
Composing Geoinformatics Workflows with User
Preferences

David Chiu Sagar Deshpande‡ Gagan Agrawal Rongxing Li‡
Department of Computer Science and Engineering

‡ Department of Civil and Environmental Engineering and Geodetic Science
Ohio State University
Columbus, OH 43210

ABSTRACT
Service-oriented science, an interoperable paradigm for en-
abling computations over distributed heterogeneous systems,
has not eluded the geographical community. Recent efforts
toward standardizing geospatial technologies communicate
this cause. Consequently, a number of quality systems have
been built for cooperative geospatial data analysis and re-
trieval. Among these, workflow management systems have
garnered considerable attention for automating and schedul-
ing service executions. Traditionally, such systems seek to
offer support for user preferences, e.g., time of completion.
But with the rebirth of distributed computing towards the
heterogeneous Data Grid, new challenges are posed for ef-
fectively supporting this feature: multiple disparate data
sources, networks, compute nodes, and the potential for
moving very large datasets. We believe that the relation-
ship between execution time and workflow accuracy can be
exploited to offer more flexibility in handling user prefer-
ences.

In this paper we discuss a system which enables user set-
tings through a novel dynamic accuracy (sampling rate) ad-
justment scheme of workflow results and a framework for
defining cost models for predicting application-specific com-
pletion times and the propagation of errors as an effect from
sampling. We present our system in the context of two
geospatial workflow applications. Experimental results show
that accuracy adjustment resulted in a maximum deviation
of 5.04% from the expected accuracies and an overhead on
the order of µsecs. The effects of sampling on a particu-
lar workflow’s physical accuracy was also evaluated, display-
ing highly acceptable results even among diminutive sample
sizes of the original dataset.

1. INTRODUCTION
The burgeoning advancements of web and grid technologies
have helped launch a call for the availability and distribu-
tion of data and resources in various domains. Specifically

within the geosciences, authorities, such as the Federal Ge-
ographic Data Committee (FGDC) and the Open Geospa-
tial Consortium (OGC), have pushed this initiative through
the standardization of geo-semantics and geospatial services
respectively. This movement is a new direction for GIS ap-
plications which have historically been centralized on single
machines. Recognizing the advantages of distributed het-
erogeneous data integration and interoperability, prominent
proprietary applications, such as ESRI ArcGIS, have already
integrated these standards into their frameworks.

With distributed hetergeneous datasets and processes comes
the nontrivial challenge for scientists and other end-users
to manage geoinformation. For instance, certain informa-
tion involves execution of several processes with disparate
data sources in a particular sequence, which may also in-
volve any combination of data integration, cleansing, and
other preprocessing tasks. Certainly, the ultimate hope for
enabling these process sequences (traditionally known as
service chains or geospatial workflows [2]) is to automate
their composition while simultaneously hiding low-level de-
tails such as service and data discovery, integration, and
scheduling from the user. Thus, many efforts in geospatial
workflow management systems [17, 16, 28, 10] have been
initiated to address these tasks.

But along with any user-oriented system is the need for sup-
porting user preferences. Often, there are multiple ways
of answering a given query, using different combinations of
data sources and services. Some combinations are likely to
result in higher cost, but better accuracy, whereas other
options might lead to quicker results, but lower accuracy.
This could be because some data collection methods involve
higher resolution than others, or because some datasets are
available at servers with lower-access latencies than others.
Thus, query execution time is a natural user preference in
any workflow system. Additionally, in many scientific dis-
ciplines, including geoinformatics, data reduction methods
(e.g., feature selection, dimensionality reduction, . . .), can
speed up the time for remote retrieval and computations,
but will likely lower the accuracy. In the meantime different
classes of users can have different querying requirements.
Some users may want the answers the fastest, some may
want the most accurate answers, and others might prefer the
faster of the methods which can meet certain accuracy con-
straints. While most efforts in workflow management sys-
tems focus directly on minimizing execution times [25, 29, 1]
through smart scheduling heuristics, it would be highly de-

sirable if we could enable user preferences for both accuracy
and time. In other words, we seek to alleviate users from the
need of understanding the cost and accuracy tradeoffs asso-
ciated with different datasets and services that could be used
to answer a query. This paper presents such a framework
for geospatial workflow composition, which uses a novel ap-
proach for dynamically supporting user preferences on time
and accuracy.

To automate the time/accuracy tradeoff in workflow man-
agement, we allow developers to expose an accuracy param-
eter, e.g., sampling rate. Our system also takes as input
arbitrary models for predicting process completion time and
error/accuracy propagation of the applications. We studied
the effects of data sampling on the physical accuracy of the
output from two specific geoinformatics applications: land
elevation change and shoreline extraction, and extracted er-
ror propagation models from these methods. Our workflow
composition algorithm employs an efficient algorithm to au-
tomatically regulate the accuracy parameter based on these
cost predictions. An effective adjustment of this parameters
can affect the overall execution time and accuracy of the
composed workflows to meet user requirements.

We conducted experiments to evaluate three specific aspects
of our system. First, we want to show that, although the
prediction models are invoked quite frequently, they incurr
little contribution to the overall workflow composition time.
Next, we measure the efficiency and efficacy of our accuracy
parameter adjustment algorithm. Lastly, we discuss an eval-
uation of one error model’s prediction as compared to real
physical error calculations. The remainder of this paper is
organized as follows. An overview of our system is presented
in the next section. Error Prediction models for our consid-
ered geospatial queries are discussed in Section 3. In Section
4 we discuss technical details of our cost model and work-
flow composition algorithm. Performance evaluations of our
workflow composition algorithm, error prediction models are
presented in Section 5, and a comparison of our work with
related research efforts follows in Section 6. Lastly, we con-
clude and discuss future opportunities in Section 7.

2. SYSTEM OVERVIEW
We now discuss a brief overview of each system compo-
nent while directing the reader to detailed descriptions in
our previous work [5]. A conceptual view of our system is
shown in Figure 1. Most autonomous systems for informa-
tion retrieval, including our own, require semantic descrip-
tions of datasets and services. For geospatial datasets, CS-
DGM (Content Standard for Digital Geospatial Metadata)
[12] is widely recommended for this purpose. CSDGM anno-
tates data files with such descriptions as area coverage, date
of creation, coordinate system, etc. Service interfaces are
described in the WSDL standard [6]. In addition, we must
also require that our semantic annotations include domain
information that will aid in supporting autonomous deter-
mination of workflow correctness such as dependencies and
context suitability. Effective classification of datasets and
services along with a description of their relationships will
help filter the set of services to those suitable for execution.
The standard ontology descriptor, Web Ontology Language
(OWL) [8], was used to define our simple domain ontology,
shown in Figure 2, is not nearly as complete as other efforts

in the geospatial domain [20], but it serves our specific pur-
pose of workflow composition, and general enough to port
to other domains. It allows developers to trivially define the
relationships domain concepts, datasets, and services.

Figure 1: System Overview

Domain
Concepts

Services Data

derivedFrom

derivedFrom derivedFrom

needsInput

derivedFrom

Figure 2: Ontology for Domain Specific Semantic
Description

Among our system’s goals, one is to provide support for
high-level user queries, which implies that a somewhat so-
phisticated query parser should be included. Specifically,
this component parses a query into relevant concepts in our
ontology, and when available, substantiates the parsed con-
cepts with user given values. User preferences are input by
the user with the keyword pairs: QoS:Time=N sec[±ε sec]
and
(QoS:AccConcept=concept, QoS:Acc=A%)[±ε%]. For in-
stance, one might issue the following query to retrieve a
cropped image of Columbus, Ohio with 50% (±5%) of the
original resolution:

‘‘crop an aerial image of Columbus, Ohio

with northbound=(x,y), southbound=(x,y), ...
QoS:AccConcept=resolution, QoS:Acc=50[5]’’

In this case, only one constraint is given — the system at-
tempts to abide the given restriction while optimizing the
undefined constraint, i.e., time. Thus, by issuing an accu-
racy of 50% on the result, the user is effectively advising
the system to potentially speed up the process by compress-
ing the original aerial image. However, if a time constraint
of t secs was also given, and t can be met at a higher ac-
curacy, then the time constraint takes precedence and the
accuracy of the image is instead optimized. One of the so-
called “gray areas” of constraint optimization can be seen
during cases where t, for instance, cannot be met at the
specified accuracy, and relies on an ε change to the user’s
constraint. The difficulty lies in determining whether ε can
be sacrificed, which is both application and user dependent.
In such cases we want to either allow the user to specify an
ε buffer or have the user request that all workflows meeting
either constraints be returned. In this case the user is given
time and accuracy predictions of each workflow, and he/she
selects the one to execute. Currently, the latter option has
not been implemented in our system.

Given this well-structured query, appropriate services and
datasets must be selected for use and their composition is
reified dynamically through communication with the domain
ontology. Through this process, the workflow composition
algorithm enumerates a set of valid workflow candidates such
that when each is executed, returns a suitable response to
the query. From the set of candidates, the workflow con-
struction engine must then examine the cost of each in or-
der to determine a subset that meet user constraints. Ad-
ditionally, this component can dynamically adjust workflow
parameters in order to meet expected time or accuracy re-
quirements set by the user. Finally, the execution of work-
flows is carried out and the presence of faults within a cer-
tain execution, caused by such factors as network downtime
or data/process unavailability, triggers the execution of the
next queued workflow (if available) to provide the next best
possible response.

3. ERROR PREDICTION MODELS
In our considered geospatial workflows, we focused on the
particular adjustable accuracy parameter of sampling rate
on data. Thus, in order to make domain-relevant error pre-
dictions, we must analyze the effect of data sampling with re-
spect to physical error propagation. The application queries,
shown in Table 1, serve as model and motivating examples
in this study. We will discuss the two applications indepen-
dently.

Table 1: Experimental Geospatial Queries

DEM
Query

“return land elevation change at (482593,
4628522) from 07/08/2000 to 07/08/2005”

Shoreline
Query

“return shoreline extraction at (482593,
4628522) on 07/08/2004 at 06:18”

3.1 DEM Elevation Difference Query

This query involves a simple algorithm which extracts the
elevation between two digital elevation model (DEM) files
DEM1 and DEM2. A DEM is essentially an m×n grid with
elevation, e.g., Z-values, at each point. Suppose that DEM2

is sampled to reduce time cost, which effectively widens the
gap between each pair of points. This variation between res-
olutions, as shown in the left-hand side of Figure 3, presents
difficulties to the otherwise trivial computation of elevation
difference, ZDIFF = ZDEM1 − ZDEM2 . In order to com-
pensate for the unknown Z-values of DEM2, interpolation
becomes necessary. Each DEM now has disparate grid spac-
ing which results in different errors along the horizontal and
vertical directions.

It is worth noting that even without sampling, interpola-
tion may be necessary to normalize the grid sizes between
two heterogeneous DEMs (perhaps, measured by two data
sources with different resolutions).

Figure 3: The Overlay of DEM1 and DEM2

The Kriging method [7] is implemented for interpolation to
calculate the elevation information corresponding to DEM1

from DEM2. Kriging is a set of geostatistical techniques to
interpolate the value Zinter at an unobserved location corre-
sponding to the grid location on DEM1 from observations of
nearby points on DEM2. This method computes the opti-
mal linear unbiased estimator of Zinter based on a stochastic
model of the spatial dependence quantified either by the var-
iogram γ(x, y) or by the expectation µ(x) = E[Z(x)] and the
covariance function c(x, y) of the random field.

Depending on the stochastic properties of the random field
different types of Kriging apply, but in our case, the Simple
Kriging method applies,

Ẑ(r0) =

NX
i=1

λiZ(ri)

which assumes the expectation of the random field to be
known and relies on a covariance function. It is the weighted
sum of the data set and are the weights which depend on
the semivariogram, e.g., the distance to the prediction loca-
tion, and spatial relationship among the measured location
around the prediction value.264 γ1,1 . . . γ1,N

...
. . .

...
γN,1 . . . γN,N

375
264 λ1

...
λN

375 =

264 γ1,0

...
γN,0

375

The above matrix contains the modeled semivariogram val-
ues between all pairs of sampled locations. The λ vector
contains the weights and the γ values contain the modeled
semivariogram values between the measured and the pre-
diction location. The N equations are solved to otbain the
weights, after which, the interpolated value is determined.
Assuming that DEM2 is the coarser grained grid when com-
pared to DEM1, we find DEM2’s interpolated variance (de-
noted σ̃) at each point with the following equation:

σ̃2
ZDEM2

= σ2
Z −

NX
i=1

λiγi,0

Finally, the error at each point for the difference calculation
is summarized as

σZDIF F =
q
σ2
ZDEM1

+ σ̃2
ZDEM2

3.2 Shoreline Extraction Query
The shoreline query involves obtaining the water level and a
coastal terrain model (CTM) file for the targeted area and
time. The CTM, as illustrated in Figure 4, is obtained by
mosaicking underwater landscape (bathymetry) and a DEM
over land [23]. To put simply, CTMs are not unlike DEMs,
with the difference being that the points can represent both
land surface and bathymetry values. A shoreline is obtained
by intersecting water level with the CTM. Here, the effects
of CTM sampling are not as complex as the former query.
The missing data points are interpolated as an average of
the samples, and a natural degradation of the shoreline’s
quality is expected.

Figure 4: Shoreline Extraction Process

As shown in the above figure, the shoreline position would
be given by:

∆x =
δx

(h2 − h1)
× (h− h1)

where δx = (x2 − x1) and x1 and x2 are distances between
grid points. h denotes the water level, and h1 and h2 repre-
sent grid point elevations. Then the error can be estimated
as follows:

σ∆x =r“
σh1

∂∆x
∂h1

”2

+
“
σh2

∂∆x
∂h2

”2

+
`
σh

∂∆x
∂h

´2
+
`
σδx

∂∆x
∂δx

´2
which is reducible to

σ∆x =r
σ2
x1 +

∆x2σ2
h

[(h−h2)2+(h−h1)2]

(h2−h1)4
+

[∆X2σ2
h

+(h−h1)2σ2
x]

(h2−h1)2

In this study, the average water level for a year was cal-
culated using the hourly water level observations available
from NOAA [18]. The average slope along the shore was
considered to compute the h1 and h2 values used in the
above equation. Later, in Section 5, we discuss an evaluation
of this error prediction method against an actual shoreline
along the coast of Lake Erie near Sandusky, Ohio.

4. QOS WORKFLOW COMPOSITION
In this section we focus on problem formulation and imple-
mentation details of our approach.

4.1 Problem Statement
In practice most workflows can be expressed as directed
acyclic graphs where the vertices denote services and data
elements and directed edges represent the flow of execution.
Formally, workflows can also be recursively defined as fol-
lows. Given some arbitrary dataset, D and a set of services
S, a workflow w is

w =

8><>:
ε

d

(s, Ps)

such that terminals ε and d ∈ D denote a null workflow and
a data instance respectively, and nonterminal (s, Ps) ∈ S
where s denotes a service with parameter list Ps = (p1, . . . , pk)
and each pi is itself a workflow. Then given a set of work-
flows Wq = {w1, . . . , wn} capable of answering some user
query q, our goal is to identify some subset Rq ⊆ Wq such
that each workflow r ∈ Rq either meets or exceeds user con-
straints, namely, processing time and accuracy of results.

4.2 Modeling Workflow Cost
We propose two cost functions, for aggregating workflow ex-
ecution time and error propagation. The workflow’s time
cost is estimated by

T (w) =

8>>>><>>>>:
0, if w = ε

tnet(d), if w ∈ D
tx(s, Ps)+ if w ∈ S

tnet(s, Ps) + max
pi∈Ps

T (pi),

If workflow w is a base data element, then w = d, and the
cost is trivially the data transmission time, tnet. When w is
a service, then w = (s, Ps), and its time can be summarized
as the sum of the service’s execution time tx, network trans-
mission time of its product, and, recursively, the maximum
time taken by all of its parameters (assuming their execution
can be carried out concurrently).

The error aggregation function, E(w), which represents the
error estimation of a given workflow, is also in the familiar
recursive sum form

E(w) =

8><>:
0, if w = ε

σ(d), if w ∈ D
σ(s, Ps) + max

pi∈Ps

E(pi), if w ∈ S

Due to the heterogeneity of datasets and processes, it is
expected that disparate workflows will yield results with
fluctuating measures of accuracy. Again, at the base case

lies the expected error of a particular data set, σ(d). An
error value can also be attributed to a service execution,
σ(s, Ps). For instance, errors will be introduced if a sam-
pling service is called to reduce data size or some interpola-
tion/extrapolation service is used predict some value, e.g.,
the methods for deriving σ in the previous section handle
this particular issue.

4.3 Workflow Enumeration and Pruning
As previously mentioned, our workflow enumeration (Algo-
rithm 1) is based on Depth-First Search†. Starting from the
target domain concept, we explore each dependent path in
the given ontology until it leads to a sink, that is, base data
node. All intermediate nodes between the target and data
nodes are service nodes used to derive some intermediate
concept.

Every concept (intermediate or target) can be realized by
various datasets or services. (Line 6) obtains a set of “next”
data or service nodes towards its derivation (null workflows
are implicit in this algorithm). Each element in this set
marks a potential workflow candidate either in the direction
of available data or a service product. In the former case
(Line 8) w is a base data workflow and immediately con-
sidered for inclusion. The latter case (Line 11) considers
the service at-hand along with its parameters. Each service
parameter is essentially a new subtarget concept in our on-
tology, and consequently, the algorithm is called recursively
to solve for a set of its subworkflows.

For instance, consider a service workflow with two parame-
ters of concepts a and b: (s, (a, b)). Assuming that subtarget
concepts a and b are derived using some set of subwork-
flows Wa = {wa1 , wa2} and Wb = {wb1}, then the workflows
derivable from s includes Ws = {(s, (wa1 , wb1)), (s, (wa2 , w

b
1))}.

That is, if every service parameter can be substantiated with
at least one subworkflow, then the full set of workflow com-
positions is established through a cross product of its derived
parameters (Line 23). Each element from the cross product
is then coupled with the service and considered for inclusion.

When a workflow becomes a candidate for inclusion, QoS-
Merge (Algorithm 2) is called to provide the decision: prune,
include as-is, or modify workflow accuracy then include. For
simplicity, we consider a single error model, and hence, just
one adjustment parameter in our algorithm, when in reality
workflows may involve various error aspects for considera-
tion such as the example given in Section 2.

QoSMerge, which is simplified for clarity by excluding code
for handling QoS precedence and ε constraint buffer (as dis-
cussed towards the end of Section 2), inputs the following
arguments: (1) W , the set of current workflow candidates,
(2) w, the current workflow under consideration, (3) t′ and
(4) e′ are the predicted time and error values of the workflow
from the previous iteration (for detecting convergence), and
(5) QoS is the QoS object from the original query. In sum-
mary this algorithm merges the given workflow candidate,
w, for with the result set W if it meets time and/or error
constraints.

†Details on query parsing, the handling of immediate data
values, and data identification can be found in [5]

Algorithm 1 enumWF(target, QoS)

1: W ← ∅
2: /* static array for memoization */
3: global subWorkflows[. . .]
4:
5: /* B denotes the set of all data/service elements that

can be used to derive target concept */
6: B ← derives(target)
7: for all β ∈ B do
8: if β ∈ D then
9: w ← data(β)

10: W ← QoSMerge(W,w,∞,∞, QoS)
11: else
12: /* β ∈ S */
13: /* Pβ denotes the set of service’s params */
14: Pβ ← getServiceParams(β)
15: ∆← ∅
16: for all p ∈ Pβ do
17: if exists(subWorkflows[p.concept]) then
18: ∆← ∆ ∪ subWorkflows[p.concept]
19: else
20: ∆← ∆ ∪ enumWF(p.concept, QoS)
21: end if
22: end for
23: Params← crossProduct(∆)
24: for all pm ∈ Params do
25: w ← srvc(β, pm)
26: W ← QoSMerge(W,w,∞,∞, QoS)
27: end for
28: end if
29: end for
30: subWorkflows[target] ←W
31: return W

Algorithm 2 QoSMerge(W,w, t′, e′, QoS)

1: /* no time constraint */
2: if QoS.T ime =∞ then
3: CT ←∞
4: else
5: CT ← v
6: end if
7: /* no accuracy constraint */
8: if QoS.Err =∞ then
9: CE ←∞

10: else
11: CE ← v
12: end if
13: /* constraints are met */
14: if T (w) ≤ QoS.T ime ∧ E(w) ≤ QoS.Err then
15: /* insert w in QoS */
16: return (W ∪ w)
17: end if
18: /* convergence of model estimations */
19: if |T (w)− t′| ≤ CT ∧ |E(w)− e′| ≤ CE then
20: /* prune w by excluding from W*/
21: return W
22: else
23: α← getNextAdjustableParam(w)
24: γ ← suggestParamValue(α,w,QoS,CE)
25: wadj ← w.setParam(α, γ)
26: return QoSMerge(W,wadj , T (w), E(w), QoS)
27: end if

Algorithm 3 suggestParamValue(α,w,QoS)

1: if modelExists(α, w.service) then
2: /* trivially invoke model */
3: model← getModel(w.service, α,QoS)
4: return model.f(QoS.Err)
5: else
6: min← α.min, max← α.max
7: repeat
8: mid← (min+max)/2
9: wadj ← w.setParam(α,mid)

10: if QoS.Err < E(wadj) then
11: min← mid
12: else
13: max← mid
14: end if
15: until max < min ∨ |E(wadj)−QoS.Err| < CE
16: return mid
17: end if

Initially, this algorithm assigns convergence thesholds CE
and CT for error and time constraints respectively. These
values are assigned to ∞ if its corresponding QoS is not
given, and otherwise, v, some insignificant value. If the cur-
rent workflow’s error and time estimations, E(w) and T (W)
meet user preferences, the workflow is included into the re-
sult set. But if the algorithm detects that either of these
constraints is not met, we ask the system to provide a suit-
able value for α, the adjustment parameter of w, given the
QoS.

Taken with the suggested parameter, the procedure is called
recursively on the adjusted workflow, wadj . After each itera-
tion, w is adjusted and if the constraints are met, is returned
for inclusion. On the other hand, when the algorithm de-
termines that the modifications to w provide insignificant
contributions to its effects on T (w) and E(w), i.e., the ad-
justment parameter converges without meeting QoS, then
w is subsequently pruned. This condition is shown on (Line
19) of Algorithm 2. The values of t′ and e′ of the initial
QoSMerge call on (Lines 10 and 26) of Algorithm 1 are set
to∞ for dispelling the possibility of premature convergence.

Algorithm 3 shows suggestParamValue for handling error
QoS, although time QoS is handled in much the same way.
This algorithm assumes two cases: The trivial case is that
a model is supplied for arriving at an appropriate value for
α, the adjustment parameter. Sometimes this model is sim-
ply inverse of either the time or error models which exists
for solving T (w) and E(w). When this is not possible, such
as in the case of our own experiments where complex cal-
culations are involved towards arriving at T (w) or E(w),
we must provide an efficient way for solving α in a forward
fashion. This procedure essentially reduces to binary search
where each iteration assigns a new value to α and subse-
quently checks for convergence. For this to work properly,
of course, we must assume that T (w) and E(w) are mono-
tonic. Depending on the granularity of each iteration, some
overhead is expected with this approach, as will be shown
in the experimental section.

If either QoS.T ime or QoS.Err are not given by the user,
their respective models are actually never invoked, and QoS-

Merge becomes the trivial procedure of immediate inclusion
of workflow candidate w. In Algorithm 2 this is equivalent
to assigning the QoS.∗ constraints to ∞.

5. EXPERIMENTAL RESULTS
Our system performance evaluation focuses on three goals:
First, to evaluate the overhead of workflow enumeration and
the impact of pruning. Secondly, we evaluate the efficiency
and effectiveness of our parameter suggestion algorithm, and
finally, we compare our shoreline’s error model with an ac-
tual degradation to validate our error model.

5.1 Overhead of Workflow Enumeration
Our initial goal is to show the efficiency of Algorithm 1. This
core algorithm, called upon every given query, emcompasses
both auxiliary algorithms: QoSMerge — the decision to in-
clude a candidate and SuggestParamValue — the invocation
of error and/or time models to obtain an adjustment value
appropriate for meeting user preferences. Thus, an evalua-
tion of this algorithm offers a holistic view of our system’s
efficiency. A synthetic ontology, capable of allowing the sys-
tem to enumerate thousands of workflows for a user query,
was generated for this scalability experiment. The results,
depicted in Figure 5, was repeated for an increasing num-
ber of workflow candidates (i.e., |W | = 1000, 2000, . . .) on 4
configurations (solid lines) without pruning, i.e., the worst
case scenario where all |W | workflows meet any given con-
straint. These 4 settings correspond to user queries with (a)
no QoS constraints, (b) only error constraints, (c) only time
constraints, and (d) both constraints.

Figure 5: Cost Model Overhead and Pruning

Expectedly, the enumeration algorithm runs in proportional
time to the amount of models supported. It is also expected
that the time cost model itself outweighs the error model be-
cause it evaluates 3 distinct predictions, tx, tnet, and sized.
To evaluate our algorithm’s efficiency, we altered our pre-
vious experimental setting to contain exactly 1 workflow
within each candidate set that meets both time and error
constraints. All other candidates are pruned in the early
stages of workflow composition, which corresponds to the
best case. For each setting of |W | + 1, the algorithm now
prunes |W | workflows (dashed line). The results show that
the pruning algorithm is as efficient as, and later, begins to
outperform the no-cost model since the amount of subwork-
flows to consider is minimized.

5.2 Effectiveness in Meeting User Preferences
Next, the geospatial queries that were given earlier in Table
1 will be used to demonstrate our system’s efforts for sup-
porting user preferences. A summary of these queries were
also given previously in Section 3.

Table 2: Suggested Value of Parameters (DEM
Query)

Ideal Suggested
Acc % Error (meters) Acc % Error (meters)

10 8.052 11.81 8.052001
20 7.946 21.15 7.945999
30 7.911 28.61 7.911001
40 7.893 34.96 7.892999
50 7.868 50.52 7.867996
60 7.859 60.16 7.858989
70 7.852 70.65 7.851992
80 7.847 80.71 7.847001
90 7.8437 89.07 7.843682
100 7.8402 99.90 7.840197

We start with an evaluation of the parameter suggestion
procedure. For these experiments, the sampling rate is the
exposed workflow accuracy adjustment parameter, and error
models for both queries have been defined as a function of
sampling rate. First, we focus on DEM query. Table 2
shows the ideal and actual (system provided) error targets.
On the left half of the table, the ideal accuracy % is the
user provided accuracy constraint and the ideal error is the
error value that is expected given this accuracy preference.
The right half of the table shows the actual accuracy % and
errors that the system provided through the manipulation on
sampling rate. As can be seen, even though the error model
appears to be extremely sensitive to ostensibly insignificant
amounts of correction, our system’s suggestion of sampling
rates does not allow a deviation of more than 1.246% on
average, and 5.04% in the worst case.

DEM query was executed with user given accuracy prefer-
ences of 10%, 20%, . . . , 100%. DEM files of sizes 125mb and
250mb were utilized to show the consistency of our system’s
algorithm. As can be seen in Figure 6, the sampling rates
along with the workflow’s corresponding execution times at
each accuracy preference, increase as the user’s accuracy
preference increases. The figure clearly shows the benefits
from using sampling, as the execution time is reduced poly-
nomially despite some loss in accuracy.

The above experiments were repeated for the shoreline query
to obtain Table 3. Again, the results are consistent with
the previous experiment, and moreover, our system offers
slightly better parameter adjustments which results in tighter
accuracies for this query. This can be explained again due to
the fine-grained sensitivity of the error model for the previ-
ous query. We exhibit only a 0.07% average and 0.13% worst
case accuracy deviation from the expected values. CTMs of
sizes 125mb and 250mb were used to run the actual exper-
iments. The results, depicted in Figure 7 again show the
consistency of our algorithm and the effects of sampling on
both workflow accuracy and execution time.

Figure 6: Workflow Accuracy and Corresponding
Execution Times for DEM Query

Table 3: Suggested Value of Parameters (Shoreline
Query)

Ideal Suggested
Acc % Error (meters) Acc % Error (meters)

10 61.1441 10.00 61.1441
20 30.7205 19.93 30.7204
30 20.4803 29.91 20.4798
40 15.3603 39.89 15.3599
50 12.2882 49.87 12.2892
60 10.2402 59.98 10.2392
70 8.7773 69.88 8.7769
80 7.6801 79.90 7.6803
90 6.8268 89.94 6.8266
100 6.1441 100 6.1441

Figure 7: Workflow Accuracy and Corresponding
Execution Times for Shoreline Query

Next, we discuss the evaluation of the parameter suggestion
overhead. Recall that the parameter suggestion algorithm
has two cases: (1) trivially invoke a predefined model for
solving for the adjustment parameter (in this case, the sam-
pling rate), or (2) if this model is not available, it solves for
the parameter through binary search on the sampling rate by
employing E(w) or T (w) per sampling rate at each iteration.
For both queries, error estimation, i.e., the σ term in E(w),
involves a series of computations, and an inverse model can-
not be easily derived. This forces the suggestParamValue
algorithm to default to the latter case of binary search. The
overhead (in msecs) to this approach is summarized in Fig-
ure 8.

Figure 8: Overhead of Workflow Accuracy Adjust-
ment

Again, the sensitivity of the DEM query’s error model ob-
serves a slightly longer time-to-convergence. This overhead,
however, contributes negligible time to the overall enumera-
tion time, shown earlier in Figure 5. A quick study was also
carried out to compare these overheads to the trivial case
of model invocation. Surprisingly, the best case time for
model invocation (model contains no calcuations and sim-
ply returns a constant) cost 0.024 msecs, which is signifi-
cantly more expensive. This cost can be explained through
the heavyweight implementation of our model — that is, we
utilize an equation parser to offer users an intuitive inter-
face for inputting complex calculations. This flexibility, of
course, is not without the cost of data structure manage-
ment, which undoubtedly contributes to the overhead.

We believe that our experimental results suggest that the
system maintains robustness against user defined cost, and
although not shown due to space limitations, parameter ad-
justment to meeting time constraints exhibited similar re-
sults.

5.3 Shoreline Error Model Evaluation
Our final experiment evaluate only the shoreline error pre-
diction model based on the availability of actual results for
comparison. Recall that the time cost of shoreline extrac-
tion is dominated by retrieving and processing the CTM
corresponding to the location. The sampling algorithm for
DEMs and CTMs essentially skips d1/re points per dimen-
sion, where r is the sampling rate. In our sampling algo-

rithm, the CTM is reduced by eliminating data points at a
regular interval. Clearly, the shorelines obtained from dif-
ferent sampling patterns would contain errors. By taking
exponentially smaller samples (r = 100%, 50%, 25%, 12.5%,
6.25%, 3.125%), we effectively double the amount of points
skipped per configuration.

Table 4: Actual Shoreline Errors

Acc (%) Error (meters) Stddev

100% 0 0
50% 1.36071 0.833924
25% 1.454593 1.050995

12.5% 2.651728 1.824699
6.25% 5.258375 4.06532
3.125% 15.03924 9.954839

Given the sampled CTMs, we created a visualization of the
resulting shoreline using ESRI ArcMap, depicted in Figure
9(a). Using the r = 100% setting as our baseline, it is visible
that a slight deviation is associated with every downgraded
sampling rate configuration. This becomes clearer in the
zoomed region shown in Figure 9(b), which also makes visi-
ble the patterns of sampling and its deteriorating effects on
the results. The actual errors shown in Table 4 are much less
than predicted by our model (compare with Table 3). Ad-
mittedly, this suggests that our model may be excessively
conservative, at least for this particular shoreline. While
the initial consequence is that a smaller sampling rate could
have been suggested by our system for speeding up work-
flows involving extremely large datasets, it does, however,
ultimately demonstrate that the actual results are no worse
than what the model predicts and that our framework is
overall safe to use.

6. RELATED WORKS
In general, the class of dynamic workflow composition sys-
tems for supporting composite business and scientific pro-
cesses has been studied extensively in a number of works
[19, 27, 21, 14, 3, 24, 22]. These systems typically enable
end-users to compose workflows from a high level perspec-
tive and automate workflow scheduling and execution. Fujii
and Suda [13] developed a system to allow for automatic
composition of workflows through the use of semantic infor-
mation.

Workflow systems with QoS support have also been devel-
oped. Most works in this area concentrate on process/service
scheduling in order to minimize total execution times. Eder
et al. suggests heuristics for computing process deadlines
and meeting global time constraints [11]. Other works, in-
cluding Zeng et al’s grid workflow middleware [29], Pega-
sus [9, 15], Amadeus [4], Askalon [25], and more recently,
stochastic modeling approaches [1, 26] exploit grid technolo-
gies, where datasets are inherently assumed heterogeneous
and intelligent workflow scheduling on resource availability
becomes a greater issue in meeting time constraints.

The notion and merits of utilizing service-oriented work-
flows, or so-called service chains, within the scope of geoin-
formatics were originally highlighted in [2]. However, to

(a) Overall Shoreline Region (b) Focused Shoreline Region

Figure 9: Shoreline Extraction Results

truly realize the autonomous construction of workflows re-
lies heavily on well-defined and standardized domain specific
information. Consequently, studies on the use of geospatial
ontologies for automated workflow composition have been
carried out. The work of Lemmens et al. [17] describes a
framework for semi-automatic workflow composition. Yue
et al. successfully demonstrated that automatic construc-
tion of geospatial workflows can be realized using their on-
tological structure [28, 10]. Hobona et al. [16] combines
a well-established geospatial ontology, SWEET [20], with
an adopted notion of semantic similarity of the constructed
workflows and the user’s query.

Our system differs from the above in the way that we assume
multiple workflow candidates can be composed for any given
user query. This set of candidates is pruned on the apriori
principle from the given user preferences, making the work-
flow enumeration efficient. Furthermore, we focus on an
accuracy-oriented task by allowing the user to specify appli-
cation/domain specific time and error propagation models.
Our system offers the online ability to adjust workflow ac-
curacies in such a way that the modified workflow optimizes
the QoS constraints.

7. CONCLUSION AND FUTURE WORK
In modern geospatial workflow composition systems, user
preferences are becoming increasingly more desirable due
to the possibility of having to move and analyze massive
datasets. This paper reports an approach to enabling time
and accuracy constraints in workflow composition through
methods for modeling application-specific error and execu-
tion time prediction. We evaluated our system in many di-
mensions, and overall, our results show that the inclusion
of such cost models contributes insignificantly to the over-
all execution time of our workflow composition algorithm,
and in fact, can reduce its overall time through pruning un-
likely candidates at an early stage. We also showed that our
dynamic accuracy parameter adjustment is effective for sug-
gesting relevant values for data reduction parameters, with
a maximum difference of 5.04% between the ideal sampling
error versus the system suggested errors between the two

queried applications. We further showed that this param-
eter adjustment decision typically converged on the order
of microseconds, again attributing negligible overhead. Fi-
nally, an evaluation of the shoreline error model was pre-
sented, and although we concede that our shoreline model
offers conservative predictions since the sampled datasets far
exceeded our expectations in retaining accuracy. It is, how-
ever, conclusive, that no real results were worse than the
predicted, and our model is overall safe for use in practice,
but perhaps, overly prudent.

As we seek to further our development of this system, we
are aware of features that have not yet been investigated
or implemented. One known area is workflow scheduling on
distributed heterogeneous resources. The problem, which
is inherently NP-Hard, has received much recent attention,
and many heuristics have been developed to address this is-
sue. Adding other features such as partial workflow caching,
data/service migration, and fault tolerance, the scheduling
problem is worsened. We propose to investigate the support
for these aspects and heuristics on enabling an efficient and
robust scheduler.

8. REFERENCES
[1] Ali Afzal, John Darlington, and Andrew Stephen

McGough. Qos-constrained stochastic workflow
scheduling in enterprise and scientific grids. In GRID,
pages 1–8, 2006.

[2] Nadine Alameh. Chaining geographic information web
services. IEEE Internet Computing, 07(5):22–29, 2003.

[3] Jim Blythe, Ewa Deelman, Yolanda Gil, Carl
Kesselman, Amit Agarwal, Gaurang Mehta, and
Karan Vahi. The role of planning in grid computing.
In The 13th International Conference on Automated
Planning and Scheduling (ICAPS), Trento, Italy, 2003.
AAAI.

[4] Ivona Brandic, Siegfried Benkner, Gerhard
Engelbrecht, and Rainer Schmidt. Qos support for
time-critical grid workflow applications. E-Science,
0:108–115, 2005.

[5] David Chiu and Gagan Agrawal. Enabling ad hoc
queries over low-level geospatial datasets. Technical
report, The Ohio State University, 2008.

[6] Erik Christensen, Francisco Curbera, Greg Meredith,
and Sanjiva Weerawarana. Web services description
language (wsdl) 1.1.

[7] Noel A. C. Cressie. Statistics for Spatial Data. Wiley
Series in Probability and Statistics, 1993.

[8] Mike Dean and Guus Schreiber. Owl web ontology
language reference. w3c recommendation, 2004.

[9] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James
Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,
Karan Vahi, G. Bruce Berriman, John Good,
Anastasia C. Laity, Joseph C. Jacob, and Daniel S.
Katz. Pegasus: A framework for mapping complex
scientific workflows onto distributed systems.
Scientific Programming, 13(3):219–237, 2005.

[10] Liping Di, Peng Yue, Wenli Yang, Genong Yu,
Peisheng Zhao, and Yaxing Wei. Ontology-supported
automatic service chaining for geospatial knowledge
discovery. In Proceedings of American Society of
Photogrammetry and Remote Sensing, 2007.

[11] Johann Eder, Euthimios Panagos, and Michael
Rabinovich. Time constraints in workflow systems.
Lecture Notes in Computer Science, 1626:286–??, 1999.

[12] Metadata ad hoc working group. content standard for
digital geospatial metadata, 1998.

[13] Keita Fujii and Tatsuya Suda. Semantics-based
dynamic service composition. IEEE Journal on
Selected Areas in Communications (JSAC), 23(12),
2005.

[14] Yolanda Gil, Ewa Deelman, Jim Blythe, Carl
Kesselman, and Hongsuda Tangmunarunkit. Artificial
intelligence and grids: Workflow planning and beyond.
IEEE Intelligent Systems, 19(1):26–33, 2004.

[15] Yolanda Gil, Varun Ratnakar, Ewa Deelman, Gaurang
Mehta, and Jihie Kim. Wings for pegasus: Creating
large-scale scientific applications using semantic
representations of computational workflows. In
Proceedings of the 19th Annual Conference on
Innovative Applications of Artificial Intelligence
(IAAI), Vancouver, British Columbia, Canada, July
22-26

”
2007.

[16] Gobe Hobona, David Fairbairn, and Philip James.
Semantically-assisted geospatial workflow design. In
GIS ’07: Proceedings of the 15th annual ACM
international symposium on Advances in geographic
information systems, pages 1–8, New York, NY, USA,
2007. ACM.

[17] Rob Lemmens, Andreas Wytzisk, Rolf de By, Carlos
Granell, Michael Gould, and Peter van Oosterom.
Integrating semantic and syntactic descriptions to
chain geographic services. IEEE Internet Computing,
10(5):42–52, 2006.

[18] National oceanic and atmospheric administration
(noaa), http://www.noaa.gov.

[19] Shankar R. Ponnekanti and Armando Fox. Sword: A
developer toolkit for web service composition. In
WWW ’02: Proceedings of the 11th international
conference on World Wide Web, 2002.

[20] Rob Raskin and Michael Pan. Knowledge
representation in the semantic web for earth and

environmental terminology (sweet). Computer and
Geosciences, 31(9):1119–1125, 2005.

[21] Q. Sheng, B. Benatallah, M. Dumas, and E. Mak.
Self-serv: A platform for rapid composition of web
services in a peer-to-peer environment. In Demo
Session of the 28th Intl. Conf. on Very Large
Databases, 2002.

[22] Biplav Svrivastava and Jana Koehler. Planning with
workflows - an emerging paradigm for web service
composition. In Workshop on Planning and Scheduling
for Web and Grid Services. ICAPS, 2004.

[23] Ralph W. Kiefer Thomas M. Lillesand. Remote
Sensing and image interpretation. John Wiley and
Sons, 1994.

[24] P. Traverso and M. Pistore. Automated composition
of semantic web services into executable processes. In
3rd International Semantic Web Conference, 2004.

[25] Marek Wieczorek, Radu Prodan, and Thomas
Fahringer. Scheduling of scientific workflows in the
askalon grid environment. SIGMOD Rec., 34(3):56–62,
2005.

[26] Wolfram Wiesemann, Ronald Hochreiter, and Daniel
Kuhn. A stochastic programming approach for
qos-aware service composition. The 8th IEEE
International Symposium on Cluster Computing and
the Grid (CCGRID’08), pages 226–233, May 2008.

[27] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia.
Automatic web services composition using shop2. In
ICAPS’03: International Conference on Automated
Planning and Scheduling, 2003.

[28] Peng Yue, Liping Di, Wenli Yang, Genong Yu, and
Peisheng Zhao. Semantics-based automatic
composition of geospatial web service chains. Comput.
Geosci., 33(5):649–665, 2007.

[29] Liangzhao Zeng, Boualem Benatallah, Anne H.H.
Ngu, Marlon Dumas, Jayant Kalagnanam, and Henry
Chang. Qos-aware middleware for web services
composition. IEEE Transactions on Software
Engineering, 30(5):311–327, 2004.

