
Modeling Dynamic 3D Caves

Matt Boggus and Roger Crawfis

Abstract–A system for modeling 3D objects is presented. In this process, a new spatial data structure is introduced. At its core,
the representation can be thought of as a set of slabs, each encoding a portion of the object along one axis. The goal of this work
is to allow user modification of a cave environment at interactive rates, akin to existing terrain editing programs where the object is
restricted to a single 2D manifold that represents a terrain surface. To achieve these rates, we use multiple fixed resolution grids
that are used to provide explicit geometry for immediate mode rendering as well as simplifying the task of collision detection tests.
We provide comparisons with existing cave visualization programs and techniques for dynamic models as well as examples of our
technique in practice.

Figure 1. Screenshot
An example of a 3D cave environment created using our approach.

Index Terms–3D object representation, Dynamic Environments, Subterranean, Caves, and Prisms.

1. INTRODUCTION

To many professionals in computer graphics, a cave brings
to mind thoughts of virtual reality and being stuck inside a
box, not unlike a mime. To everyone else, a cave sparks
thoughts of underground passages filled with mystery and
bugs. Though less common than other geologic structures,
caves are found all over the world and form out of many
different materials, such as limestone, glacial ice, and lava.
Along the same lines, they can be created in many ways
including chemical processes, erosion, or simply digging.
Computer graphics applications involving this type of

environment include mining [3], construction planning,
geographic information visualization [2], and computer
games.
 In this paper, we present a system to represent and
modify the shape and geometry of cave-like environments in
interactive applications (see Figure 1). While originally
intended specifically for this task, it can be used as a
generic representation for a 3D modeling application as
well. As a part of the system, we introduce a new spatial
data structure based on regular grids and provide methods
for user-modification and rendering. In its rawest form, the
system provides a coarse representation of a cave
environment.

 The rest of the paper is structured as follows. In the next
section, existing approaches of 3D modeling and cave
visualization software are discussed. Section 3 describes
our system. Then, in Section 4, we provide performance
tests of the new model and argue for its effectiveness. We
end with directions for future research.

2. RELATED WORKS

Generally speaking, there are two ways to model a 3D
object: as a solid or as a surface. Solid modeling aims to
represent the entire volume of the object whereas surface
modeling only captures the outer surface. Each method can
be implemented in a variety of ways.

 Some techniques for solid modeling include constructive
solid geometry (or CSG) and volume elements (or voxels).
The CSG approach starts with a collection of shapes, such
as cubes, pyramids, spheres, cones, and prisms, which act
as the simplest objects that can be represented. These
forms, also called primitives, can be combined by using
various Boolean set operations like union, difference, and
intersection. Complex models are built up by combining
many primitives and operations.

 Volume elements represent a 3D object in the same way
that picture elements (or pixels) represent a 2D object, that
is, by sampling a signal in a regular grid. This data may be
binary, with elements representing the presence or absence
of the object in space (see Figure 2), or they may be scaled
real numbers along with a level set value which defines an
isosurface for the volume [8].

 A surface can be defined implicitly, explicitly, or
parametrically. An implicit surface in 3D space is defined on
some function:

f(x, y, z) = 0.

Since only the function is given, in order to render an implicit
surface, a search must be done to generate points on the
surface. This makes implicit representations the cheapest to
represent and test for membership, but most costly to
render.

 Parameterization in 3D space requires two dimensions to
samples in, namely (u, v). Parameterized surfaces in 3D are
defined by three equations:

x = f1(u,v)

y = f2(u,v)

z = f3(u,v)

Points on the surface are generated by providing u and v
values, often at regular samples on a normalized domain
[0,1]. Parametric surfaces are slightly more expensive to
represent since they require three functions compared to
one for implicit surfaces, but rendering is much easier since
points can be generated by evaluating the functions.
Determining if a random point is on the surface is still
expensive unless the inverse is known for each of the three
functions.

 Explicit surfaces are defined by setting values in one
dimension as a function of the other two, like this:

z = f(x,y).

Note that this disallows multiple z values for any given (x,y)
pair. In practice, one example of an explicit surface is a
heightfield, which can be represented by storing values
representing height (z) in a regular grid where indices
correspond to (x,y) coordinates. Explicit functions are cheap
to render and test for membership, but limited in the types of
shapes they can represent.

 Many implementations bypass the issue of a functional
representation of a surface by tessellating the surface as a
set of polygons. Since a model may consist of several
thousand polygons, collision detection can be expensive, as
each polygon must be tested. Layering additional
techniques, such as bounding volumes or octrees, can
eliminate unnecessary checking and provide a speedup in
some cases. However, this enhancement does not come for
free; it incurs the cost of maintaining the spatial data
structures when changes are made to the geometry. Since
changes involve eliminating old polygons and adding new
ones, the cost of insertion and removal must be considered.

 Most work on remeshing is aimed at restructuring an
entire mesh rather than altering a spatially local set of
triangles, which presumably is the ideal approach when
considering an editing program. Due to the inherently high
cost of processing the entire mesh, while remeshing
techniques strive for speed, real-time performance is not
viewed as a necessary goal. Surazhsky and Gotsman
provide methods to remesh entire models in under a minute
[15]. Alliez et all provide more flexibility in remeshing, but
the process still cannot be continuously performed at an
interactive rate [1]. More recently, Qu and Meyer further
extend Alliez’s techniques by incorporating surface
appearance in the remeshing process, but also are
incapable of interactive rates [12].

Figure 2. Binary Voxel Model
Pictured above is a procedurally created binary voxel
model of resolution 50 voxel3.

 A 3D subterranean environment may be featured in an
interactive visualization application. Cave datasets have yet
to be standardized, and attempts at conversion software
such as RosettaStal [13] have not yet solved the problem of
providing a loss-less universal format to convert to. Some
visualization programs for cave data include WinKarst [18],
The Survex Project [16], Compass [5], and Therion [17]. Of
these programs, the extent of 3D modeling is very rough, in
part due to the difficulty in specifying spatial data. In
WinKarst, data is limited to providing passage dimensions
for directions left, right, up, and down at each recording
station in the cave. Instead of 3D models formed by
polygons, The Survex Project represents cave passages as
vectors, providing no indication of how large the passages
are. Many programs use coloring to indicate depth. Due to
the limitations of existing cave visualization programs, a new
immersive virtual reality implementation is introduced in [14].
3D polygon meshes, whose geometry remains static at run
time, were created based off of survey data. The system is
designed to visualize the cave in its entirety as opposed to
placing the viewer in the environment itself as in a computer
game.

 Caves have been featured as a part of virtual worlds in
many 3D computer games. For tight, compact caves where
visibility is limited, cell and portal culling [9] can be used,
essentially treating the series of cave passages the same as
rooms and hallways of a building. However, this technique is
not as effective if the cave system includes several large,
open sections. Thus we feel there is a need to create a
system that can handle dynamic caves environments of any
size, comparable to the existing body of work on manifold-
based terrain visualization including SOAR [7], ROAM [6],
and other techniques as surveyed in [11].

3. OUR APPROACH
Before we begin to discuss our methods for modeling and
user modification, first consider the task of carving a
sculpture. It is a subtractive process that begins with a solid
mass of material, and then portions are removed until the
final form has been discovered. Then it reasons that we can
describe the initial model as a user-defined axis-aligned
bounding box representing a solid mass as in CSG. Then
we allow the user to remove portions of the model. In order
to facilitate this process, our application provides simple 3D
shapes, namely boxes and spheres, which alter the model
upon intersection. We call these shapes destructive tools. In
order to more easily determine intersections, we store
intermediate vertices on the top and bottom of the box
inside of a regular grid. In other words, the top and bottom
surfaces of the model are treated as heightfields. The space
between the two heightfields is considered to be solid, so
connecting them logically forms a grid of prisms. We call this
data structure a prism-field. Since we sample the
environment, we must use a resolution low enough to limit
geometry to maintain real-time performance yet high
enough so that collisions are accurately detected. For
simplicity, in this paper we assume resolution of a prism-
field is constant during run-time.

 Since a vertex in a dynamic heightfield is a single value,
there are only two operations to alter it – increasing or

decreasing its elevation value – which correspond to
construction and destruction respectively. When a vertex at
(x,y) from the top heightfield is contained within the tool, its z
value must be lowered to the lowest z value of the tool at
(x,y). Handling collisions for the bottom surface is different
since it represents the end of the model. In this case, for a
vertex at (x,y), its z value must be raised to the highest z
value of the tool at (x,y). Note that this requires the
destructive tool to be a convex object. Also note that these
operations do not preserve volume, so a more complex
system would be required if physical accuracy is desired.

 For the first step in updating a prism-field, we check
heightfield vertices for intersection with the interior of the
tool and update grid values according to the previously
mentioned scheme (see Figure 3). In some cases, the lower
level may rise above the upper level, a case which is not
valid. We could clamp the values in this case, but then we
would be restricting the layers to surfaces without holes.
Instead, we adjust the heightfield representation to include
gaps. Along with every pair of height values, we include a
Boolean variable indicating if the point in the prism-field is
active, which initially is true. When the overlap occurs, the
value is set to false, indicating inactiveness.

Figure 3. Vertical Tunneling
(Left) An example 2D prism-field where data points within
the destructive tool are depicted as black dots and
corresponding lowest object positions are shown as red
dots.
(Right) The resulting prism-field after updating.

 We can now create a tunnel vertically, which raises the
question of how to tunnel horizontally. This is not possible
with a single prism-field since the area between the top and
bottom levels is supposed to be solid space. At this point we
are left with two options: 1) allow the number of height
values within a prism-field to change dynamically or 2) allow
the number of prism-fields the change dynamically. Option
number one breaks the convention of treating a prism-field
as a pair of surfaces. It is actually a form of run-length
encoding of a voxel model, which was briefly introduced by
Benes [4]. The task of rendering the data structure was left
open. Without any heuristics, in this model connectivity is no
longer explicit (see Figure 4), so rendering still requires
some form of search for the surface as in the case with the
traditional voxel approach. Since we’d like to maintain the

explicit connectivity, as it aids in performing rendering
quickly, this leaves us with option two to explore.

 Our solution to the horizontal tunneling problem involves
splitting one prism-field into two (see Figure 5). For each
pair of points in a prism-field, we check each prism edge for
intersection with the destructive tool. Since the tool is
convex, we can compute the highest and lowest positions
on it at the corresponding (x,y) for the edge. Furthermore,
the space between these two values is also occupied by the
tool. Collision between the edge and tool occurs if the
positions are ordered as follows:

TopOfPrismField[x,y] > TopOfTool(x,y) and

BottomOfTool(x,y) > BottomOfPrismField [x,y].

 When a split is found, one prism-field must be set to
encode the area underneath the tool another must represent
the area above it. We construct an array of prism-fields, P,
such that for any index i, the prism-field P[i] encodes heights
above prism-fields with index less than i and below prism-
fields with index greater than i. When prism-field P[i] is split,
we create a new prism-field and set its upper values to P[i]’s
and its lower values to the upper point of contact. Then we
insert it as P[i+1], shifting other prism-fields up as

necessary. Next we set P[i]’s upper value to the lower point
of contact. For points where the edge is not split, any values
for both prism-fields that maintain ordering and the spatial
encoding of P[i] are valid. The introduction of this array
complicates the first update step. Now P[i]’s bottom values
must be clamped at the top values of P[i-1]. Similarly, P[i]’s
upper values must be clamped at the lower values of P[i+1].

 Rendering a prism-field is done by rendering the prism
for each cell, akin to rendering triangles or a quad for each
cell in a heightfield. Adjustments must be made in the cases
when a cell has an inactive vertex. For a mesh of
quadrilaterals, each of the four cells that a dead point
contributes to are skipped in the rendering process.
Similarly, when rendering a triangular mesh, cells with one
dead point render a single triangle instead of two (see
Figure 6).

Figure 4. Run Length Encoding
(Left) Sample run-length encoding of heights (y) for x : [0-3]
(Middle, Right) Two possible methods to connect heights in
a prism-field approach.

Figure 6. Heightfields of size 3x3

(Top Left) A quad based rendering.
(Top Right) A triangle based rendering.

 (Bottom) Heightfields with inactive point at (2, 2).

4. PERFORMANCE AND COMPARISON

 We implemented the prism-field data structure and
updating operations using C++ and OpenGL [10]. For
rendering, using a 3D texture is an ideal way to provide
continuous color information, though an environment map
style approach is also possible. This is done by providing a
different 2D texture for the upper and lower heightfields as
well as the middle geometry connecting the two layers; an
example of this technique is provided in Figure 1. Since 3D
cave data is limited, we have procedurally sculpted a prism-
field to create a cave-like model by randomly moving a
destructive sphere tool within a box (see Figure 6). As an
example of the flexibility and utility of our approach, a bridge
model was created by a novice artist (see Figure 7), a task
which only took a few minutes.

Figure 5. Horizontal Tunneling
(Left) An example 2D prism-field where low and high points
on destructive volume between layers shown as red dots.
(Right) The resulting prism-fields after updating.

 For comparison, two additional editing applications were
made. One used a single heightfield, rendered as a set of
quadrilaterals and the other used the binary voxel approach,

rendering each voxel as a cube. More efficient methods for
volume rendering exist, but this brute force polygonalization
of voxels most closely matches the direct rendering of
triangle and quadrilateral strip methods for rendering prism-
fields. Tests were done for several different sampling
resolutions. All performance tests were done on a PC with
an Intel Pentium 4 CPU clocked at 3.20GHz, with 3GB
RAM, using an Nvidia GeForce 6800GT. Tests were done
at fixed, square (x,y) resolutions for the three model types
and at the same z resolution for voxels. The results are
provided in Table 1. All model types achieve interactive
rates for sufficiently small resolutions. As the resolution
increases, performance drops most quickly for voxels,
followed by prism-fields and heightfields.

Table 1. Performance Results (in frames per second)

 Number of samples per dimension

 10 50 200
Heightfield >60 fps >60 fps 37 fps
Prism-fields >60 fps 30 fps 5-10 fps

Model-
type

Voxels >60 fps 10 fps <1 fps

 Given the nature of scenes with dynamic geometry, it is
difficult to provide exact, average performance for each
representation. It is important to note that performance for
voxel and prism-fields depend on the complexity of the
object represented, since both handle more complex
topology than a heightfield. Further study and more explicit
use cases are required for a more accurate comparison of
the methods.

5. CONCLUSION
In this paper we have introduced a new system for modeling
dynamic 3D objects, caves in particular, in interactive
simulations along with a convenient data structure to aid in
representing the system. We also describe operations to
interactively manipulate and maintain the system. The new
data structure, inspired by techniques from terrain
rendering, incorporates beneficial characteristics of the two
most popular models from that field: heightfields and voxels.
A set of prism-fields can represent more varied geometry
than a heightfield and is cheaper to render than a collection
of voxels. Manipulation and rendering are fairly simple
operations, so the development cost of a basic system is
low. Even without optimization, a low resolution, CPU
implementation of a prism-field meets frame rate
requirements for an interactive application (>10 frames per
second), making it a viable coarse representation for 3D
caves.

 In future work, we hope to incorporate the fine details of
a 3D cave environment, such as stalagmites, stalactites,
and other speleothems. Level of detail techniques for prism-
fields may suffice for this task, but they may only be suitable
for creating even larger, more expansive cave systems.
Since 3D caves could be very complex, navigation
techniques are also an area for further study. Lastly,
optimizations could make a prism-field based environment

suitable for use in computer games, creating more
opportunities to experience a truly for dynamic virtual world.

6. REFERENCES
[1] Alliez, P., Meyer, M., and Desbrun, M. 2002. Interactive

geometry remeshing. ACM Trans. Graph. 21, 3 (Jul.
2002), 347-354. DOI=
http://doi.acm.org/10.1145/566654.566588

[2] am Ende, B. A. 2001. 3D Mapping of Underwater
Caves. IEEE Comput. Graph. Appl. 21, 2 (Mar. 2001),
14-20. DOI= http://dx.doi.org/10.1109/38.909011

[3] Bakambu, J. N. and Polotski, V. 2007. Autonomous
system for navigation and surveying in underground
mines: Field Reports. J. Field Robot. 24, 10 (Oct.
2007), 829-847. DOI=
http://dx.doi.org/10.1002/rob.v24:10

[4] Benes, B. and Forsbach, R. 2001. Layered Data
Representation for Visual Simulation of Terrain Erosion.
In Proceedings of the 17th Spring Conference on
Computer Graphics (April 25 - 28, 2001). Spring
Conference on Computer Graphics. IEEE Computer
Society, Washington, DC, 80.

[5] Compass http://fountainware.com/compass/
[6] Duchaineau, M., Wolinsky, M., Sigeti, D. E., Miller, M.

C., Aldrich, C., and Mineev-Weinstein, M. B. 1997.
ROAMing terrain: real-time optimally adapting meshes.
In Proceedings of the 8th Conference on Visualization
'97 (Phoenix, Arizona, United States, October 18 - 24,
1997). R. Yagel and H. Hagen, Eds. IEEE Visualization.
IEEE Computer Society Press, Los Alamitos, CA, 81-
88.

[7] Lindstrom, P. and Pascucci, V. 2001. Visualization of
large terrains made easy. In Proceedings of the
Conference on Visualization '01 (San Diego, California,
October 21 - 26, 2001). VISUALIZATION. IEEE
Computer Society, Washington, DC, 363-371.

[8] Lorensen, W. E. and Cline, H. E. 1987. Marching
cubes: A high resolution 3D surface construction
algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug.
1987), 163-169. DOI=
http://doi.acm.org/10.1145/37402.37422

[9] Luebke, D. and Georges, C. 1995. Portals and mirrors:
simple, fast evaluation of potentially visible sets. In
Proceedings of the 1995 Symposium on interactive 3D
Graphics (Monterey, California, United States, April 09 -
12, 1995). SI3D '95. ACM, New York, NY, 105-ff. DOI=
http://doi.acm.org/10.1145/199404.199422

[10] OpenGL http://www.opengl.org
[11] Pajarola, R. and Gobbetti, E. 2007. Survey of semi-

regular multiresolution models for interactive terrain
rendering. Vis. Comput. 23, 8 (Jul. 2007), 583-605.

[12] Qu, L. and Meyer, G. W. 2006. Perceptually driven
interactive geometry remeshing. In Proceedings of the
2006 Symposium on interactive 3D Graphics and

http://doi.acm.org/10.1145/566654.566588
http://dx.doi.org/10.1109/38.909011
http://dx.doi.org/10.1002/rob.v24:10
http://fountainware.com/compass/
http://doi.acm.org/10.1145/37402.37422
http://doi.acm.org/10.1145/199404.199422
http://www.opengl.org/

[15] Surazhsky, V. and Gotsman, C. 2003. Explicit surface
remeshing. In Proceedings of the 2003
Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (Aachen, Germany, June 23 - 25,
2003). ACM International Conference Proceeding
Series, vol. 43. Eurographics Association, Aire-la-Ville,
Switzerland, 20-30.

Games (Redwood City, California, March 14 - 17,
2006). I3D '06. ACM, New York, NY, 199-206. DOI=
http://doi.acm.org/10.1145/1111411.1111447

[13] RosettaStal
http://www.resurgentsoftware.com/rosettastal.htm

[14] Schuchardt, P. and Bowman, D. A. 2007. The benefits
of immersion for spatial understanding of complex
underground cave systems. In Proceedings of the 2007
ACM Symposium on Virtual Reality Software and
Technology (Newport Beach, California, November 05 -
07, 2007). S. N. Spencer, Ed. VRST '07. ACM, New
York, NY, 121-124.

[16] The Survex Project http://survex.com/
[17] Therion http://therion.speleo.sk/
[18] WinKarst

http://www.resurgentsoftware.com/winkarst.html

Figure 7. Cave Model
(Top Left) Original Prism-Field box model.
(Top Right, Bottom Left, Bottom Right) Procedurally sculpted cave model. A
destructive sphere was randomly and discontinuously moved about a prism-field
system initially representing an axis aligned box.

http://www.resurgentsoftware.com/rosettastal.htm
http://survex.com/
http://therion.speleo.sk/
http://www.resurgentsoftware.com/winkarst.html

Figure 8. Bridge Model
This bridge model was created by an artist from a prism-field
initially shaped as an axis aligned box.

	1. INTRODUCTION
	2. RELATED WORKS

