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ABSTRACT
Global barrier coverage that requires much fewer sensors
than full coverage, is known to be an appropriate model of
coverage for movement detection applications such as intru-
sion detection. However, it has been proved that given a sen-
sor deployment, sensors can not locally determine whether
the deployment provides global barrier coverage, making it
impossible to develop localized algorithms, thus limiting its
use in practice. In this paper, we introduce the concept of lo-
cal barrier coverage to address this limitation. Motivated by
the observation that movements are likely to follow a shorter
path in crossing a belt region, local barrier coverage guaran-
tees the detection of all movements whose trajectory is con-
fined to a slice of the belt region of deployment. We prove
that it is possible for individual sensors to locally determine
the existence of local barrier coverage, even when the region
of deployment is arbitrarily curved. Although local barrier
coverage does not deterministically guarantee global barrier
coverage, we show that for thin belt regions, local barrier
coverage almost always provides global barrier coverage. To
demonstrate that local barrier coverage can be used to design
localized algorithms, we develop a novel sleep-wakeup algo-
rithms for maximizing the network lifetime, called Localized
Barrier Coverage Protocol (LBCP). We prove that LBCP
guarantees local barrier coverage and show that LBCP pro-
vides close to optimal enhancement in the network lifetime,
while providing global barrier coverage most of the time.
They outperforms an existing algorithm called Randomized
Independent Sleeping (RIS) by up to 6 times.

1. INTRODUCTION
Several important applications of wireless sensors in-

volve movement detection, such as when deploying sen-
sors along international borders to detect illegal intru-
sion, around a chemical factory to detect the spread of
lethal chemicals, on both sides of a gas pipeline to de-
tect potential sabotage, etc. Barrier coverage, which
guarantees that every movement crossing a barrier of
sensors will be detected, is known to be an appropriate
model of coverage for such applications [9].

Barrier coverage has several advantages over full cov-
erage, a model requiring every point in the deployment

region to be covered. First, barrier coverage requires
much fewer sensors than full coverage [9]. Second, the
sleep-wakeup problem, that determines a sleeping sched-
ule for sensors to maximize the network lifetime, is
polynomial-time solvable for barrier coverage even when
sensor lifetimes are not equal [11]. For the full coverage
model, on the other hand, the sleep-wakeup problem is
NP-Hard even if sensor lifetimes are identical [15].

A major limitation of the barrier coverage model,
however, is that unlike full coverage, individual sen-
sors can not locally determine whether a network does
not provide barrier coverage [9], making it impossible
to develop localized algorithms. Consequently, almost
all algorithms developed so far for barrier coverage, in-
cluding the optimal sleep-wakeup algorithm, are cen-
tralized [11]. (The only exception is the Randomized
Independent Sleeping (RIS) scheme [9], which does not
require any message exchange.) Given the large scale
and unattended nature of wireless sensor networks, lo-
calized algorithms are essential for scalability. A lo-
calized algorithm is also more adaptive to changes in
the network, which is expected to be quite frequent in
wireless sensor network due to unattended outdoor de-
ployments. Therefore, in order to realize the benefits
of the barrier coverage model in movement detection
applications, there is a strong need to develop a new
model that enables the development of localized algo-
rithms, while essentially retaining the benefits of barrier
coverage.

We also observe that the notion of barrier coverage [9],
which we will refer to as global barrier coverage, requires
every crossing path to be covered, no matter how long
it is. Thus, the sensor deployment in a 50m × 500km
border (belt region) as shown in Figure 1, is regarded
as not providing global barrier coverage due to the exis-
tence of an uncovered crossing path (which is more than
499km long). In real life, intruders are highly unlikely
to follow such paths; it is more likely that a short path
across the belt region is taken.

Motivated by these observations, we introduce in this
paper the concept of L-local barrier coverage. It will be
formally defined in Section 4, but informally, L-local
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500 km

An undetected path

Figure 1: A belt is not global 1-barrier cov-
ered because of the existence of a long uncovered
crossing path.

barrier coverage guarantees the detection of all crossing
paths whose trajectory is confined to a slice (of length
L) of the belt region of deployment. In other words, if
the bounding box that contains the entire trajectory of a
crossing path, has a length at most L, then this crossing
path is guaranteed to be detected by at least one (or k)
sensor(s). For example, the crossing path in Figure 2 is
guaranteed to be detected since its bounding box is of
length less than L, if the sensor network deployed over
this belt region provides L-local barrier coverage. The
concept of L-local barrier coverage not only enables the
development of localized algorithms, it also generalizes
the (global) barrier coverage model; when L is equal
to the length of the entire deployment region, L-local
barrier coverage is equivalent to global barrier coverage.

Figure 2: L-local barrier coverage ensures that
crossing paths within a box of length L be de-
tected.

A key question regarding L-local barrier coverage is
how to determine whether a sensor network provides L-
local barrier coverage. This question is nontrivial since
there are infinitely many bounding boxes (each of length
L). In this paper, we prove a theorem that allows a con-
venient discretization so that instead of checking each
of the infinite bounding boxes to establish that a sen-
sor network provides L-local barrier coverage, one only
needs to check if the neighborhood of each sensor is
barrier covered.

Although local barrier coverage does not determin-
istically guarantee global barrier coverage (when L is
less than the length of the deployment region), we show
(by simulation) that for thin belt regions, local barrier
coverage almost always provides global barrier cover-
age. This means that for thin belts, checking locally
for the existence of local barrier coverage is sufficient to

ensure global barrier coverage in practice. Intuitively,
this holds because as the width of the deployment re-
gion approaches zero, local barrier coverage and global
barrier coverage become equivalent.

To demonstrate that local barrier coverage can be
used to design localized algorithms, we develop a sleep-
wakeup algorithm for extending the network lifetime,
called Localized Barrier Coverage Protocol (LBCP). We
prove that LBCP guarantees local barrier coverage and
show that LBCP provides close to optimal enhancement
in network lifetime, while providing global barrier cov-
erage most of the time. It outperforms an existing al-
gorithm called Randomized Independent Sleeping (RIS)
by up to 6 times.

Organization: Section 2 describes the network model,
and Section 3 mentions some related work. Section 4
constitutes the theoretical foundation of L-local barrier
coverage. A critical design issue is addressed in Sec-
tion 5. Section 6 describes our localized sleep-wakeup
protocol and proves its correctness. Simulation results
appear in Section 7. Section 8 concludes the paper. The
proof of a theorem is presented in the Appendix.

2. THE NETWORK MODEL
The network model adopted in this paper is similar

to that in [9]. We review here some definitions (with
necessary modifications to suit the purpose of this pa-
per).

A sensor network, N , is a collection of sensors with
their locations known. We use u to denote both a sen-
sor node as well as the point of its location. We assume
that a sensor network is deployed over a belt region.
An example belt region is illustrated in Figure 3. To
formally define a belt region, let d(x, y) denote the Eu-
clidean distance between two points x and y; and for
a point x and a curve l, let d(x, l) be the distance be-
tween x and l, i.e., d(x, l) = min{d(x, y) : y ∈ l}. Two
curves l1 and l2 are said to be parallel with separation
w if d(x, l2) = d(y, l1) = w for all x ∈ l1 and y ∈ l2.

Figure 3: A general belt with two parallel
boundaries

Definition 2.1. [Belt of Width W ] If l1 and l2
are two parallel curves with separation W , the region
between l1 and l2 is referred to as a belt (region) of
width W . The two curves l1 and l2 are the belt’s parallel
boundaries.

For ease of presentation, we envision a belt region as
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roughly going from left to right. With such a conven-
tion, the belt’s two parallel boundaries may be referred
to as the top and the bottom boundary; and the other
two boundaries, the left and the right.

Intrusion movement is assumed to occur one parallel
boundary to the other. Thus, a path is said to be a
crossing path if it crosses from one parallel boundary to
the other. A crossing path is orthogonal if its length
is equal to w, the belt’s width. Orthogonal crossing
paths are straight lines and, therefore, often referred
to as orthogonal crossing lines. For rectangular belts,
orthogonal crossing lines are parallel to the belt’s left
and right sides.

A point p is covered (monitored) by a node u if their
Euclidian distance is less than or equal to the sensing
range, denoted by r. The sensing region of a node u is
the set of all points covered by u. A crossing path is
k-covered if it intersects the sensing regions of at least k
distinct sensors. Finally, a sensor network N provides
k-barrier coverage over a deployment belt region D if
all crossing paths through region D are k-covered by
sensors in N .

Definition 2.2. [Coverage Graph, G(N)] [9] A
coverage graph of a sensor network N is constructed as
follows. Let G(N) = (V, E). The set V consists of a
vertex corresponding to each sensor. In addition, it has
two virtual nodes, s and t to correspond to the left and
right boundaries. An edge exists between two nodes if
their sensing regions overlap in the deployment region
D. An edge exists between u and s (or t) if the sens-
ing region of u overlaps with the left boundary (or right
boundary) of the region.

A node can be active or sleeping. When constructing
a coverage graph, only active nodes are used. Using
coverage graphs, the following theorem enables us to
determine whether a belt region is k-barrier covered.

Theorem 2.1. [9] A network N provides k-barrier
coverage if and only if there exist k node-disjoint paths
between the two virtual nodes s and t in G(N).

Remark: Although we use a disk model here for the
sensing region, our results hold for all other models for
which a coverage graph can be constructed. We address
this in Section 4.3.

Remark: We also note here that sensors do not
continuously sample the environment and every time a
sensor begins to sample the environment there is some
startup latency. So, a sensor may not be able to de-
tect an intruder if the intruder just touches the sensor’s
sensing region. However, if we assume the intruder’s
maximum movement speed is known, then for a given
sampling frequency and a given startup latency, a con-
servative, smaller-than-actual sensing range can be cal-
culated and used such that if an intruder ever touches

this conservative sensing region, then he will stay in the
actual, larger sensing region for sufficient time and the
sensor will detect the intruder with very high probabil-
ity.

3. RELATED WORK
Although full (or blanket) coverage, which requires

that every point in the deployment region be covered by
sensors, has been extensively studied in the literature
(e.g., in [3, 4, 6, 7, 10, 15, 16, 17, 18, 19, 20, 21]),
research on barrier coverage is still in its infancy.

The concept of barrier coverage (which we call global
barrier coverage in this paper) is introduced in [9]. A
centralized algorithm to determine whether a network
provides global barrier coverage is provided there. The
problem of deriving a reliable estimate for ensuring global
barrier coverage in a random deployment is solved in [2,
13].

An optimal sleep-wakeup algorithm for achieving global
barrier coverage is proposed in [11]. This is a centralized
algorithm. Our LBCP algorithm, on the other hand, is
a localized algorithm that provides near-optimal perfor-
mance, while ensuring global barrier coverage most of
the time.

The model of full coverage has been extensively stud-
ied. A localized algorithm for determining whether a
network does not provide full coverage is presented in [7].
Several heuristic algorithms for sleep-wakeup exist that
attempt to maximize the network lifetime while main-
taining full coverage [3, 6, 10, 15, 21]. As the sleep-
wakeup problem is NP-Hard, no polynomial-time opti-
mal algorithm (centralized or local) exist for this model.

Since local determination of global barrier coverage is
not possible [9], our localized algorithm of course can-
not deterministically guarantee global barrier coverage.
However, it can ensure local barrier coverage for appro-
priately selected values of L, and thereby ensure that
all crossing paths that are confined to a box of length
at most L will surely be detected. In the unlikely event
that a crossing path stretches to more than a length
of L across the belt’s length, it may still be detected,
but is not guaranteed. In summary, since most cross-
ing paths are likely to follow the shortest or close-to-
shortest paths, our algorithm is practically sufficient for
ensuring barrier coverage, while extending the network
lifetime to close to optimal via local computation.

4. L-LOCAL BARRIER COVERAGE
The concept of L-local barrier coverage is introduced

in Section 1. In this section, we formalize this new
concept and address a key question: Given a sensor
deployment over a belt region, how does one determine
if the deployment provides L-local barrier coverage?

L-local barrier coverage and its properties are easier
to describe and understand in a rectangular belt than in
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a general belt. So we begin with rectangular belts and
then generalize the results for general belts. We first
employ the sensing disk model, and then remark on the
modifications necessary when other sensing models are
used.

4.1 Rectangular Belts
We begin with some definitions. Consider a rectan-

gular region with sensors deployed over it. Recall the
definitions of parallel boundaries and orthogonal cross-
ing lines made in Section 2. Figure 4 illustrates the
following definitions.

Definition 4.1. [Zone] A zone, Z, is a slice of the
belt region. Two of its edges coincide with the belt’s
two parallel boundaries (referred to as its parallel bound-
aries), and the other two edges are orthogonal crossing
lines (referred to as its orthogonal boundaries).

In rectangular belts, the length of a zone Z, denoted
by LZ , is the distance between the zone’s two orthog-
onal boundaries. Note that a zone’s two orthogonal
boundaries happen to be parallel here, but as will be
seen later, they are not necessarily parallel in a general
belt.

Definition 4.2. [L-zone] For a positive number L,
an L-zone is a zone of length L.

Definition 4.3. [2d-zone(u)] For a positive value
d, the 2d-zone of a sensor node u, denoted by 2d-zone(u),
is an L-zone with L = 2d, in which the orthogonal cross-
ing line passing through u divides the L-zone into two
sections of equal length (each of length d).

d d
u

L

Parallel
Boundaries

Orthogonal
Boundaries

2d-zone(u) L-zone

Figure 4: L-zone and 2d-zone(u)

Recall the definition of k-barrier coverage in Sec. 2.

Definition 4.4. [L-Local k-Barrier Coverage] For
a positive number L and a positive integer k, a belt re-
gion is said to be L-local k-barrier covered if every L-
zone in the region is k-barrier covered.

Note that if a network provides L-local k-barrier cov-
erage, then it provides M -local k-barrier coverage as
well, for all 0 ≤ M ≤ L. When k = 1, L-local k-barrier
coverage is simply referred to as L-local barrier cover-
age.

We now address the above mentioned question of how
to determine if a belt region is L-local k-barrier covered.
We begin with a couple of lemmas. The first lemma
indicates a condition under which any wide enough L-
zone must contain at least one active sensor. Recall
that r indicates the sensing range of each sensor node.

Lemma 4.1. Consider a rectangular belt with at least
one active node. If d > r and 2d-zone(u) for every
active node u is k-barrier covered, then every L-zone
with L ≥ 2r, must contain at least one active node.

Proof: Assume there is no node in an L-zone with
L ≥ 2r. Consider the node a closest to this L-zone.
Without loss of generality, assume a is to the left of
the L-zone. Then, the nodes to the right of a must
be to the right of the L-zone. Therefore, the distances
between any nodes to the right of a and any nodes to the
left of a (including a and those on the same orthogonal
crossing line as a) are larger than L. Since L ≥ 2r,
there is no overlap between the coverage area of the
nodes to the right of a and that of the nodes to the
left of a (including a and those on the same orthogonal
crossing line as a). Then the nodes on the left side of a
(including a and those on the same orthogonal crossing
line) should provide k-barrier coverage for 2d-zone(a),
which is impossible because d > r. Therefore, there
must be at least one active node in every L-zone with
L ≥ 2r. 2

Even if two zones with overlap are individually k-
barrier covered, their union as a single zone is not nec-
essarily k-barrier covered. We prove in the following
lemma a condition under which the union of two zones
is k-barrier covered. The condition is that one of the
two zones is k-barrier covered in a special way, and the
other zone is relatively narrow.

Lemma 4.2. Let A and B be two zones with intersec-
tion, with A of length LA ≥ r and B of length LB ≤ r
as shown in Figure 5. Suppose A is k-barrier covered,
but no node in A − B covers A’s orthogonal boundary
l3 that is contained in B. Then, A ∪ B is k-barrier
covered.

Proof: Because A is k-barrier covered, there must be
at least k nodes covering A’s orthogonal boundary l3.
Since LA ≥ r, these nodes must not be to the left of
A. Furthermore, because no node in A − B covers l3,
these nodes must be in the zone B or to the left of
B. Since LB ≤ r, these nodes’ sensing disks must also
cover B’s orthogonal boundary l4 (this boundary is also
an orthogonal boundary of A ∪B). Then, the coverage
graph for A is a subgraph of the coverage graph for
A∪B (by Definition 2.2). Since A is k-barrier covered,
A ∪ B is also k-barrier covered (by Theorem 2.1). 2

The following theorem indicates when, and for what
value of L, we can conclude that a rectangular belt is
L-local k-barrier covered.
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Figure 5: Visualizing the proofs of Lemma 4.2

Theorem 4.1. Consider a rectangular belt with at
least one active sensor node. If 2d-zone(u) for every
active node u is k-barrier covered for some d > r, then
the entire belt is L-local k-barrier covered, with L =
max{2d − 2r, d + r}.
Proof: Consider two possible cases: d ≥ 3r or r <
d < 3r.

Case 1: d ≥ 3r. In this case, max{2d − 2r, d + r} =
2d − 2r. Let L1 = 2d − 2r. We need to show that
every L1-zone is k-barrier covered. Given any L1-zone
as illustrated in Figure 6, there must be at least one
active node in its center 2r-zone according to Lemma
4.1. Let’s say node b is in the 2r-zone. Then, L1-zone
⊆ 2d-zone(b) and the k-barrier coverage of 2d-zone(b)
implies the k-barrier coverage of the L1-zone.

Case 2: r < d < 3r. In this case, max{2d − 2r, d +
r} = d + r. We will show every L2-zone is k-barrier
covered, where L2 = d + r > 2r. Given any L2-zone as
shown in Figure 6, there must be an active node in the
L2-zone according to Lemma 4.1. If there is a node n in
the center (d− r)-zone, then L2-zone ⊆ 2d-zone(n) and
therefore the k-barrier coverage of 2d-zone(n) implies
the k-barrier coverage of the L2-zone.

If there is no node in the center (d − r)-zone, then
there are nodes in the left or in the right r-zone. With-
out loss of generality, assume there are nodes in the
left r-zone, and let m be the one closest to the center
(d−r)-zone. By the assumption, 2d-zone(m) is k-barrier
covered. For ease of presentation, let A be 2d-zone(m)
and B be the right r-zone. Since there is no node in
the center (d− r)-zone and m is the node closest to the
center (d − r)-zone and d > r, no node in A − B ever
covers A’s orthogonal boundary in B. The length of A
is 2d > r and the length of B is r. According to Lemma
4.2, A∪B is k-barrier covered. Since L2-zone ⊆ A∪B,
the L2-zone is also k-barrier covered. This completes
the proof. 2

We require d > r in Theorem 4.1. If d ≤ r, then the
k-barrier coverage of every 2d-zone(u) does not imply
the k-barrier coverage of every L-zone. We prove this
in the next Theorem.

Theorem 4.2. If d ≤ r, then for any given value of
L > 0, there exists a sensor deployment such that even
if 2d-zone(u) for every node u is k-barrier covered, the
belt region is not L-local k-barrier covered.

L1-zone

d-2r

(d-r)-zone

2r

b

d-2r

2r-zone

L2-zone

d-rr r

m n

r-zone r-zone

Figure 6: Visualizing the proofs of Theorem 4.1

Proof: Consider a rectangular belt of length 2(L +
r) or more. Place k sensors in the belt along a same
orthogonal crossing line, but otherwise no other nodes
in the belt. Now, 2d-zone(u) for every node u is k-
barrier covered, since d < r; but there apparently exists
an L-zone which is not even 1-barrier covered. 2

The L established in Theorem 4.1 is the largest such
value possible. In other words, if L > max{2(d−r), d+
r}, then even if 2d-zone(u) for every active node u is k-
barrier covered, the sensor network does not necessarily
provide L-local k-barrier coverage to the entire belt. We
prove this in the next theorem.

Theorem 4.3. If L > max{2d−2r, d+r}, then even
if d > r, there exists a sensor deployment such that 2d-
zone(u) for every active node is k-barrier covered but
the region is not L-local k-barrier covered.

Proof: If d ≥ 3r, then 2d−2r ≥ d+r and L > 2d−2r.
First consider k = 1. The example in Figure 7(A) shows
that 2d-zone(u) for all nodes u is 1-barrier covered but
there exists an L-zone that is not barrier covered. For
k > 1, replicate each node in Figure 7(A) k times. Now,
the 2d-zone of each active node is k-barrier covered but
there exists an L-zone that is not even 1-barrier covered.

If r < d < 3r, then 2d − 2r < d + r and L > d + r.
The argument for this case is similar to the previous
case except that we now use the deployment shown in
Figure 7(B). 2

4.2 General Belts
Now, consider a belt of any shape as defined in Defi-

nition 2.1. For mathematical reasons, assume that cur-
vature1 exists everywhere on the belt’s parallel bound-
aries, and that the largest curvature value over the en-
1Informally, for a curve in the plane, if curvature exists at
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Figure 7: Visualizing the proofs of Theorem 4.3.

tire belt boundaries is 1/R for some R > 0. Assume
R � r, which informally means that the belt is not
steeply curved as compared to the sensing range r.

We need to define L-zone for general belts, where, as
in the case of rectangular belt, L is supposed to indicate
the zone’s length. Now there is a question — a zone’s
two parallel boundaries in a general belt are mostly of
different lengths; which length should be regarded as the
length of the zone? We resolve this issue by measuring
the zone’s middle line, as defined below.

Definition 4.5. [Middle Line] The middle line of
a belt is the curve parallel to, and at the middle be-
tween, the belt’s two parallel boundaries. (So, the width
between the middle line and either parallel boundary is
one half of the belt’s width.)

Definition 4.6. [L-zone] For a positive value L, an
L-zone on a belt is a zone with the length of the zone’s
middle line being L.

Definition 4.7. [2d-zone(u)] For a positive value
d, the 2d-zone of a sensor node u, denoted by 2d-zone(u),
is an L-zone with L = 2d, in which the orthogonal cross-
ing line passing through u divides the L-zone’s middle
line into two sections of equal length (each of length d).

These concepts are illustrated in Figure 8 using a
circular belt. Note that Definitions 4.6 and 4.7 are con-
sistent with Definitions 4.2 and 4.3, respectively. The
length of a zone’s middle line is equal to the distance
between this zone’s two orthogonal boundaries in a rect-
angular belt.

With L-zone and 2d-zone defined as above, let “L-
local k-barrier covered” be defined as before (Defini-
tion 4.4).

a point, then there is a circle that best fits with the curve
at that point. The reciprocal of that circle’s radius is the
curvature value at that point. Thus, the curvature value of
any point on a circle with radius R is 1/R, and the curvature
value of any point on a straight line is 0.

R

d
d

2d-zone(u)

u

L

L-zone

T
he M

iddle L
ine W/2

W/2

T
he M

iddle L
ine

Figure 8: Middle line, L-zone, 2d-zone

The following theorem generalizes Theorem 4.1, and
can be proved along a similar line of reasoning, even
though the details are considerably more involved. In
the theorem, W refers to the belt’s width, and as be-
fore, r is the sensing range. We write arcsin(r/2R)
to mean arcsin(r/(2R)) — the parentheses are omitted
for simplicity. The quantity 2(R + W/2) arcsin(r/2R)
and the formula for L can be more easily explained us-
ing a circular belt. In a circular belt, the inner cir-
cle’s radius is R. If a zone (i.e., its middle line) is of
length 2(R + W/2) arcsin(r/2R), then the zone’s inner
boundary’s chord is of length r. Similarly, a zone of
length 2(R + W/2) arcsin(2r/2R) has its inner bound-
ary’s chord being of length 2r. If a zone is of length
(R + W/2)r/(R + W ), then the zone’s outer boundary
is of length r. These formulas are explained in more
detail in the theorem’s proof, which we defer to the Ap-
pendix in order not to interrupt the flow of presenting
our main ideas.

Theorem 4.4. Consider a belt region with at least
one active node deployed in it. Let 1/R be the largest
curvature value on the belt’s two parallel boundaries.
If 2d-zone(u) for every active node u in this belt is k-
barrier covered for some d > 2(R + W/2) arcsin(r/2R),
then the entire belt is L-local k-barrier covered, where L
equals

max



2d − 2

„

R +
W

2

«

arcsin

„

2r

2R

«

, d +

„

(R + W/2)r

R + W

«ff

Note that Theorem 4.4 is indeed a generalization of
Theorem 4.1. As R approaches infinity, the belt be-
comes rectangular and the L in Theorem 4.4 approaches
the L in Theorem 4.1.

4.3 Other Sensing Models
In Sections 4.1 and 4.2, we assume that the sensing

region is a disk. However, all of our results can be
easily extended to other sensing models. For example,
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suppose that the sensing ranges are different in different
directions, but there exist a maximum and a minimum
value for the sensing ranges. Let rmax be the maximum
value of the sensing ranges and rmin be the minimum.
The following theorems correspond to Theorems 4.1 and
4.4, and can be proved in a similar fashion.

Theorem 4.5. Consider a rectangular belt with at
least one active node deployed in it. If the 2d-zone(u)
for every active node u in this belt is k-barrier covered
for some d > rmax, then the entire belt is L-local k-
barrier covered, with L = max{2d − 2rmax, d + rmin}.

Theorem 4.6. Consider a belt region with at least
one active node deployed in it. Let 1/R be the largest
curvature value on the two boundaries of the belt. If 2d-
zone(u) for every active node u in this belt is k-barrier
covered for some d > 2(R+W/2) arcsin(rmax/2R), then
the entire belt is L-local k-barrier covered, where L equals

max



2d − 2

„

R +
W

2

«

arcsin

„

2rmax

2R

«

, d +
(R + W/2)rmin

R + W

ff

Note that we always get L ≥ d in Theorems 4.5 and
4.6 regardless of which sensing model is used as long as
rmin ≥ 0. Therefore, we always can achieve any desired
value of L if we make the value of d large enough.

5. IDENTIFYING A 2D-ZONE
Theorems 4.1, 4.4, and 4.6 indicate that in order to

determine whether a network provides local barrier cov-
erage, it is sufficient to check whether for some appropri-
ate value d, the 2d-zone of each node is barrier covered.
If a sensor is able to identify its 2d-zone, it can con-
struct a coverage graph and then determine whether its
2d-zone is k-barrier covered (by using Theorem 2.1).

The main issue, therefore, is to equip sensors with
a mechanism to locally determine their 2d-zones. This
job is trivial if the belt is rectangular or circular. For a
general belt, especially when it is extremely long such as
one along an international border, it may sometimes be
unrealistic to assume that every sensor has knowledge
of the belt’s curvatures in its neighborhood. In such
cases, it is nontrivial to recognize a node’s 2d-zone. We
develop a heuristic for this task. Sensor nodes are as-
sumed to have knowledge of the belt’s width (W ) but
not its shape.

Consider a node u which needs to identify its 2d-zone.
It is difficult, if not impossible, to recognize 2d-zone(u)
without knowing the belt’s boundaries. Fortunately, as
will be seen in Section 6, our purpose of recognizing a
2d-zone is to ensure that it is k-barrier covered, thus
it suffices for us to (1) identify a region that encloses
the 2d-zone and (2)ensure that the identified region is
k-barrier covered. This will imply that the original 2d-
zone in question is k-barrier covered.

Our heuristic for local identification/estimation of 2d-
zones is outlined in Figure 9 as Procedure IDENTIFY,
which will be explained shortly. When invoked by a
node u, the procedure normally returns an estimation
of 2d-zone(u) (which encloses the actual 2d-zone(u)).
However, in some situations, the procedure may detect
that some node’s 2d-zone is not k-barrier covered, in
which case it will just report this information (without
returning a 2d-zone(u))). (Procedure IDENTIFY(u)
will be used in Procedure INITIAL of the next section.)

Procedure IDENTIFY(u)

1. Node u computes the values of r1, r2, r3 using
the values of W , d, r, and R as described. Let
r′ = max{r1, r2}.

2. Node u then finds two nodes p and q such
that r′ ≤ d(p, u) ≤ r3, r′ ≤ d(q, u) ≤ r3,
and ∠puq ≥ π/2. If it can not find two such
nodes, then it stops and reports that at least
one node’s 2d-zone is not k-barrier covered by
the network.

3. It draws a line l1 perpendicular to pu and r1

away from u. Similarly, it draws a line l2 per-
pendicular to qu and r1 away from u.

4. Node u uses the slice S of the belt region be-
tween l1 and l2 as an estimate for 2d-zone(u).

Figure 9: Procedure IDENTIFY

Now we explain the ideas behind procedure IDEN-
TITY. Conceptually, a region enclosing 2d-zone(u) can
be found as follows. Choose a sufficiently large value
r1 such that the entire 2d-zone(u) is enclosed by the
circle C1 of radius r1, centered at u. Let l1 and l2 be
two lines that are tangent to C1 on the opposite sides
of the orthogonal crossing line passing through u, and
each intersect the two long boundaries of the belt. The
section S of the belt region between l1 and l2 evidently
contains 2d-zone(u), as illustrated in Figure 10.

To carry out the above scheme, there are two essential
tasks: 1) estimating the value of r1, and 2) identifying
the two lines l1 and l2. (We do not need to identify the
top and bottom boundaries of region S, because they
play no role in constructing the coverage graph.)

For the value of r1, we want it to be as small as pos-
sible. Even though r1 = W + d is an obvious valid

estimate, r1 =

√

(

d(R+W )
R+W/2

)2

+ W 2 can be easily veri-

fied (using elementary geometry) to be a tighter bound,
where 1/R is the biggest curvature value on the long
boundaries of the belt. Step 1 of IDENTIFY calculates
r1 using this formula. The other two values, r2 and r3,
will be explained soon.
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Figure 10: Identified 2d-zone(u) is the slice of
the belt region between lines l1 and l2, which
contains the real 2d-zone(u).

To address the second issue, which is to select l1 and
l2 (the task of Step 3 of IDENTIFY), the main idea of
our heuristic is for u to choose two far away nodes p
and q that are on the opposite sides of the orthogonal
crossing line passing through u and satisfy the two con-
ditions: d(p, u) ≥ r1 and d(q, u) ≥ r1. We will shortly
discuss how to identify two such nodes. Line l1 then is
a line that is perpendicular to pu and at a distance of
r1 from u. Similarly, line l2 is perpendicular to qu and
r1 away from u. (See Figure 10.) Then, we claim that
the slice S of the belt region between l1 and l2 contains
2d-zone(u).

We now describe how to find the two nodes p and
q — we first present a basic scheme and then a re-
fined version. Meeting the requirement d(p, u) ≥ r1

and d(q, u) ≥ r1 is easy. But ensuring that p and q
are on the opposite sides of the orthogonal crossing line
passing through u is non-trivial. (Let l(u) denote this
crossing line.) Intuitively, if the curvature of the belt is
not too large, then two far away nodes on the opposite
sides of l(u) should form a large angle at u. Indeed,
if we assume R � W , then there exist two values r2

and r′2 such that for any two nodes p and q in the belt
region with r2 ≤ d(p, u) ≤ r′2 and r2 ≤ d(q, u) ≤ r′2,
it holds that ∠puq ≥ π/2 if and only if p and q are
on the opposite sides of l(u). Using some elementary
geometry, it can be shown that if R ≥ 3W , then we

can set r2 =
√

2
(

W + 2W 2

R

)

and r′2 =
√

2
(

R − 2W 2

R

)

.

Now, u can select two nodes for p and q such that
r′ ≤ d(p, u) ≤ r′2, r′ ≤ d(q, u) ≤ r′2, and ∠puq ≥ π/2,
where r′ = max{r1, r2}.

We now discuss an optimization to the process of
searching for p and q (this constitutes Step 2 of IDEN-
TIFY). Since R may be considerably larger than W ,
so may r′2 much larger than r′. In that case, letting u
search all nodes in the range between r′ and r′2 will be
inefficient. To cut down the search domain, we will use
a smaller value r3 in place of r′2. Lemma 5.1 is for this
purpose. Note that we attempt to keep r3 as small as
possible.

Lemma 5.1. Let r′ be as described above and r3 =
√

(2r + r′)2 + 2W 2. Consider two circles C ′ and C3

centered at u with radii r′, r3, respectively. Let S1 and
S2 be the two slices of the belt region that are between
C ′ and C3. If there is no node in S1 or S2, then at
least one node’s 2d-zone is not k-barrier covered in the
network.

Proof: According to Lemma A.2 in the appendix, if the
2d-zone(u) of every active node u is k-barrier covered,
then each L-zone with L ≥ 2(R + W/2) arcsin(2r/2R)
must contain at least one active node. Using some
elementary geometry, it can be shown that if r3 =
√

(2r + r′)2 + 2W 2, the maximum size of the zone in S1

(or S2) is larger than or equal to 2(R+W/2) arcsin(2r/2R).
Therefore, If there is no node in S1 or S2, then at least
one node’s 2d-zone is not k-barrier covered in the net-
work. 2

Now, if all nodes’ 2d-zones are k-barrier covered, then
p and q exist in S1 and S2, respectively (by Lemma 5.1).
Otherwise, at least one node’s 2d-zone is not k-barrier
covered in the network. It can be checked that if R � r,
R � d, and R � W , then r′2 > r3, and therefore a node
u can use r3 in place of r′2 in its search for p and q.

We summarize the above discussion as a theorem for
subsequent references.

Theorem 5.1. Suppose that at the beginning when
all nodes are active, every node’s actual 2d-zone is k-
barrier covered. Then for every node u, Identify(u) re-
turns an estimated 2d-zone(u) that encloses the actual
2d-zone(u).

6. LOCALIZED SLEEP-WAKEUP PROTO-
COLS

In this section, we use local barrier coverage concept
to design a localized sleep-wakeup algorithm, called Lo-
calized Barrier Coverage Protocol (LBCP), for barrier
coverage to maximize the network lifetime. In Section 7,
we will show that the protocol usually have close-to-
optimal performances and provide global barrier cover-
age most of the time for thin belt regions.

6.1 Assumptions
We first state some assumptions. We assume that

each node has a unique ID as is common in newer plat-
forms such as TelosB [14]. We also assume that the net-
work has been localized so that each node knows its own
location. In the event of localization inaccuracies, the
identified 2d-zone of a node u may not contain the real
2d-zone(u). However, the error of the location, denoted
by ε, only slightly affects the performance of LBCP. For
example, in a rectangular belt we only need to increase
the value of d to d′ = d + ε to insure that the identi-
fied 2d′-zone of a node u contains the real 2d-zone(u).
Further, we assume that two nodes u and v are able to
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communicate with each other if u is in v’s (identified)
2d-zone or v is in u’s (identified) 2d-zone. With the
communication range increasing to 1000ft = 304.8m
(see Mica2 data sheet [1]), this should be possible in
thin belts. We also assume that every node is able to
estimate its remaining lifetime (if it stays active) by ob-
serving its battery drainage. Battery drainage rate can
be observed in recent mote platforms [12]. Finally, we
assume that the MAC protocol does not introduce too
much latency; all LBCP packets are sent or received
almost immediately.

6.2 Protocol
We now describe the LBCP protocol. The proto-

col consists of a main program and three procedures
called INITIAL, ACTIVE, and WAKEUP. At any time,
each node is in one of three states: active, sleeping,
or waking-up. As shown in Figure 11, initially, every
node is in the active state and executes Procedure INI-
TIAL to perform some preliminary work such as ini-
tializing variables. Every node executes Procedure INI-
TIAL only once. Then, every active node periodically
invokes Procedure ACTIVE to check if it should stays
active or go to sleep. During Procedure ACTIVE, a
node may decide to go to sleep due to node redundancy.
It is important that a node’s falling asleep should not
jeopardize the belt’s L-local k-barrier covered property.
A sleeping node periodically wakes up and invokes Pro-
cedure WAKEUP to check if it should become active or
go back to sleep.

Protocol LBCP

1. Initially, every node is active and calls Proce-
dure INITIAL once and only once.

2. After initialization, every active node period-
ically invokes Procedure ACTIVE to decide
whether to stay active or go to sleep. In the
latter case, the node becomes sleeping.

3. Every sleeping node periodically wakes up, en-
ters the waking-up state, and invokes Proce-
dure WAKEUP.

Figure 11: Protocol LBCP

Procedure INITIAL is shown in figure 12. Its main
functions are for each node u 1) to initialize some vari-
ables, 2) to compute its 2d-zone, 3) to recognize the set
of nodes Nu = {v : v ∈ 2d-zone(u) or u ∈ 2d-zone(v)},
and 4) to collect information about those nodes in Nu.
Thus, in the first step every node u initializes a set
A(u) = φ, which will be used in Procedure ACTIVE.
In the second step, the node invokes Procedure IDEN-
TIFY (as described in Figure 9) to compute 2d-zone(u).
As remarked in the previous section, the computed 2d-

zone(u) encloses but not necessarily equals the actual
2d-zone(u). In this procedure and throughout the rest
of this section, the term “2d-zones” refers to computed
2d-zones unless otherwise stated. If IDENTIFY fails to
return a 2d-zone, that means the current sensor deploy-
ment is insufficient to provide L-local barrier coverage.
Node u sends out a message to indicate this fact. In this
case, the value of L needs to be reduced or more sensors
need to be deployed. If on the other hand IDENTIFY
succeeds in returning a 2d-zone, node u sends out an
Inform I packet to all other nodes in 2d-zone(u), in-
forming them of u’s ID, position, and lifetime. The
second half of Step 3 is more subtle. As computed 2d-
zones may differ from actual 2d-zones, for any two nodes
x, y, the condition x ∈ 2d-zone(y) does not necessar-
ily imply y ∈ 2d-zone(x). ( Note that x ∈ Ny implies
y ∈ Nx.) Hence, after all nodes have broadcast an In-
form I packet (and the packets have reached their desti-
nations), every node u will only have information about
a subset of Nu, namely N ′

u = {v : u ∈ 2d-zone(v)}.
In order for u to collect information about nodes in
Nu − N ′

u (= {v : u /∈ 2d-zone(v) and v ∈ 2d-zone(u)}),
we let every node v in Nu − N ′

u reply with an In-
form B packet upon receiving u’s Inform I packet —
this constitutes the second part of Step 3. Step 4 is
self-explanatory.

Procedure INITIAL

1. Node u calculates the value of d according to
the desired value of L (using Theorem 4.4) and
initializes sets A(u) = φ and Nu = φ.

2. Node u invokes Procedure IDENTIFY(u) to
identify its 2d-zone. If IDENTIFY reports
that some node’s 2d-zone is not k-barrier cov-
ered, u informs the base station of this fact.
Otherwise, u broadcasts over 2d-zone(u) an
Inform I packet containing u’s ID, position
and lifetime.

3. When node v receives another node u’s In-
form I packet, it records u’s ID, position and
lifetime, and sets Nv = Nv ∪ {u}. Further-
more, if u /∈ 2d-zone(v), then v replies with
an Inform B packet, containing v’s ID, posi-
tion and lifetime.

4. When node u receives another node v’s In-
form B packet, it records the contained infor-
mation and sets Nu = Nu ∪ {v}.

Figure 12: Procedure INITIAL

After executing Procedure INITIAL, each node pe-
riodically invokes Procedure ACTIVE as described in
Figure 13 to decide whether to go to sleep. Roughly,
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a node u can go to sleep if for all active nodes v such
that u ∈ 2d-zone(v), 2d-zone(v) will be k-barrier cov-
ered without u. However, two nodes each eligible for
going to sleep may sometimes cause damage in bar-
rier coverage if they both go to sleep. So, each node
u maintains a set A(u) to address this subtle problem.
Initially, ∀u, A(u) = φ (Step 1 of INITIAL). As time
elapses, A(u) will indicate the set of nodes to which
u has recently granted a permission for them to go to
sleep but they have not made their decisions. In Step
1, node u checks if it and all nodes in A(u) go to sleep,
will there be any harm to barrier coverage? If the an-
swer is no, u then consults the nodes in Nu about its
going to sleep (by broadcasting a Query A packet). In
Step 2, after receiving u’s inquiry, node v will grant a
permission (Not Required A) for u to go to sleep if, and
only if, u and all nodes in A(u)’s going to sleep will not
jeopardize 2d-zone(v)’s k-barrier coverage. In this case,
u is added to A(v). Step 3 indicates that a node u can
go to sleep only if it has received a positive response
(permission) from all active nodes in Nu. Whatever u
decides — to go to sleep or stay active — u informs all
active nodes in Nu of its decision, so that they know of
its status. If u decides to go to sleep, it then changes
to sleeping state until T time later or until the first ac-
tive node in Nu is expected to die, whichever occurs
earlier. Waking up after T time is to protect against
unanticipated sensor failures, or if the estimation of re-
maining lifetime is inaccurate. In Step 4, v removes u
from A(v) since u has already made its decision. If u
thinks of going to sleep in the future, it will need to get
a new permission (Not Required A) from v. Note that
if node u stays active, then every T time units it will
invoke procedure ACTIVE again. For efficiency, u may
first check whether there have been new active nodes
added in 2d-zone(u) in the past time T (or since its last
broadcast of Query A). If so, then u invokes ACTIVE;
otherwise, u waits for another period of T . The value
of T is pre-specified.

When a sleeping node wakes up, it executes the proce-
dure WAKEUP shown in Figure 14, to decide whether
to become active or go back to sleep. In Step 1, u
removes its record of any other node since u maybe
have missed other nodes’ status-update messages (if
any). Then, u queries other nodes in Nu to see if they
need it for their 2d-zones (by broadcasting a Query W
packet). In Step 2, node v ∈ Nu replies to u indi-
cating whether or not it requires u to become active,
depending on whether or not the condition “2d-zone(v)
is not k-barrier covered and u is located in 2d-zone(v)”
is satisfied. During u’s sleeping, some nodes in Nu may
have changed their status. So, whether or not v re-
quires u to be active, v replies with a (Required W or
Not Required W) packet containing its ID, position and
lifetime. This will enable u to keep an updated record

Procedure ACTIVE /* to be invoked by active
nodes u */

1. An active node u checks if 2d-zone(u) will
be k-barrier covered without u itself and the
nodes in A(u); if so, u sends a Query A packet
to the nodes in Nu.

2. Whenever an active node v receives a node u’s
Query A packet, if 2d-zone(v) will be k-barrier
covered without A(v) ∪ {u}, then v adds u to
A(v) and replies with a Not Required A mes-
sage. Otherwise, v replies with a Required A
message.

3. After issuing a Query A, if u receives a
Not Required A packet from every active node
that is in Nu, then it decides to go to sleep.
In that case, u sends a Decision Sleep packet
to the nodes in Nu and goes to sleep until
T time later or until the first active node in
Nu is expected to die, whichever occurs ear-
lier. Otherwise, u stays active and sends to
the nodes in Nu a Decision Continue packet
containing u’s ID, position and lifetime.

4. Whenever an active node v receives a node u’s
Decision Sleep packet, v removes u from its
set of active nodes and removes u from A(v);
but if v receives u’s Decision Continue packet,
v only removes u from A(v) and renews u’s
information.

Figure 13: Procedure ACTIVE

of active nodes in Nu. Step 3 indicates that u can go
back to sleep only if it receives Not Required W packets
but no Required W packet. Step 4 ensures that a sleep-
ing node periodically wakes up (and invokes Procedure
WAKEUP). Note that u does not need to inform other
nodes of its going back to sleep, for in other nodes’
records u has already been non-active. In Step 5, u
informs all active nodes in Nu if it decides to become
active.

Remark: In some steps in Procedures ACTIVE and
WAKEUP, a node u needs to send a packet to the (ac-
tive) nodes in Nu. To implement this efficiently, we
may let all nodes u calculate in the Initial phase a
value γu = max{d(u, v) : v ∈ Nu}, and then in order
to broadcast a packet over Nu, u just broadcasts the
packet (possibly in multihop) in the range of γu. There
may be nodes v /∈ Nu lying in range γu of u. When
such nodes v receive the packet, they just discard the
packet. Note that v ∈ Nu iff u ∈ Nv , so v is capable of
testing whether u /∈ Nv.

6.3 Analysis

10



Procedure WAKEUP /* to be invoked by waking-
up nodes u */

1. A waking-up node u resets its record of active
nodes to null, and sends a Query W packet to
the nodes in Nu.

2. When an active node v receives a Query W
packet from a node u, if u is in 2d-zone(v)
and the latter is currently not k-barrier cov-
ered, then v replies with a Required W packet
containing its ID, position and lifetime. Oth-
erwise, v replies with a Not Required W packet
containing its ID, position and lifetime.

3. If u receives any Required W packet, or if
u does not receive any reply — Required W
or Not Required W — to its Query W packet
(meaning there is no active node in Nu), then
u becomes active and sets A(u) = φ. Other-
wise, u goes back to sleep. Upon receiving a
packet of either type, u records the ID, posi-
tion and lifetime contained in the packet.

4. If u decides to go back to sleep, u sleeps un-
til T time units later or until the first active
node in Nu is expected to die, whichever oc-
curs earlier.

5. If u decides to become active, u sends to the
nodes in Nu a Decision Active packet contain-
ing u’s ID, position and lifetime.

6. When an active node v receives u’s Deci-
sion Active packet, v adds u to its list of ac-
tive nodes and records u’s ID, position and
lifetime.

Figure 14: Procedure WAKEUP

In LBCP, a node u communicates only with nodes in
Nu (= {v : v ∈ 2d-zone(u) or u ∈ 2d-zone(v)}). When
the length of the belt increases, while keeping the den-
sity constant, the computing and communication cost
of a node remains invariant for a given value of d. In
this sense, LBCP is a localized algorithm.

The LBCP protocol’s goal is to let as many nodes as
possible go to sleep while maintaining the property that
every active node’s actual 2d-zone is k-barrier covered
and, therefore, by Theorem 4.4, the entire belt region
is L-local k-barrier covered. The protocol attempts to
maximize the network lifetime. The performance of the
LBCP protocol varies as d or T is varied. We will in-
vestigate their effects in Section 7.2. In this subsec-
tion, we show that the LBCP protocol does maintain
the belt’s L-local k-barrier coverage property during the

network’s lifetime. We assume that there is no packet
loss in communication (as ensured by the underlying
network or transport layer) and no unanticipated sen-
sor failures.

In LBCP, every active node u keeps record of other
active nodes in Nu. We show that u’s record is accurate.

Lemma 6.1. Active nodes u never mistakenly record
a nonactive node as an active one.

Proof: During the lifetime of the network, consider
three cases: (1) u is in the initial phase (invoking Pro-
cedure INITIAL), (2) u just wakes up and becomes ac-
tive, and (3) u has been active for a while. In the initial
phase, all nodes are active, so, it is impossible that u
records a nonactive node as active. (We implicitly as-
sume that all nodes’ lifetimes are longer than the length
of the initial phase, which is in the order of seconds.)
We now consider cases 2 and 3.

Case 2: u just wakes up and becomes active. Upon
waking up, u invokes Procedure WAKEUP, in which it
abolishes its old record and sends a Query W to col-
lect updated information. Clearly, only active node
can receive this packet and reply with a Required W
or Not Required W packet. So, after executing Proce-
dure WAKEUP and becomes active, u does not record
any nonactive node’s information.

Case 3: u has been active. By Cases 1 and 2, u’s
record was correct at the beginning of the current active
period. Since then, if an active node v1 in Nu has gone
to sleep, v1 must have executed ACTIVE, in which u
must have received v1’s Decision Sleep (since u ∈ Nv1

)
and thereby removed v1 from u’s set of active nodes. If
an active node v2 ∈ Nu died during u’s current active
period, u would know of v2’s death (since u knew v2’s
lifetime) and remove v2 from its active nodes list. If
a node v3 ∈ Nu woke up and became active during u’s
current active period, u would receive a Decision Active
from v3 and correctly recorded v3’s information. 2

In order to apply Theorem 4.4 to guarantee L-local
k-barrier coverage, it is essential that there is at least
one active node. The following lemma ensures this.

Lemma 6.2. If currently there is an active node in
the belt, then there will be an active node anytime before
a first node dies.

Proof: Suppose the lemma is not true, i.e. at some
point of time t before any node dies, there is no active
node in the belt. Then, consider the very last active
node u that went to sleep. Before going to sleep, u
must have invoked the ACTIVE procedure. By Lemma
6.1, u knew that no other node in 2d-zone(u) was active.
Thus, in Step 1 of ACTIVE, u would find that if it went
to sleep 2d-zone(u) would not be k-barrier covered; and
Therefore, u would stay active. This is a contradiction.
2
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We are now ready to prove that Protocol LBCP guar-
antees the belt’s L-local k-barrier coverage. The follow-
ing two lemmas are crucial for this purpose. Lemma 6.3
indicates that the belt is L-local k-barrier covered be-
fore any node dies; and Lemma 6.4 indicates that if a
node’s death ever jeopardizes the belt’s L-local k-barrier
coverage, it is only transient and the coverage will be
resumed quickly. For simplicity, throughout the rest of
this section, unlike in the above, “2d-zone” without an
adjective will refer to an actual 2d-zone.

Lemma 6.3. If presently there is at least one active
node and every active node’s 2d-zone is k-barrier cov-
ered, then at any moment before a first node dies, every
active node’s 2d zone will be k-barrier covered (despite
that nodes may change their states from active to sleep-
ing and vice versa).

Proof: By Lemma 6.2, there will be always an active
node between now and the moment of the first node’s
death. For contradiction, assume the lemma is false.
Then there must be an earliest moment t at which some
active node u’s 2d-zone becomes non-k-barrier covered.
There are two reasons for this to happen, which we will
show actually are impossible.

Case 1: u has been active and 2d-zone(u) has been k-
barrier covered, but 2d-zone(u) suddenly becomes non-
k-barrier covered at time t. This may occur only if some
active node v in 2d-zone(u) goes to sleep and thereby
leaves 2d-zone(u) non-k-barrier covered. By Theorem
5.1, this node v is also in computed 2d-zone(u). Before
v goes to sleep, it must have invoked ACTIVE(v), sent a
Query A to u, and received back a Not Required A from
u. However, u could send back a Not Required A only
if the computed 2d-zone(u) (and hence the actual 2d-
zone(u)) would be k-barrier covered without v. Thus,
v’s going to sleep cannot cause 2d-zone(u) to become
non-k-barrier covered.

Case 2: u was sleeping and 2d-zone(u) was not k-
barrier covered before time t, but u wakes up and be-
comes active at time t. We prove the impossibility of
this scenario by showing that no any sleeping node may
become active before any node dies. Assume the con-
trary and let u′ be the first sleeping node to become ac-
tive. Note that u′ was once active, later went to sleep,
and now it wakes up and becomes active again. Be-
fore u′ went to sleep, u′ invoked Procedure ACTIVE.
By an argument similar to that for Case 1, the com-
puted (and hence actual) 2d-zones of all active nodes in
Nu′ were still k-barrier covered when u′ went to sleep.
While u′ was sleeping, for any active node v in Nu′ ,
some nodes in v’s computed 2d-zone might go to sleep,
but v’s computed 2d-zone remained k-barrier covered.
When u′ wakes up and invokes Procedure WAKEUP to
check if it needs to become active, u′ will only receive
Not Required W packets, and therefore will go back to

sleep, which is a contradiction. 2

A set of nodes A is feasible if ∀x ∈ A, 2d-zone(x)
is k-barrier covered, provided that all nodes in A are
active.

Lemma 6.4. After a node dies, if the remaining sen-
sor network is feasible, then all active nodes’ 2d-zones
will be k-barrier covered in finite time.

Proof: Suppose node v dies (out of power). Consider
any active node u whose actual 2d-zone (and hence com-
puted 2d-zone) becomes non-k-barrier-covered because
of v’s death. All sleeping nodes in the computed 2d-
zone(u) that know v’s lifetime (and thus its death) will
immediately wake up and invoke Procedure WAKEUP.
And in at most T time units, the other sleeping nodes
in the computed 2d-zone(u) will have also waked up
and invoked Procedure WAKEUP. u will ask waking-
up sensors to become active as long as the computed
2d-zone(u) is not k-barrier covered. Since 2d-zone(u) is
k-barrier covered if all remaining nodes in 2d-zone(u)
are active (by the assumption of feasibility), 2d-zone(u)
will be k-barrier covered in T time units at most.

If a new active node w’s 2d-zone is non-k-barrier cov-
ered, evidently it will become k-barrier covered in at
most T time units since all sleeping nodes in 2d-zone(w)
will have waked up and invoked Procedure WAKEUP
in T time units. Since the number of sensors in the belt
is finite, LBCP protocol will make all active sensors’
2d-zones become k-barrier covered in finite time. 2

In Section 7.2, we will investigate the time it may take
for all active nodes’ 2d-zones to recover from a node’s
death. As will be seen, after a node dies, all active
nodes’ 2d-zones either continue to be k-barrier covered
or resume so immediately. This is because sufficient
nodes have been scheduled to wake up at the end of a
node’s lifetime (by Step 3 of Procedure ACTIVE and
Step 4 of WAKEUP.)

The following theorem that establishes the LBCP
protocol’s correctness, follows directly from Lemmas 6.3
and 6.4 and Theorems 4.1 and 4.4.

Theorem 6.1. The belt under LBCP is guaranteed
to be L-local k-barrier covered as long as the sensor net-
work remains feasible, except for possible recovery times
after nodes die.

Message Complexity: The number of messages
transmitted by a node in LBCP protocol is insignifi-
cant. For any node u, let the number of nodes in Nu be
at most D. Every node executes Procedure INITIAL
once. Assume there are no Require N transmitted; oth-
erwise, every node stops working. There are at most
(1 + D) packets (1 Inform I packet and D Inform B
packets) transmitted when a node executes Procedure
INITIAL.
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Let T be f(≤ 1) times the lifetime of a node. Then,
a node invokes Procedure ACTIVE at most 1/f times.
There are at most (2 + D) packets (1 Query A packet,
D Not Required A or Required A packets, and 1 De-
cision Sleep or Decision Continue packet) transmitted
when a node invokes the ACTIVE procedure. So, a
node sends at most (2 + D)/f packets in executing the
ACTIVE procedure in its entire lifetime.

We assume there are at most m disjoint sets of nodes
in a node’s 2d-zone such that the nodes in each set
provide local barrier coverage for this 2d-zone. Then,
a node sleeps at most mF (= mT/f) time units in
its entire lifetime, where F is the life time of a node.
There are two possible reasons making a sleeping node
wake up. One reason is that it has slept for T time
units; another reason is that some active node in its
2d-node is going to die. a node wakes up at most
mF/T (= m/f) times for the first reason and at most
D times for the second reason. There are at most
(2 + D) packets (1 Query W packet, D Required Wor
Not Required W packets, and 1 Decision Active packet)
transmitted when a node invokes the Procedure WAKEUP
. So, a node sends at most (2 + D)(m/f + D) packets
in executing the Procedure WAKEUP in its entire life-
time.

Therefore, the total number of messages sent by a
node in its entire lifetime is at most (1+D)+(2+D)((1+
m)/f + D). If D = 100, f = 0.1 and m=10, each node
will transmit a maximum of 21, 521 packets. Given that
transmitting a 60-byte packet consumes 0.01µAh on a
Telos mote [14], transmissions of LBCP messages con-
sume about 0.22 mAh, which is insignificant compared
to more than 2, 000 mAh of energy reserve in a pair of
AA batteries. Note that this analysis gives an upper
bound and the real energy consumption may be much
smaller than this upper bound.

7. PERFORMANCE EVALUATION
We have implemented LBCP protocol in MATLAB.

We have three main results: 1) local barrier coverage al-
most always implies global barrier coverage when belts
are thin, 2) the LBCP protocol provides close to op-
timal network lifetime while providing global barrier
coverage most of the time, and 3) changing the belt
from a rectangle to a general belt does not adversely
affect the aforementioned performance. We define the
network lifetime as the total time when the network is
local barrier covered or the total time when the network
is global barrier covered.

We use a belt region of dimension 2, 000m × 100m,
unless stated otherwise. Sensors are deployed randomly
with uniform distribution. The default sensing range
(r) is 30m, and k = 1. For the LBCP protocol, lifetime
of each node is 10 weeks, d = 100m, and T = 0. For ev-
ery simulation case, 5 random scenarios have been sim-

ulated unless stated otherwise. We assume no packet
loss, which can be ensured with a suitable reliable data
transfer layer.
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Figure 15: How often is the network local barrier
covered vs. global barrier covered when d = 31m
and W = 100m, 150m, or 200m?
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Figure 16: How often is the network local bar-
rier covered vs. global barrier covered when
d = 100m and W = 200m?

7.1 Local Barrier Coverage vs. Global
Barrier Coverage

We vary the density of nodes in random deployments
to study the density at which the network begins to pro-
vide local barrier coverage and compare it with that for
global barrier coverage. For every simulation case, 100
random scenarios have been simulated. To determine
if the network provides local barrier coverage, we use
Theorem 4.1, which ensures that if d > r, then barrier
coverage of 2d-zones of all nodes is sufficient to ensure
L-local barrier coverage with L = max{2(d− r), d + r}.
Hence, we only need to check that the 2d-zones of all
nodes are barrier covered, rather than checking each of
the L-zones, of which there are infinitely many.

The results of simulation appear in Figure 15. As
can be seen from this figure, when the width (W ) is
100m, the network always provides global barrier cov-
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erage whenever it provides local barrier coverage, even
if we use a value of d that is close to r. As the width of
the region is increased, local barrier coverage does not
always ensure global barrier coverage for small d. But,
if a larger value of d (e.g., 100m) is used (which implies
a larger value of L in L-local barrier coverage), then lo-
cal barrier coverage implies global barrier coverage even
when the width is large as shown in Figure 16. In sum-
mary, for thin belts, local barrier coverage is sufficient
for ensuring global barrier coverage, in practice.

7.2 Lifetime Maximization With LBCP
We investigate four main issues here.

1) What level of lifetime improvement is achieved us-
ing LBCP and how often does it provide global barrier
coverage?

To determine the improvement in lifetime, we com-
pare the performance of LBCP with the optimal (cen-
tralized) algorithm of [8] and with Randomized Inde-
pendent Sleeping (RIS) of [9], which is a localized al-
gorithm. We vary the number of nodes from 500 to
2, 000. The simulation results are shown in Figure 17.
We make three key observations from this figure. First,
although LBCP only strives to provide local barrier cov-
erage, it always provides global barrier coverage as well
in our simulations. Second, it outperforms the RIS al-
gorithm by up to 6 times (e.g., providing a lifetime of
246.7 weeks as opposed to 40.3 weeks for RIS when the
number of nodes is 2, 000). Third, it provides very close
to the optimal network lifetime.
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Figure 17: “LBCP Local” denotes that the net-
work is local barrier covered with LBCP and
“LBCP Global” denotes that the network is
global barrier covered with LBCP. Optimal al-
gorithm and RIS algorithm are both for global
barrier coverage.

2) How does the performance of LBCP vary as d is
varied?

In Figure 17, we use d = 100. For smaller values of d,
LBCP does not always provide global barrier coverage;
it only ensures local barrier coverage as can be seen

in Figure 18. Although local barrier coverage may be
sufficient in practice since most movements are expected
to follow shortest or close to shortest paths, increasing
the value of d ensures global barrier coverage, as well.
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Figure 18: Network lifetime achieved with
LBCP as the value of d is varied when 1000 nodes
is randomly deployed in the network.

3) How does the performance of LBCP vary as T (the
time period for checking the existence of local barrier
coverage) is varied?

As can be seen in Figure 19, the performance of LBCP
reduces with an increase in T . If T is equal to a node’s
lifetime, an active node continues to be active until
dead, which may reduce the network lifetime. On the
other hand, if T = 0, an active node checks immedi-
ately after a new node becomes active in its 2d-zone if
it can go back to sleep. Using a value close to 0 for T
maximizes the network lifetime but involves significant
overhead since an active node has to spend significant
energy in periodic checking. Notice, however, that when
T = 0, a sleeping node a wakes up only when the first
active node in 2d-zone(a) is expected to die. We suggest
using [0, 0.1] of a node’s lifetime for T since even when
T = 0.1 of a node’s lifetime, an active node checks only
9 times in its entire lifetime, while the network life time
can still reach 69% of the optimal solution.
4) When will all active nodes’ 2d-zones become k-barrier
covered after a node’s death makes some active nodes’
2d-zones temporarily not k-barrier covered?

To make our evaluation more practical, the initial life-
times of the sensor nodes are uniformly randomly dis-
tributed in the set {0.1, 0.2, 0.3, . . . , 10.0} (unit: week).
And T = 1.03 weeks. Therefore, it is unlikely that a
node u dies exactly when a sleeping node has slept for
T time units and wakes up. In the simulation, we omit
the time for executing the procedures in LBCP. The
simulation results show that in all 1899 cases, all active
nodes’ 2d-zones become k-barrier covered immediately
after a node u’s death makes some active nodes’ 2d-
zones temporarily not k-barrier covered. The reason is
that after u dies, some sleeping nodes who know u’s
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lifetime (and thus its death) will immediately wake up,
invoke Procedure WAKEUP, and become active, which
results in that not only these original active nodes’ 2d-
zones but all the new active nodes’ 2d-zones become
k-barrier covered.

7.3 The Performance for General Belts
In this section, we investigate the performance of

LBCP combined with the heuristic method developed
in Section 5 for determining the barrier coverage in a
2d-zone for general belts. We consider a semicircular
belt whose middle line is π ∗ 1, 050m long. All other
parameters (r, d, W , node lifetime) are the same as de-
scribed in the beginning of Section 7. Since [9] did not
indicate how to set the value of p in the RIS algorithm
for a non-rectangular belt, we only compare the perfor-
mance of LBCP with the optimal algorithm. We vary
the number of nodes from 500 to 1, 000. The simula-
tion results are shown in Figure 20. We make two key
observations: 1) LBCP provides close to the optimal
network lifetime, and 2) LBCP always provides global
barrier coverage although it only strives to provide lo-
cal barrier coverage, indicating that our heuristic (of
Section 5) works well in practice.
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Figure 19: Network lifetime achieved with
LBCP as the value of T is varied when 1000
nodes is randomly deployed in the network.

8. CONCLUSION AND FUTURE WORK
We proposed a new notion of coverage called local

barrier coverage that is more appropriate for applica-
tions than the existing global barrier coverage. We then
provided a localized algorithm for sensors to determine
whether the sensor network provides local barrier cov-
erage. In simulations, we observed that for thin belt
regions, the network provided global barrier coverage
whenever it provided local barrier coverage. We lever-
aged the concept of local barrier coverage to develop the
first localized sleep-wakeup protocol for movement de-
tection applications that provided close to optimal en-
hancement in the network lifetime. We proved that our
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Figure 20: Network lifetime achieved with
LBCP as the number of nodes is varied in a gen-
eral belt.

protocol guarantees local barrier coverage. We showed
that in addition to ensuring global coverage most of the
time, local barrier coverage also ensured connectivity
under some mild assumptions. By enabling the devel-
opment of localized algorithms for barrier coverage, our
work may have opened up many interesting research
problems. For instance, localized algorithms for other
tasks such as barrier-coverage network repair may now
be explored.

The concept of L-local barrier coverage can also be
used to measure the quality of barrier coverage provided
by a sensor network. We have recently reported some
interesting results [5].

As for future work, connectivity will be an interest-
ing problem. If all active nodes’ 2d-zones are k-barrier
covered, the network is connected under the assump-
tion that a node is able to communicate (directly or
indirectly) with all nodes in its 2d-zone. This claim can
be easily proved. Although the assumption that a node
is able to communicate with all nodes in its 2d-zone
is reasonable, we will study, in our future work, under
what conditions local barrier coverage implies connec-
tivity without this assumption.
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APPENDIX

A. PROOF OF THEOREM 4.4
We develop a series of lemmas towards proving The-

orem 4.4. Theorem 4.2 shows that d can not be too
small for a rectangular belt. Indeed, we required d > r
in Theorem 4.1. This condition, d > r, was to en-
sure that no sensor can simultaneously cover both the
orthogonal boundaries of any 2d-zone in a rectangular
belt. In order to generalize Theorem 4.1 from rectangu-
lar to general belts, we need a condition to ensure that
no sensors can simultaneously cover both the orthogonal
boundaries of any 2d-zone in a general belt. The next
lemma serves this purpose. In this lemma, and through-
out the rest of this section, we write arcsin(r/2R) to
mean arcsin(r/(2R)) — the parentheses are omitted for
simplicity and clarity.

Lemma A.1. In a general belt, if
d > 2(R + W

2 ) arcsin( r
2R ), then no node u can cover

any orthogonal boundary of its 2d-zone(u). Further-
more, any node on one side of the orthogonal line pass-
ing through u can not cover 2d-zone(u)’s farther orthog-
onal boundary.

Proof: First, consider a circular belt of width W , its
inner circle being of radius R. That is, the curvature at
any point of the belt’s inner boundary is of magnitude
1/R. Consider an L2-zone, with a line of length r, an arc
of length L1, ∠A, ∠B as shown in Figure 21. We know
that ∠B = 2∠A = 2 arcsin(r/2R). Therefore, L1 =
2R arcsin(r/2R), and L2 = 2(R + W/2) arcsin(r/2R).
The distance between the two orthogonal boundaries of
L2-zone is r. If a node u is at the intersection of the
L2-zone’s inner circular boundary with one of its or-
thogonal boundaries, then u’s sensing range can barely
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cover the other orthogonal boundary of the L2-zone. If
L > L2, then the sensing range of any node on one
orthogonal boundary of an L-zone can not cover the
other orthogonal boundary since the distance between
the two orthogonal boundaries is larger than r, and
any node outside of an L-zone can not cover the far-
ther orthogonal boundary of the L-zone. Therefore, if
d > L2, since 2d-zone(u) can be divided into two d-
zones at the orthogonal line passing through u, no node
u can cover any orthogonal boundary of its 2d-zone(u),
and any node on one side of the orthogonal line passing
through u can not cover 2d-zone(u)’s farther orthogonal
boundary.

Next, we show that the lemma holds for a circular belt
of width W , whose inner circle is of radius R′ > R. It is
clear that 2(R′+ W

2 ) arcsin( r
2R′

) < 2(R+ W
2 ) arcsin( r

2R ).

So, in this belt, if d > 2(R+ W
2 ) arcsin( r

2R ), we also get

d > 2(R′ + W
2 ) arcsin( r

2R′
), which implies that no node

u can cover any orthogonal boundary of its 2d-zone(u),
and any node on one side of the orthogonal line passing
through u can not cover 2d-zone(u)’s farther orthogonal
boundary.

Now, we consider a general belt. By assumption, the
curvature at any point on the belt’s parallel boundaries
is of magnitude at most 1/R. That is, at any point
on the parallel boundaries, the curvature is of mag-
nitude 1/R′, with R′ ≥ R. Therefore, if d > 2(R +
W/2) arcsin(r/2R), no node u can cover any orthogonal
boundary of its 2d-zone(u), and any node on one side
of the orthogonal line passing through u can not cover
2d-zone(u)’s farther orthogonal boundary in a general
belt. 2

Lemma A.2. In a general belt, if
d > 2(R + W

2 ) arcsin( r
2R ), and the 2d-zone(u) of every

active node u is k-barrier covered, then each M -zone
with M ≥ 2(R + W/2) arcsin(2r/2R) must contain at
least one active node.

Proof: For a circular belt, if the inner circle’s ra-
dius is R and M2 = 2(R + W/2) arcsin(2r/2R), then
the length of the chord of the M2-zone on the inner
circle is 2r, as shown in Figure 21. In this case, the
sensing disks of any two nodes outside of the M2-zone
and on the opposite sides of the M2-zone have no over-
lap in the M2-zone. It is clear that if R′ > R, 2(R′ +
W/2) arcsin(2r/2R′) < 2(R + W/2) arcsin(2r/2R). As
in the proof of Lemma A.1, in a general belt whose
biggest curvature value on the two parallel boundaries
is 1/R, if L ≥ 2(R + W/2) arcsin(r/R), then the sens-
ing disks of any two nodes outside of the M2-zone and
on the opposite sides of the M2-zone have no overlap
in the M2-zone. Clearly, the conclusion is true for any
M ≥ M2 if it is true for M2.

Now, assume there are no nodes in an M -zone with
M ≥ M2. Consider the node a whose orthogonal cross-

ing line is closest to the M -zone. Then, there is no
node in the region between a’s orthogonal crossing line
and the M -zone (as well as the M -zone itself). Since
there is no overlap between the sensing disks of any two
nodes on the opposite sides of the M -zone, the nodes on
the same side of the M -zone as a (including a ) should
provide k-barrier coverage for 2d-zone(a) (including its
farther orthogonal boundary), which is impossible ac-
cording to Lemma A.1. Therefore, there must be at
least one node in each M -zone. 2
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Figure 21: Visualizing the proofs of Lemmas A.1
and A.2

Lemma A.3. In a general belt, let A be an L1-zone
and B be an L2-zone. Assume that the intersection of

A and B is non-empty, and L2 ≤ R+W/2
R+W r. Suppose A

is k-barrier covered, and no node in A − B ever covers
A’s orthogonal boundary that is contained in B. Then,
A ∪ B is k-barrier covered.

Proof: Let a1 be the A’s orthogonal boundary that is
in B, and a2 be the A’s orthogonal boundaries that is
not in B. Let b1 be the B’s orthogonal boundary that is
in A, and b2 the B’s orthogonal boundaries that is not
in A. So, a2 and b2 are also the orthogonal boundaries
of A ∪ B.

First, we prove that the sensing disk of any node in B
covers both of the orthogonal boundaries of B, b1 and
b2. Consider see a circular blet with the inner circle’s
radius being R. If L2 = R+W/2

R+W r, then the length of
the longer parallel boundary (on the outer circle) of B
is r and the length of the corresponding chord ≤ r. Let
p be an arbitrary node in B, and consider the passing
orthogonal line bp of p and b1, we get a sub-zone of B.
Clearly, the lengths of the parallel boundaries of this
sub-zone ≤ r, and the distance between p and b1 ≤ r.
Therefore, the sensing disk of p covers b1. Similarly, we
can prove that the sensing disk of p covers b2. If R′ >

R, R′+W/2
R′+W r = (1 − W

2(R′+W ) )r >
(

1 − W
2(R+W )

)

r =
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R+W/2
R+W r. Following the idea used in the proof of Lemma

A.1, we can prove that for a general belt whose biggest
curvature value is 1/R on the parallel boundaries, if

L2 ≤ R+W/2
R+W r, the lengths of the parallel boundaries of

B ≤ r, and the sensing disk of any node in B covers
both of the orthogonal boundaries of B.

Because A is k-barrier covered, there must be at least
k nodes covering a1. Since these nodes are not in A−B,
they must be in B, or outside of B but on the other side
of b2 as compared to a1. If they are outside of B, their
sensing disks must cover b2 if they cover a1. If they are
in B, their sensing disks also must cover b2. Therefore,
the nodes making A k-barrier covered also make A ∪B
k-barrier covered. 2

Proof of Theorem 4.4: The proof is similar to that
of Theorem 4.1, but now we will use Lemmas A.2 and
A.3 in place of Lemmas 4.1 and 4.2.

Assume that 2d-zone(u) is k-barrier covered for every
active node u. Let L1 = 2d − 2(R + W/2) arcsin

(

2r
2R

)

and L2 = d + R+W/2
R+W r.

Case 1: L1 ≥ L2. Let M = 2(R + W/2) arcsin
(

2r
2R

)

.
By Lemma A.2, given any L1-zone, there is at least
one node b in its center M -zone. Then, L1-zone ⊆ 2d-
zone(b) and hence L1-zone is k-barrier covered.

Case 2: L1 < L2. Given any L2-zone, it can be
divided into three parts: the center Lc-zone, and the
two Ls-zones on the opposite sides of the center zone,

where Lc =
(

d − R+W/2
R+W r

)

and Ls = R+W/2
R+W r. Then,

it can be proved in a similar manner as in the proof
of Theorem 4.1 (case 2) using Lemma A.3 in place of
Lemma 4.2 that L2-zone is k-barrier covered.

Therefore, if the 2d-zone of every active node is k-
barrier covered, then every L-zone is k-barrier covered,
where L = max{L1, L2}. 2
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