
Attribute Storage Design for Object-based Storage Devices

ANANTH DEVULAPALLI, DENNIS DALESSANDRO, NAWAB ALI AND PETE WYCKOFF

Technical Report
OSU-CISRC-9/08-TR45

Attribute Storage Design for Object-based Storage
Devices

Ananth Devulapalli ∗1, Dennis Dalessandro ∗2, Nawab Ali #3, Pete Wyckoff ∗4

∗ Ohio Supercomputer Center
1224 Kinnear Road, Columbus, OH 43212, USA

1 ananth@osc.edu
2 dennis@osc.edu

4 pw@osc.edu
Department of Computer Science and Engineering, The Ohio State University

395 Dreese Laboratories, 2015 Neil Avenue, Columbus, OH 43210, USA
3 alin@cse.ohio-state.edu

Abstract—As storage systems grow larger and more complex,
the traditional block-based design of current disks can no longer
satisfy workloads that are increasingly metadata intensive. A
new approach is offered by object-based storage devices (OSDs).
By moving more of the responsibility of storage management
onto each OSD, improvements in performance, scalability and
manageability are possible.

Since this technology is new, no physical object-based storage
device is currently available. In this work we describe a software
emulator that enables a storage server to behave as an object-
based disk. We focus on the design of the attribute storage, which
is used to hold metadata associated with particular data objects.
Alternative designs are discussed, and performance results for
an SQL implementation are presented.

I. INTRODUCTION

With storage systems becoming increasingly more compli-
cated, and storing an ever growing amount of data, the tradi-
tional block-based concept of storage has become inadequate.
In a time when individual hardware components are becoming
more aware of their role in the system, it makes sense to
consider similar improvements to storage. The ANSI standard
for an object-based interface to storage devices [1] aims to
do just this. An object-based storage device (OSD) offers the
file system an object-based view of the data. OSDs manage
the data layout and keep track of various attributes about data
objects on the disk. The concept of an object is a powerful
one, allowing for a number of attributes about a particular
piece of data to be stored along with the data. Unlike a block-
based disk, an OSD is aware of the logical organization of
data as defined by its users. By moving functionality that is
traditionally the responsibility of the host OS to the disk, it is
possible to improve the overall performance and simplify the
management of a storage system.

Since the OSD standard [1] is still relatively new, there
are no readily available production hardware disks. To enable
research into issues related to using object storage in high-
performance file systems, we have created a software OSD
emulator. In this work we present our standards-compliant
emulator and aim to identify the trade-offs associated with

using SQL queries for metadata operations, in particular, for
the fast indexing operations supported by OSDs.

An object-based approach to storing data is not new; in
fact, many parallel file systems [2], [3], [4] use an object
representation of data. However, despite the object abstraction
at the file system level, the disks themselves are simple block-
based devices. Though our OSD target uses ordinary block-
based disks at the lowest level, the interface exported to file
systems is an object interface.

The rest of this paper is organized as follows. Section II
discusses the different storage architectures and the OSD
usage environment. Section III introduces the design and
implementation details of the OSD target emulator. Section IV
evaluates the SQL-based design and raises issues that are im-
portant to good metadata performance. Section V summarizes
related work, and we conclude with ideas for future work in
Section VI.

II. BACKGROUND

The basic feature that sets OSDs apart from traditional
block-based disks is an object view of data. An object is
defined as an ordered set of bytes that is associated with a
unique identifier. Four types of objects are defined in the OSD
specification [1]: root, partitions, collections, and user objects.
There is always exactly one root object on an OSD, but it can
contain multiple partitions. A partition is a way of defining a
namespace for collections and user objects. User objects are
the entities that actually contain file data and metadata, while
collections are groupings of user objects, used for fast indexing
based on attributes.

One of the powerful features of OSD is that each object has
a number of attributes associated with it. These attributes can
be thought of as the metadata of the object. There are both
device-defined and user-defined attributes. Attributes provide
an enriched interface, and offer higher semantic control over
the data compared to a traditional block-based device. The at-
tributes for each object are organized in pages for identification
and reference, and attributes within a page have similar sources
or uses. Within each attributes page, attributes are identified by

an attribute number. Figure 1 illustrates an example of the user
object time stamp attributes page. In the figure, the attribute
numbers 0, 1 and 2 represent object creation, attribute access
and attribute modification times respectively. The attribute
value column shows the corresponding times.

Attribute Page Number Value
3 0 01:00:00
3 1 22:00:00
3 2 12:22:22

.

Fig. 1: Structure of User Object Timestamps attributes page.

As shown in Figure 2, another difference between object-
and block-based storage is the role that the host file system
plays in data storage. In block-based disks, the file system is
responsible for telling the disk where to store data. It is up
to the file system to know which logical block addresses to
read and write; the disk simply does as it is told. With object-
based storage, the task of managing data layout is up to the
device, not the file system. The file system supplies the OSD
with data to store, and the OSD stores it according to its own
internal policies, returning an object identifier, and optionally
the attributes about that object.

Applications Applications

Kernel Syscall Interface

File System User Interface

File System Storage Management

LBA Interface

Block I/O

Storage Medium

Block I/O

Storage Medium
Block-based Disk

OSD Interface

OSD Storage Management

File System User Interface

Kernel Syscall Interface

OSD

Fig. 2: Comparison of block-based and object-based disks.

OSDs also offer a comprehensive security model that al-
lows direct device access by multiple clients in an untrusted
environment. Previous distributed storage implementations re-
quired imposing servers in the data path between clients
and storage devices to add security and to offer higher-level
services to clients. They also provide other servers to store the
metadata of a file system, usually on separate storage devices.
With OSDs, it is feasible to store both data and metadata
securely and to offer a high level of semantic interaction to
clients.

While it will be beneficial to employ OSDs in a local file
system configuration, the target of our work is to evaluate how
parallel and distributed file systems can take advantage of the
new devices. This goes beyond simply delegating the storage
of data containers to devices, and entails designing metadata
layouts to improve look-up times and search capabilities
for clients. Metadata-heavy workloads are fast becoming the
norm [5], [6], and OSDs may offer a workable alternative
to what is currently a major bottleneck for distributed file
systems.

III. DESIGN

Our OSD target emulator is a SCSI device, and as such,
commands and responses are communicated by a SCSI trans-
port protocol. Examples of SCSI transport protocols include
fibre channel, SCSI parallel interface, or in our case, iSCSI.
Basic SCSI command processing is performed by a generic
SCSI layer, and OSD-specific commands are handled by our
emulator. We utilize the existing software tgt [7] to handle
transport and iSCSI command handling. tgt is a user-space
iSCSI target implementation for block-based devices. In spite
of being implemented in user-space, its performance is equiva-
lent to the in-kernel iSCSI target alternatives. Moreover, since
tgt is user-space software, no kernel modifications are needed.

There are other OSD target emulators available. Despite
this, we could not adopt existing codes due to our overall goals
of applying OSDs in parallel file systems. Some existing work
relies on old or incompatible iSCSI stacks [8], [9], others do
not make their source code available [10], [11]. Also, given
the rapid rate of change in the specification, none of these
alternatives was current with respect to the latest version of the
T10 proposed standard [1]. Our goal for the target emulator
is to achieve conformity with the OSD specification, mimic
the expected behavior of the device as closely as possible and
attain reasonable performance.

OSD commands can be classified in the following cat-
egories: object manipulation, input/output, attribute manip-
ulation, security, and device management. Our OSD target
currently implements all mandatory object manipulation, in-
put/output, and attribute manipulation commands. It also sup-
ports collection functions such as QUERY and SET MEM-
BER ATTRIBUTES. Work on the other commands including
security and device management is in progress.

A. Data storage

In designing a storage emulator, there are a number of issues
concerning how to store data. Essentially, an OSD implements
a simplified file system. An OSD must manage data placement
and on-disk structures to describe object data (called “inodes”
in BSD parlance). Standard techniques such as journaling,
logging, log cleaning, group placement, defragmentation, and
more apply to this problem and are the responsibility of the
OSD. These problems are well studied in the context of local
file systems [12], [13], [14]. It is not our goal to apply any of
these existing solutions to the OSD case. Although, there are

interesting challenges when objects are generated by striping
file systems, as studied in the EBOFS work [15].

Our emulator stores object data in files. The files are
provided by an underlying file system, using the VFS interface
in Linux. We use pread and pwrite to move data to and from
the disk, relying on the kernel-resident file system and disk
scheduler to store the bytes. The rest of this paper concerns
itself with the storage of metadata.

B. Attribute storage

Attributes hold “metadata” that is associated with the object.
In the traditional POSIX sense, metadata includes information
such as ownership, creation, access, and modification times,
size, and so on. Local OS-resident file systems store this
information in a fixed-sized inode that stores the necessary
information. Some file systems support the use of “extended
attributes” [16], [17] that hold arbitrary metadata created by
user applications.

An OSD must store extensible metadata, but also has further
requirements. Certain operations generate object lists based on
metadata contents. This is a very powerful operation that may
revolutionize the way in which we interact with storage. For
instance, consider a large computational experiment that is
parametrized by multiple variables, such as temperature, pres-
sure, concentration of oxygen, and so on. Or equivalently, in
the domain of customized graphics for entertainment, variables
would include frame number and camera angle. Regardless of
the user application, a frequent question arises, such as “Find
all experimental results where the temperature was between
350 and 400 degrees Kelvin, and the oxygen pressure was
above 1500 millibars.” On traditional block-based systems, this
operation may proceed in one of two manners. First, if the user
has carefully encoded the parameters of the experiment in the
file names, a search for matching file names may occur. This
method has serious drawbacks if the number of variables is
more than two or three. A second way to do it is to use a
structured file format such as HDF5 [18] or NetCDF [19],
which explicitly support named variables. But to search in
this space requires opening each file, reading and parsing the
header, and evaluating the parameters in each file individually.

OSDs offer a method to transcend existing behavior. A
single QUERY operation will provide object identifiers (and
attributes) of objects that match the requested bounds, in-
cluding the examples mentioned above. There is also support
to list objects and their attributes, selectively; and to group
objects in logical collections to allow for fast indexing over a
subset of objects. To implement this QUERY operation, and
related list and collection operations, effectively, requires a
comprehensive attribute storage model. The following sections
describe multiple approaches to this problem.

a) File-based implementation: A simplified approach to
implementing attributes would involve encoding the attribute
page and number into the file name, with the attribute value
residing in the file. This is the approach used by previous OSD
emulators [9], [10]. This approach is inefficient when handling
complex queries. For example, the query operation described

above requires that each attribute file be opened, read, and
closed to see if the values are within bounds. The overhead of
performing this work through the operating system interface
is enormous. This approach is slow, inflexible for complex
operations, and would limit scaling in the number of stored
objects and attributes.

b) Simple database: The file-based approach lacks an
indexing mechanism which can make look-ups and inserts very
fast. A simple database like gdbm [20] or db4 [21] can solve
this problem. Such databases use extensible hashing or B-trees
to store the data into two-column tables: one for the key which
is used for indexing and another for the value. Such a database
is sufficient for implementing the basic commands of the OSD
specification [1]. But implementing multi-object commands
like QUERY and SET MEMBER ATTRIBUTES, or complex
commands like LIST with attributes and getting directory
pages, increases the complexity of the implementation due to
the restriction of a two-column format.

c) SQL database: The drawbacks of the previous ap-
proaches have motivated us to look at SQL databases for at-
tribute organization and manipulation. For our implementation
we were interested in rich SQL semantics of the database
but without the overheads of inter-process communication or
connection setup of traditional client-server SQL databases.
Nor do we need a persistent database that lives outside of
the context of the OSD emulator. An alternative embedded
database, SQLite [22], simplifies these management issues. It
is an open-source database and implements most of the SQL92
standard [23]. Moreover, the code footprint is about 160 kB,
making it viable to be implemented on an embedded processor
of an actual disk. SQLite supports all the necessary features
for expressing attribute manipulation commands in clean and
concise SQL statements.

d) Customized data structure: The optimal solution to
attribute handling is a customized data structure designed
purely to support OSD attribute structure. Such a data structure
would likely outperform a generic SQL-based attribute manip-
ulation, but it is not clear if the payoff from such a scheme
will be commensurate with the effort. Further, designing such
a data structure requires an intimate understanding of the
relationships between the different components of the OSD
attributes.

Considering the above choices, we traded off some perfor-
mance for ease of use and selected the SQLite-based design
for attribute management. Next we describe the schema used
for storing attributes.

1) Attribute schema: Figure 3 shows the object and at-
tribute schema organization used by our OSD target. The
OBJECT table stores the information about the objects cur-
rently present on the target. The partition and object identifiers
uniquely specify one object. These fields are thus used as the
primary key in the OBJECT table. The object type column
stores one of the four possible types of objects: user object,
collection, partition or root.

The ATTRIBUTE table stores information on all defined
attributes for all objects. The attributes of each object are

PARTITION ID

OBJECT ID

COLLECTION ID

ATTRIBUTE NUMBER

INT

INT

INT

INT

PARTITION ID

OBJECT TYPE

OBJECT ID

INT

INT

INT

OBJECT

INT

INT

INT

INT

BLOB

PARTITION ID

OBJECT ID

ATTRIBUTE PAGE

ATTRIBUTE NUMBER

ATTRIBUTE VALUE

ATTRIBUTE

NN

1M

COLLECTION

PK

PK

PK

Fig. 3: Attribute schema. Primary keys in each table are indicated with “PK.”

uniquely determined by an attribute page and attribute number.
Therefore the tuple (Partition ID, Object ID, Attribute Page,
Attribute Number) serves as the primary key for this table. It
is possible to store attributes of a given object separately in
their own table rather than lumping all the attributes of all the
objects in a single table, but it increases the complexity of the
SQL queries, and common operations such as object creation
and removal would result in slow table creation operations in
the database. It would be possible to eliminate the OBJECT
table by including an Object Type field in the ATTRIBUTE
table, and always requiring at least one attribute for every
object; however, this would also complicate some otherwise
simple queries.

Finally, the COLLECTION table stores the many-to-many
relationships between user objects and collections. As dis-
cussed in Section II, collection objects are used for fast
indexing of user objects. One collection can have many user
objects and one user object can belong to zero or more
collections. A user object is made a member of a collection
by setting the attribute value in the user object’s Collections
Attributes Page to the identifier of the collection object [1].
Therefore, the tuple (Partition ID, Collection ID, Object ID)
uniquely identifies the membership of a user object in a
collection. The “Attribute Number” field points back to the
attribute in the object’s Collections Attributes Page that was
used to make it a member of the collection.

IV. METADATA EXPERIMENTS

This section introduces the basic performance of the emu-
lator, then describes four interesting metadata operations that
OSDs can perform, along with performance results from our
SQL-based emulator. The need to perform these types of
queries, and to perform them efficiently, is what motivates
the need for a database-like design.

The OSD target described in the paper implements the
iSCSI protocol and is capable of communicating with iSCSI
initiators. Since the communication overhead might mask
interesting interactions within the target, we evaluate the target
on its own by injecting OSD commands directly at the target’s
OSD command processing layer.

Our experimental platform is a Linux cluster where each
node has two AMD Opteron 250 processors, 2 GB of RAM
and an 80 GB SATA disk. The cluster runs the Linux operating
system, version 2.6.20. The x-axis of most plots will be the
number of objects, either in the device or in the collection,
to show how attribute storage scales with increasing database
size. The x- and y-axes frequently use logarithmic scaling
to help visualize the entire range. Experimental sizes were
kept small enough to remain within the memory cache of the
machine, to examine algorithmic impacts. All plots include
error bars showing the standard deviations, but frequently
those are so small that they are not visible.

A. Primary metadata operations

The first experiment characterizes the scalability of the basic
metadata operations. The CREATE operation creates an object,
SET ATTRIBUTE sets an attribute on an object, and GET
ATTRIBUTE retrieves an attribute from an object.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 100 1000 10000 100000

T
i
m
e

(

µs
)

Number of objects

create

setattr

getattr

Fig. 4: Time to perform CREATE, GET ATTRIBUTE and
SET ATTRIBUTE operations.

Figure 4 shows the response times of all three operations
as a function of the number of objects in the device. In all
cases, a pre-determined number of objects were created with

attributes set appropriately. Next, for the CREATE, the time
for creation of an additional object was measured, whereas for
SET ATTRIBUTE and GET ATTRIBUTE, the time to set and
get an attribute on that additional object was measured. The
plot shows that latencies of all the operations increase only
very slowly as a function of the number of objects, as one
would expect from any reasonable database.

The GET ATTRIBUTE operation is the fastest among the
three since it simply involves two table look-ups. The first is
to determine the type of the object and the other is to look-up
the attribute of the object. The SET ATTRIBUTE operation
involves table look-ups to test the presence and type of the
object. Then a record is inserted into the ATTRIBUTE table,
which requires an exclusive lock on the database. The create
operation is the slowest since it involves table look-ups for the
presence and the type of the object, followed by insertion of
object information in OBJECT table and insertion of default
attribute information in ATTRIBUTE table.

B. List

The LIST operation can be used in two ways. One is to
return a list of the partitions in a device. The other is to return
a list of objects in a partition. We focus only on the latter, as
they are similarly implemented, and listing objects would be
expected to be the more common operation.

The SQL statement to perform a LIST operation is:

SELECT oid FROM obj
WHERE pid = PID AND type = USEROBJECT;

where “oid” is the object identifier to be selected from a
given partition “PID”, constrained to return only objects, not
collections, as they share the same namespace [1].

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

T
i
m
e

(

µs
)

Number of objects

Fig. 5: Time to perform a LIST operation.

Figure 5 shows the time to perform a list operation as a
function of the number of objects in the partition. In our case,
there is only one partition in the device. Beyond an asymptotic
minimum, the time taken scales linearly, as each object must
be visited and returned by the SQL query.

C. List with attributes

A variation to the LIST operation can request a set of
attributes for each object returned. The client specifies a list
of desired attributes by page and number. The target then
generates a list of objects, as in the previous case, but also
supplies the requested attribute values for each of the objects
it returns.

The SQL statement for this operation is:

SELECT obj.oid, attr.page, attr.num, attr.val
FROM obj, attr
WHERE obj.pid = attr.pid AND obj.oid = attr.oid

AND obj.pid = PID AND obj.type = USEROBJECT
AND attr.page = page1 AND attr.num = num1
AND obj.oid >= OID

UNION ALL
SELECT obj.oid, attr.page, attr.num, attr.val

FROM obj, attr
WHERE obj.pid = attr.pid AND obj.oid = attr.oid

AND obj.pid = PID AND obj.type = USEROBJECT
AND attr.page = page2 AND attr.num = num2
AND obj.oid >= OID

ORDER BY obj.oid;

where both the OBJECT and ATTRIBUTE tables are con-
sulted to locate all objects. The tuples (page1, num1) and
(page2, num2) specify the attribute page and number of
the attributes to be retrieved. The statement constrains the
selection to objects belonging to partition PID and of user
object type. In case the client does not provide sufficient buffer
space for all the results, continuation is supported by the final
test on object identifier and by returning sorted results.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000

T
i
m
e

(

µs
)

Number of objects

attr=100 retrieve=10
attr=100 retrieve= 5
attr=100 retrieve= 1
attr= 10 retrieve=10
attr= 10 retrieve= 5
attr= 10 retrieve= 1
attr= 0 retrieve= 0

Fig. 6: Time to perform a LIST operation, with attributes, for
various values of total attributes and retrieved attributes. The
bottom curve is the same result for LIST with no attributes as
in Figure 5.

Figure 6 shows the time to perform the LIST operation as
a function of the number of objects, but this time adds two
more parameters: number of attributes per object, and number

of attributes retrieved by the client. For example, each object
may have 10 attributes associated with it, but the client is only
interested in receiving one of those attributes. As expected, the
time for the operation is proportional to the number of objects.
The time increases linearly with the number of attributes
to retrieve, as expected, due to the cost of gathering and
marshalling each of the attributes. For any particular value
of the number of attributes retrieved, the curves for both 10
and 100 total attributes appear on top of each other. The
effect of increasing total number of attributes has only a slight
impact on the total time; it increases logarithmically due to the
enlarged search space.

D. Query

The QUERY operation is a multi-object command that
allows selection of objects based on certain criteria, with
either a union or intersection constraint. This command is an
example of off-loading computation to the disk. The power of
this command is further highlighted in the case of network-
attached storage environments, where rather than bringing the
data across the network for clients to process, the computation
can be performed directly on the disk, returning only matching
entries to the client.

The SQL statement for this operation is:

SELECT attr.oid FROM coll, attr
WHERE coll.pid = attr.pid AND coll.oid = attr.oid

AND coll.pid = PID AND coll.cid = CID
AND attr.page = page1 AND attr.num = num1
AND attr.val BETWEEN min1 AND max1

UNION
SELECT attr.oid FROM coll, attr

WHERE coll.pid = attr.pid AND coll.oid = attr.oid
AND coll.pid = PID AND coll.cid = CID
AND attr.page = page2 AND attr.num = num2
AND attr.val BETWEEN min2 AND max2;

The QUERY command shown here tries to retrieve objects
belonging to the collection CID within the partition PID
that match two query criteria specified by the tuples (page1,
number1, min1, max1) and (page2, number2, min2, max2).
The “min” and “max” values are the constraints on the attribute
value (“val”) that serve to restrict the range of selection.
While this example shows the union of the two criteria, the
intersection form is similar. Since SQLite’s query optimizer
is not very sophisticated, we were careful to order the tables
in the FROM clause properly, and to order the terms in the
WHERE clause to get the desired query plan.

The above translation is optimized for the case when the
number of objects within a collection is relatively small
compared to the total number of objects within the device. If,
however, the sizes are comparable, then a query that directly
selects the objects matching the criteria and finally constrains
the selection to the collection membership would be more
efficient. But this alternate form does not scale well if many
objects match the criteria. Based on some function of number

of objects, collection size and expected matches, either of the
queries can be selected.

There are five variables that impact the performance of
QUERY: the number of objects in the database, the number
of objects in the collection, the number of attributes per
object, the number of query criteria, and the number of objects
that match the criteria. The QUERY command is flat with
respect to the total number of objects in the device, as one
would expect, but is affected by the collection size, match
size and number of criteria. We ran the experiment with the
INTERSECTION of query criteria for various combinations of
number of attributes per object, collection size, and number
of query criteria.

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
i
m
e

(

µs
)

Number of objects in the collection

match=1000

match=300

match=100

match=30

match=10

match=1

Fig. 7: Time to perform a QUERY operation, for various
values of the number of matching objects. The number of
criteria is fixed at 2, and the number of attributes per object
is 10.

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
i
m
e

(

µs
)

Number of objects in the collection

criteria=10

criteria=7

criteria=4

criteria=2

criteria=1

Fig. 8: Time to perform a QUERY operation, for various
values of the number of selection criteria. The number of
matching objects is fixed at 10, and the number of attributes
per object is 10.

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
i
m
e

(

µs
)

Number of objects in the collection

attr=200

attr=20

attr=2

Fig. 9: Time to perform a QUERY operation, for various
values of the number of attributes per object. The number
of matching objects is fixed at 10, and the number of criteria
is 2.

In Figure 7, we show the effect of the number of matches
on the latency of the QUERY operation. Figure 8 shows the
effect of the number of query criteria, and Figure 9 shows the
effect of the total number of attributes already present on each
object. All three graphs plot latency of the QUERY operation
as a function of the number of objects in the collection.

All the figures show a linear relationship between the
latency and the number of objects within the collection, since
the query tests the criteria on each member of the collection.
As shown in Figure 7, there is very minimal impact resulting
from the number of matches, which only affects the time to
assemble the results. Also as the number of objects increases,
the time becomes dominated by scanning the collection for
object membership.

Figure 8 shows a linear relationship between the number
of query criteria and the execution time. Each query criterion
adds a select sub-query to the SQL statement, thereby increas-
ing the time proportional to the number of sub-queries. In the
case of a union of query criteria, one can collapse the multiple
select statements to one with the query criteria specified in the
where clause. But for intersection that optimization does not
work. We are currently working on proper table organization
and SQL design to further optimize all types of QUERY
operations.

Finally, Figure 9 shows the logarithmic effect of the number
of attributes per object on the operation latency. The number
of attributes and number of objects within the device have only
an indirect effect on the latency by increasing the size of the
search space.

E. Set member attributes

In many scenarios it is often efficient to combine multiple
operations into a single command by amortizing fixed costs
like network round-trips and disk seek times. For example,
take the case of increasing the version number of all files

within a project. One can solve the problem by including all
the objects belonging to the project in a collection and using
the SET MEMBER ATTRIBUTES command to set the version
number attribute on all the objects at once.

The SQL statement for SET MEMBER ATTRIBUTES is:

INSERT OR REPLACE INTO attr
SELECT PID, coll.oid, page1, num1, val1

FROM coll WHERE coll.cid = CID
UNION ALL
SELECT PID, coll.oid, page2, num2, val2

FROM coll WHERE coll.cid = CID;

where two attributes are set on each member of the collection
CID. The two select statements generate values to be used
to update the attribute tables. The tuples (page1, number1,
val1) and (page2, number2, val2) were specified by the user,
along with the PID and CID in question. The select statements
look up the objects in the collection, and the insert or replace
statement updates the attributes of those objects.

There are four variables that affect the performance of SET
MEMBER ATTRIBUTES: number of objects in the collection,
number of attributes being set, total number of objects in the
database and total number of existing attributes per object.
The last two variables have an indirect impact on performance
through the change of the size of the tables. However, as
seen from the SQL statement, the size of the collection and
the number of attributes to set will have a direct impact on
performance.

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
i
m
e

(

µs
)

Number of objects in the collection

attr=40

attr=20

attr=2

Fig. 10: Time to set 1 attribute using SET MEMBER AT-
TRIBUTES operation, for various values of total number of
attributes.

Figure 10 shows the time to perform a SET MEMBER
ATTRIBUTES operation as a function of the number of
objects in the collection. Only one attribute is set. As expected,
the graph shows a linear relationship between the latency and
number of objects in the collection. Changing the total number
of attributes already existing on each object has only a small
effect. The transpose of this data is shown in Figure 11, where
a small slope on the curves indicates a slight logarithmic effect.

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80

T
i
m
e

(

µs
)

Total number of attributes per object

obj=1000

obj=100

obj=10

Fig. 11: Transpose of data in Figure 10, with more samples,
showing slight logarithmic impact of the total number of
attributes.

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
i
m
e

(

µs
)

Number of objects in the collection

set=10

set=5

set=3

set=2

set=1

Fig. 12: Time to set various numbers of attributes using
SET MEMBER ATTRIBUTES operation. The total number
of attributes per object is fixed at 10.

This effect is due to the increased search space caused by
the higher number of pre-existing attributes on objects in the
collection.

Next we examine the impact of the number of attributes that
are set per collection object. Figure 12 shows the results, with
the total number of attributes per object fixed at 10. There
is a linear relationship between the number of attributes to
be set and the execution time. This is shown more clearly in
Figure 13.

V. RELATED WORK

In addition to our work, various implementations of OSD
targets are also available. IBM has developed a prototype
of an object-based controller called ObjectStone [11], which
uses the iSCSI transport like our emulator. The target is only
available in binary form. It uses gdbm to store attributes, but
the key/value arrangements are unknown.

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10

T
i
m
e

(

µs
)

Number of attributes to set on each object

obj=1000

obj=100

obj=10

Fig. 13: Transpose of data in Figure 12, with more samples,
showing pronounced logarithmic impact of the number of
attributes to set.

Intel [9] also has a target OSD emulator for an older version
of the protocol. It implements attributes as separate files in a
local file system. Work from Du et al. [10] builds on this
implementation by adding security, but leaves the attribute
implementation unchanged.

EBOFS [4] is an object file system that manages the low-
level storage of object-based disks. It uses B-trees to per-
form object look-ups on disk, index collections, and manage
block allocation. By directly interacting with the raw block
device, EBOFS avoids the local file system interface. However,
EBOFS does not implement attributes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a comprehensive design of
attribute storage for object-based storage devices. This work
describes an implementation for general purpose processors
and operating systems using an embedded SQL database, but
the concepts and trade-offs are likely to apply to hardware
solutions as well. Using a database for attributes rather than
storing them as unrelated files permits efficient implementation
of fast indexing operations supported by OSDs.

Future work with our OSD target emulator will focus on
improving database performance, by adding indexes to the
tables where they will be useful. We will also reconsider the
entire design in light of real-world usage models of OSDs
in parallel file systems. Concurrent operation of metadata
commands to service multiple clients will require a locking
strategy for rows or tables so that multiple threads can proceed
independently.

REFERENCES

[1] R. O. Weber, “Information technology—SCSI object-based storage
device commands -2 (OSD-2), revision 1,” INCITS Technical
Committee T10/1729-D, Tech. Rep., Jan. 2007.

[2] Cluster File Systems, Inc., “Lustre: a scalable high-performance file
system,” Cluster File Systems, Tech. Rep., Nov. 2002,
http://www.lustre.org/docs/whitepaper.pdf.

[3] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale
storage cluster—delivering scalable high bandwidth storage,” in
Proceedings of the ACM/IEEE SC2004 Conference (SC’04),
Pittsburgh, PA, Nov. 2004.

[4] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance distributed file
system,” in Proceedings of OSDI’06, Seattle, WA, Nov. 2006, pp.
307–320.

[5] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long,
and T. T. McLarty, “File system workload analysis for large scale
scientific computing applications,” in Proceedings of the Twentieth
IEEE/Eleventh NASA Goddard Conference on Mass Storage Systems
and Technologies, College Park, MD, Apr. 2004.

[6] D. Roselli, J. Lorch, and T. Anderson, “A comparison of file system
workloads,” in Proceedings of the 2000 USENIX Annual Technical
Conference, Jun. 2000, pp. 41–54.

[7] T. Fujita and M. Christie, “tgt: framework for storage target drivers,”
in Proceedings of the Ottawa Linux Symposium, Ottawa, Canada, Jul.
2006.

[8] Sun Inc. et al., “Solaris object storage device,”
http://www.opensolaris.org/os/project/osd/, 2007.

[9] Intel Inc. et al., “Intel open storage toolkit,”
http://sourceforge.net/projects/intel-iscsi/, 2007.

[10] D. Du, D. He, C. Hong, J. Jeong et al., “Experiences in building an
object-based storage system based on the OSD T-10 standard,” in
Proceedings of MSST’06, College Park, MD, May 2006.

[11] IBM Research, “ObjectStone,” http://www.haifa.il.ibm.com/projects/
storage/objectstore/objectstone.html.

[12] M. K. M. Margo Seltzer, Gregory Ganger et al., “Journaling versus
soft updates: asynchronous meta-data protection in file systems,” in
Proceedings of USENIX, Jun. 2000.

[13] M. Rosenblum and J. Ousterhout, “The design and implementation of
a log-structured file system,” ACM Transactions on Computer Systems,
vol. 10, no. 1, pp. 26–52, 1992.

[14] N. A. V. Prabhakaran, L. Bairavasundaram et al., “IRON file systems,”
in Proceedings of SOSP’05, Oct. 2005.

[15] S. A. Weil, “Leveraging intra-object locality with EBOFS,” UCSC,
Tech. Rep. CMPS-290S, May 2004.

[16] A. Grünbacher et al., “Linux Extended Attributes and ACLs,”
http://acl.bestbits.at/, 2007.

[17] SGI Inc. et al., “XFS: A high-performance journaling filesystem,”
http://oss.sgi.com/projects/xfs/, 2007.

[18] NCSA, “HDF5,” http://hdf.ncsa.uiuc.edu/HDF5/.
[19] Unidata, “netCDF,” http://www.unidata.ucar.edu/software/netcdf/.
[20] P. Nelson et al., “gdbm,” http://www.gnu.org/software/gdbm/, 2007.
[21] Oracle Inc. et al., “Oracle Berkeley DB,”

http://www.oracle.com/database/berkeley-db/, 2007.
[22] D. R. Hipp et al., “SQLite,” http://www.sqlite.org/, 2007.
[23] Database Language SQL,

http://www.contrib.andrew.cmu.edu/ shadow/sql/sql1992.txt, ISO/IEC,
Jul. 1992.

