considered influential in
terms of their research in the community. A list of the au-
thors having the top 12 values for this quantity is given in
Table 3. This provides some verification for the values that
we assign in the activation model.

5.4 Core Subgraphs
Note that an advantage of using VP-neighborhoods is

that, it enables us to perform frequent pattern mining over
the viewpoint neighborhoods of points. By examining the
VP-neighborhoods for a point over all time instances, we
can identify core substructures using frequent graph mining
techniques.

Definition: We define a core subgraph for a given source
node as the largest subgraph in its Viewpoint Neighborhood
that is frequent over time.

In the context of collaboration networks, a frequent sub-
graph or subtree in the VP-neighborhoods of a graph in-
dicates a core group associated with a particular author.
By finding these core substructures, we can also gauge the
level of stability for an author in terms of their neighbor-
hood. An absence of significant core subgraphs would in-
dicate disparate behavior with different groups separated

Jiawei Han Wei FanPhilip S. Yu

Haixun WangXifeng Yan

Philip S. Yu

Bing Liu

Charu C.
Aggarwal

Figure 8: Maximal core subgraphs in the VPNs of
Philip S. Yu.

Jeffrey Xu Yu and Hongjun Lu
Wei Wang and Jiong Yang

Philip S. Yu and Jiong Yang
Philip S. Yu and Wei Wang

Philip S. Yu and Wei Wang — Philip S. Yu and Jiong Yang
Surajit Chaudhuri and Vivek R. Narasayya

Jiawei Han and Jian Pei
H. V. Jagadish and Raymond T. Ng

H. V. Jagadish and Laks V. S. Lakshmanan
H. V. Jagadish and Laks V. S. Lakshmanan

Divesh Srivastava and Laks V. S. Lakshmanan
Divesh Srivastava and H. V. Jagadish

Divesh Srivastava and Nick Koudas

Table 4: Frequent transformation subgraphs for the
DBLP dataset with only insertions shown. High-
support edges are shown in bold.

from each other. We would like to identify and examine
these core subgraphs in VP-neighborhoods. To illustrate,
we selected Dr Philip S. Yu, who is an influential and pop-
ular author. We computed the core subgraphs 4 for the
VPNs of Dr Yu. We used a support threshold of 5 to ob-
tain 2 maximal frequent core subgraphs. The corresponding
core subgraphs are shown in Fig 8. We also illustrate Dr
Yu’s VPN over two timestamps in Fig 9, showing the core
subgraphs in red. When we chose Juho Rousu, the author
with the highest stability measure value, we got a frequent
subgraph Juho Rousu and Tapio Elomaa with very high
support (7/9).

5.5 Transformation Subgraphs
Apart from characterizing changes occurring in the graph

over time, our goal is to also reason about the effect of
changes on nodes and neighborhoods. As we mentioned ear-
lier, changes in the graph are likely to affect different nodes
in different ways. We are interested in identifying influential
transformations that affect most of the nodes in the graph.
For this, we again leverage the use of frequent subgraph min-
ing over VPNs. The influential transformations, that we are
interested in, are those that affect a majority of VPNs. By
mining the changes occurring in VPNs over time, we can
identify such transformations.

First, we need to represent the changes occurring in a par-
ticular VPN over a set of snapshots. For this we introduce
a Transformation Subgraph. A transformation subgraph
TS for a VPN over two timepoints i and i + 1, is a graph
consisting of only edges that belong to the neighborhood ei-
ther at time i or time i + 1 but not both. TS(Nk

i , Nk
i+1) =

(VTS(Nk
i , Nk

i+1), ETS(Nk
i , Nk

i+1)) where ETS(Nk
i , Nk

i+1) =
(Ek

i ⊕ Ek
i+1)

However, we also need to distinguish edges that were in-
serted during the timestamp from edges deleted. For this
purpose, we use edge labels, labeling each edge in the trans-
formation subgraph as 0 (deleted) or 1 (inserted).

We can represent the evolution of a VPN as a time-series
of transformation subgraphs, each representing changes over
a pair of snapshots. Subsequently, we can perform frequent
subgraph mining to identify the key transformations that af-
fect the viewpoint neighborhoods of most of the nodes. We
performed frequent subgraph mining on the DBLP graph,
using a support threshold of 25% which resulted in 23 unique
transformation edges 5. We list the frequent subgraphs that
affected the most VPNs when inserted, in Table 4. Out of
the 13 shown, 2 edges Divesh Srivastava and H. V. Jagadish

and Jiawei Han and Jian Pei were frequent with the high-
est support (causing change in > 150 VPNs) over the 10
timestamps. Also, one can identify frequent transformation
subgraphs for individual nodes. These represent subgraphs
or edges that have a high effect on the neighborhood of a
particular node over time. We consider the VPNs of two
authors Philip S. Yu and Vivek R. Narasayya. The largest
maximal frequent transformation subgraphs in their VPNs
are shown in Fig 10. We can see that the authors with high-
degree are typically influential authors (shown in yellow),
which explains the effects they have on the source neigh-
borhood. An important difference that can be observed is

4We use the Graph mining toolkit developed by Gregory
Buehrer for this purpose [8]
5some transformation edges were frequently added as well
as deleted

that Philip S. Yu has high degree in his own transformation
subgraph, which indicates that his own interactions cause
most of the changes in his neighborhood. On the contrary,
Surajit Chaudhuri and Rakesh Agrawal play an important
role in affecting the VPN of Vivek Narasayya.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed an activation model to

construct the Viewpoint Neighborhood of a node and quan-
tify the relationships that exist within it. We have also
shown how a common neighborhood of interest can be com-
puted for a group of nodes and how different activation
functions leveraging topological and semantic information
can be constructed to facilitate the extraction of interest-
ing neighborhoods. To characterize and measure the effect
of changes over time, we have introduced temporal events
as well as behavioral measures that can be computed incre-
mentally. Finally, the use of frequent subgraph mining to
identify stable and fleeting subgraphs has been highlighted.
The algorithms and analysis provided are particularly rel-
evant for social network applications such as personalized
and community search, and online advertising.

In future work, we would like to extend the temporal anal-
ysis to graph production rules and graph grammars. Of par-
ticular interest in our context will be to evaluate if graph
grammars can be inferred from such interaction networks
by learning the production rules that govern evolution of
clusters or viewpoint neighborhoods.

7. ACKNOWLEDGEMENTS
This work is supported in part by the NSF CAREER

Grant IIS-0347662 and NSF SGER Grant IIS-0742999.

8. REFERENCES
[1] F. Alkemade and C. Castaldi. Strategies for the

diffusion of innovations on social networks.
Computational Economics, 25(1-2), 2005.

[2] S. Amer-Yahia, M. Benedikt, and P. Bohannon.
Challenges in searching online communities. IEEE
Data Eng. Bull., 30(2):23–31, 2007.

[3] S. Asur, S. Parthasarathy, and D. Ucar. An
event-based framework for characterizing the
evolutionary behavior of interaction graphs. SIGKDD,
pages 913–921, 2007.

[4] L. Backstrom, D. P. Huttenlocher, and J. M.
Kleinberg. Group formation in large social networks:
membership, growth, and evolution. SIGKDD, 2006.

[5] A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz,
A. Schubert, and T. Vicsek. Evolution of the social
network of scientific collaborations. Physica A:
Statistical Mechanics and its Applications,
311(3-4):590–614, August 2002.

[6] K. Berberich, S. Bedathur, T. Neumann, and
G. Weikum. A time machine for text search. In
SIGIR, New York, NY, USA, 2007. ACM.

[7] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[8] G. Buehrer, S. Parthasarathy, A. Nguyen, D. Kim,
Y. Chen, and P. Dubey. Towards data mining on
emerging architectures. SIAM Workshop on High

Performance and Distributed Mining (HPDM06),
2006.

[9] R. Cowan and N. Jonard. Network structure and the
diffusion of knowledge. Journal of Economic
Dynamics and Control, 28:1557–1575, 2004.

[10] D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg,
and S. Suri. Feedback effects between similarity and
social influence in online communities. SIGKDD, 2008.

[11] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast
discovery of connection subgraphs. In SIGKDD, 2004.

[12] C. L. Freeman. A set of measures of centrality based
on betweenness. Sociometry, 40(1):35–41, 1977.

[13] E. Gabrilovich and S. Markovitch. Computing
semantic relatedness using wikipedia-based explicit
semantic analysis. International Joint Conference on
Artificial Intelligence (IJCAI), 2007.

[14] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional
expansion for keyword search on graph databases.
VLDB, pages 505–516, 2005.

[15] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network.
SIGKDD, 2003.

[16] D. Kempe, J. Kleinberg, and E. Tardos. Influential
nodes in a diffusion model for social networks. Proc.
Intl. Colloquium on Automata, Languages and
Programming (ICALP), 2005.

[17] R. Kumar, J. Novak, and A. Tomkins. Structure and
evolution of online social networks. In SIGKDD, 2006.

[18] J. Leskovec, L. Backstrom, R. Kumar, and
A. Tomkins. Microscopic evolution of social networks.
In SIGKDD, 2008.

[19] J. Leskovec, J. M. Kleinberg, and C. Faloutsos.
Graphs over time: densification laws, shrinking
diameters and possible explanations. SIGKDD, 2005.

[20] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. Ease:
an effective 3-in-1 keyword search method for
unstructured, semi-structured and structured data.
SIGMOD, 2008.

[21] P. Resnik. Semantic similarity in a taxonomy: An
information-based measure and its application to
problems of ambiguity in natural language. Journal of
Artifical Intelligence Research, 11:95–130, 1999.

[22] R. Samtaney, D. Silver, N. Zabusky, and J. Cao.
Visualizing features and tracking their evolution.
IEEE Computer, 27(7):20–27, 1994.

[23] T. Snijders. Models for longitudinal network data.
Book chapter in Models and methods in social network
analysis, New York: Cambridge University Press,
2004.

[24] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu.
Graphscope: parameter-free mining of large
time-evolving graphs. In SIGKDD, pages 687–696,
2007.

[25] C. Tantipathananandh, T. Y. Berger-Wolf, and
D. Kempe. A framework for community identification
in dynamic social networks. SIGKDD, pages 717–726,
2007.

[26] H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. SIGKDD, pages
404–413, 2006.

[27] H. Yang, S. Parthasarathy, and S. Mehta. Mining
spatial object patterns in scientific data. Proc. 9th
Intl. Joint Conf. on Artificial Intelligence, 2005.

