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Abstract–A system for modeling 3D objects is presented. In this process, a new spatial data structure is introduced. At its core, 
the representation can be thought of as a set of slabs, each encoding a portion of the object along one axis. The goal of this work 
is to allow user modification of a cave environment at interactive rates, akin to existing terrain editing programs where the object is 
restricted to a single 2D manifold that represents a terrain surface. To achieve these rates, we use multiple fixed resolution grids 
that are used to provide explicit geometry for immediate mode rendering as well as simplifying the task of collision detection tests. 
We provide comparisons with existing cave visualization programs and techniques for dynamic models as well as examples of our 
technique in practice. 

Figure 1. Screenshot 
An example of a 3D cave environment created using our approach. 
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1.  INTRODUCTION 
 
To many professionals in computer graphics, a cave brings 
to mind thoughts of virtual reality and being stuck inside a 
box, not unlike a mime. To everyone else, a cave sparks 
thoughts of underground passages filled with mystery and 
bugs. Though less common than other geologic structures, 
caves are found all over the world and form out of many 
different materials, such as limestone, glacial ice, and lava. 
Along the same lines, they can be created in many ways 
including chemical processes, erosion, or simply digging. 
Computer graphics applications involving this type of 

environment include mining [3], construction planning, 
geographic information visualization [2], and computer 
games. 
     In this paper, we present a system to represent and 
modify the shape and geometry of cave-like environments in 
interactive applications (see Figure 1). While originally 
intended specifically for this task, it can be used as a 
generic representation for a 3D modeling application as 
well. As a part of the system, we introduce a new spatial 
data structure based on regular grids and provide methods 
for user-modification and rendering. In its rawest form, the 
system provides a coarse representation of a cave 
environment. 



     The rest of the paper is structured as follows. In the next 
section, existing approaches of 3D modeling and cave 
visualization software are discussed. Section 3 describes 
our system. Then, in Section 4, we provide performance 
tests of the new model and argue for its effectiveness. We 
end with directions for future research. 

2.  RELATED WORKS 
 

Generally speaking, there are two ways to model a 3D 
object: as a solid or as a surface. Solid modeling aims to 
represent the entire volume of the object whereas surface 
modeling only captures the outer surface. Each method can 
be implemented in a variety of ways. 

     Some techniques for solid modeling include constructive 
solid geometry (or CSG) and volume elements (or voxels). 
The CSG approach starts with a collection of shapes, such 
as cubes, pyramids, spheres, cones, and prisms, which act 
as the simplest objects that can be represented. These 
forms, also called primitives, can be combined by using 
various Boolean set operations like union, difference, and 
intersection. Complex models are built up by combining 
many primitives and operations. 

     Volume elements represent a 3D object in the same way 
that picture elements (or pixels) represent a 2D object, that 
is, by sampling a signal in a regular grid. This data may be 
binary, with elements representing the presence or absence 
of the object in space (see Figure 2), or they may be scaled 
real numbers along with a level set value which defines an 
isosurface for the volume [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     A surface can be defined implicitly, explicitly, or 
parametrically. An implicit surface in 3D space is defined on 
some function: 

f(x, y, z) = 0. 

Since only the function is given, in order to render an implicit 
surface, a search must be done to generate points on the 
surface. This makes implicit representations the cheapest to 
represent and test for membership, but most costly to 
render.  

     Parameterization in 3D space requires two dimensions to 
samples in, namely (u, v). Parameterized surfaces in 3D are 
defined by three equations: 

x = f1(u,v) 

y = f2(u,v) 

z = f3(u,v) 

Points on the surface are generated by providing u and v 
values, often at regular samples on a normalized domain 
[0,1]. Parametric surfaces are slightly more expensive to 
represent since they require three functions compared to 
one for implicit surfaces, but rendering is much easier since 
points can be generated by evaluating the functions. 
Determining if a random point is on the surface is still 
expensive unless the inverse is known for each of the three 
functions. 

     Explicit surfaces are defined by setting values in one 
dimension as a function of the other two, like this: 

z = f(x,y). 

Note that this disallows multiple z values for any given (x,y) 
pair. In practice, one example of an explicit surface is a 
heightfield, which can be represented by storing values 
representing height (z) in a regular grid where indices 
correspond to (x,y) coordinates. Explicit functions are cheap 
to render and test for membership, but limited in the types of 
shapes they can represent. 

     Many implementations bypass the issue of a functional 
representation of a surface by tessellating the surface as a 
set of polygons. Since a model may consist of several 
thousand polygons, collision detection can be expensive, as 
each polygon must be tested. Layering additional 
techniques, such as bounding volumes or octrees, can 
eliminate unnecessary checking and provide a speedup in 
some cases. However, this enhancement does not come for 
free; it incurs the cost of maintaining the spatial data 
structures when changes are made to the geometry. Since 
changes involve eliminating old polygons and adding new 
ones, the cost of insertion and removal must be considered.  

     Most work on remeshing is aimed at restructuring an 
entire mesh rather than altering a spatially local set of 
triangles, which presumably is the ideal approach when 
considering an editing program. Due to the inherently high 
cost of processing the entire mesh, while remeshing 
techniques strive for speed, real-time performance is not 
viewed as a necessary goal. Surazhsky and Gotsman 
provide methods to remesh entire models in under a minute 
[15]. Alliez et all provide more flexibility in remeshing, but 
the process still cannot be continuously performed at an 
interactive rate [1]. More recently, Qu and Meyer further 
extend Alliez’s techniques by incorporating surface 
appearance in the remeshing process, but also are 
incapable of interactive rates [12]. 

Figure 2. Binary Voxel Model 
Pictured above is a procedurally created binary voxel 
model of resolution 50 voxel3. 



     A 3D subterranean environment may be featured in an 
interactive visualization application. Cave datasets have yet 
to be standardized, and attempts at conversion software 
such as RosettaStal [13] have not yet solved the problem of 
providing a loss-less universal format to convert to. Some 
visualization programs for cave data include WinKarst [18], 
The Survex Project [16], Compass [5], and Therion [17]. Of 
these programs, the extent of 3D modeling is very rough, in 
part due to the difficulty in specifying spatial data. In 
WinKarst, data is limited to providing passage dimensions 
for directions left, right, up, and down at each recording 
station in the cave. Instead of 3D models formed by 
polygons, The Survex Project represents cave passages as 
vectors, providing no indication of how large the passages 
are. Many programs use coloring to indicate depth. Due to 
the limitations of existing cave visualization programs, a new 
immersive virtual reality implementation is introduced in [14]. 
3D polygon meshes, whose geometry remains static at run 
time, were created based off of survey data. The system is 
designed to visualize the cave in its entirety as opposed to 
placing the viewer in the environment itself as in a computer 
game. 

     Caves have been featured as a part of virtual worlds in 
many 3D computer games. For tight, compact caves where 
visibility is limited, cell and portal culling [9] can be used, 
essentially treating the series of cave passages the same as 
rooms and hallways of a building. However, this technique is 
not as effective if the cave system includes several large, 
open sections. Thus we feel there is a need to create a 
system that can handle dynamic caves environments of any 
size, comparable to the existing body of work on manifold-
based terrain visualization including SOAR [7], ROAM [6], 
and other techniques as surveyed in [11]. 

3.  OUR APPROACH 
Before we begin to discuss our methods for modeling and 
user modification, first consider the task of carving a 
sculpture. It is a subtractive process that begins with a solid 
mass of material, and then portions are removed until the 
final form has been discovered. Then it reasons that we can 
describe the initial model as a user-defined axis-aligned 
bounding box representing a solid mass as in CSG. Then 
we allow the user to remove portions of the model. In order 
to facilitate this process, our application provides simple 3D 
shapes, namely boxes and spheres, which alter the model 
upon intersection. We call these shapes destructive tools. In 
order to more easily determine intersections, we store 
intermediate vertices on the top and bottom of the box 
inside of a regular grid. In other words, the top and bottom 
surfaces of the model are treated as heightfields. The space 
between the two heightfields is considered to be solid, so 
connecting them logically forms a grid of prisms. We call this 
data structure a prism-field. Since we sample the 
environment, we must use a resolution low enough to limit 
geometry to maintain real-time performance yet high 
enough so that collisions are accurately detected. For 
simplicity, in this paper we assume resolution of a prism-
field is constant during run-time. 

     Since a vertex in a dynamic heightfield is a single value, 
there are only two operations to alter it – increasing or 

decreasing its elevation value – which correspond to 
construction and destruction respectively. When a vertex at 
(x,y) from the top heightfield is contained within the tool, its z 
value must be lowered to the lowest z value of the tool at 
(x,y). Handling collisions for the bottom surface is different 
since it represents the end of the model.  In this case, for a 
vertex at (x,y), its z value must be raised to the highest z 
value of the tool at (x,y). Note that this requires the 
destructive tool to be a convex object. Also note that these 
operations do not preserve volume, so a more complex 
system would be required if physical accuracy is desired. 

     For the first step in updating a prism-field, we check 
heightfield vertices for intersection with the interior of the 
tool and update grid values according to the previously 
mentioned scheme (see Figure 3). In some cases, the lower 
level may rise above the upper level, a case which is not 
valid. We could clamp the values in this case, but then we 
would be restricting the layers to surfaces without holes. 
Instead, we adjust the heightfield representation to include 
gaps. Along with every pair of height values, we include a 
Boolean variable indicating if the point in the prism-field is 
active, which initially is true. When the overlap occurs, the 
value is set to false, indicating inactiveness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Vertical Tunneling 
(Left) An example 2D prism-field where data points within 
the destructive tool are depicted as black dots and 
corresponding lowest object positions are shown as red 
dots. 
(Right) The resulting prism-field after updating.

     We can now create a tunnel vertically, which raises the 
question of how to tunnel horizontally. This is not possible 
with a single prism-field since the area between the top and 
bottom levels is supposed to be solid space. At this point we 
are left with two options: 1) allow the number of height 
values within a prism-field to change dynamically or 2) allow 
the number of prism-fields the change dynamically. Option 
number one breaks the convention of treating a prism-field 
as a pair of surfaces. It is actually a form of run-length 
encoding of a voxel model, which was briefly introduced by 
Benes [4]. The task of rendering the data structure was left 
open. Without any heuristics, in this model connectivity is no 
longer explicit (see Figure 4), so rendering still requires 
some form of search for the surface as in the case with the 
traditional voxel approach. Since we’d like to maintain the 



explicit connectivity, as it aids in performing rendering 
quickly, this leaves us with option two to explore.  

 

 

 

 

 

   

 

 

 

 

 

 

   Our solution to the horizontal tunneling problem involves 
splitting one prism-field into two (see Figure 5). For each 
pair of points in a prism-field, we check each prism edge for 
intersection with the destructive tool. Since the tool is 
convex, we can compute the highest and lowest positions 
on it at the corresponding (x,y) for the edge. Furthermore, 
the space between these two values is also occupied by the 
tool. Collision between the edge and tool occurs if the 
positions are ordered as follows: 

TopOfPrismField[x,y] > TopOfTool(x,y) and 

BottomOfTool(x,y) > BottomOfPrismField [x,y]. 

 

 

 

 

 

 

 

 

 

 

 

 

     When a split is found, one prism-field must be set to 
encode the area underneath the tool another must represent 
the area above it. We construct an array of prism-fields, P, 
such that for any index i, the prism-field P[i] encodes heights 
above prism-fields with index less than i and below prism-
fields with index greater than i. When prism-field P[i] is split, 
we create a new prism-field and set its upper values to P[i]’s 
and its lower values to the upper point of contact. Then we 
insert it as P[i+1], shifting other prism-fields up as 

necessary. Next we set P[i]’s upper value to the lower point 
of contact. For points where the edge is not split, any values 
for both prism-fields that maintain ordering and the spatial 
encoding of P[i] are valid. The introduction of this array 
complicates the first update step. Now P[i]’s bottom values 
must be clamped at the top values of P[i-1]. Similarly, P[i]’s 
upper values must be clamped at the lower values of P[i+1]. 

     Rendering a prism-field is done by rendering the prism 
for each cell, akin to rendering triangles or a quad for each 
cell in a heightfield. Adjustments must be made in the cases 
when a cell has an inactive vertex. For a mesh of 
quadrilaterals, each of the four cells that a dead point 
contributes to are skipped in the rendering process. 
Similarly, when rendering a triangular mesh, cells with one 
dead point render a single triangle instead of two (see 
Figure 6). 

Figure 4. Run Length Encoding 
(Left) Sample run-length encoding of heights (y) for x : [0-3] 
(Middle, Right) Two possible methods to connect heights in 
a prism-field approach. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Heightfields of size 3x3 

(Top Left) A quad based rendering.  
(Top Right) A triangle based rendering.  

 

 

 (Bottom) Heightfields with inactive point at (2, 2). 
 

4. PERFORMANCE AND COMPARISON 

     We implemented the prism-field data structure and 
updating operations using C++ and OpenGL [10]. For 
rendering, using a 3D texture is an ideal way to provide 
continuous color information, though an environment map 
style approach is also possible. This is done by providing a 
different 2D texture for the upper and lower heightfields as 
well as the middle geometry connecting the two layers; an 
example of this technique is provided in Figure 1. Since 3D 
cave data is limited, we have procedurally sculpted a prism-
field to create a cave-like model by randomly moving a 
destructive sphere tool within a box (see Figure 6). As an 
example of the flexibility and utility of our approach, a bridge 
model was created by a novice artist (see Figure 7), a task 
which only took a few minutes. 

Figure 5. Horizontal Tunneling 
(Left) An example 2D prism-field where low and high points 
on destructive volume between layers shown as red dots. 
(Right) The resulting prism-fields after updating. 

     For comparison, two additional editing applications were 
made. One used a single heightfield, rendered as a set of 
quadrilaterals and the other used the binary voxel approach, 



rendering each voxel as a cube. More efficient methods for 
volume rendering exist, but this brute force polygonalization 
of voxels most closely matches the direct rendering of 
triangle and quadrilateral strip methods for rendering prism-
fields. Tests were done for several different sampling 
resolutions. All performance tests were done on a PC with 
an Intel Pentium 4 CPU clocked at 3.20GHz, with 3GB 
RAM, using an Nvidia GeForce 6800GT. Tests were done 
at fixed, square (x,y) resolutions for the three model types 
and at the same z resolution for voxels. The results are 
provided in Table 1. All model types achieve interactive 
rates for sufficiently small resolutions. As the resolution 
increases, performance drops most quickly for voxels, 
followed by prism-fields and heightfields.  

Table 1. Performance Results (in frames per second) 

                           Number of samples per dimension 

 10 50 200 
Heightfield >60 fps >60 fps 37 fps 
Prism-fields >60 fps 30 fps 5-10 fps 

 
 

Model-
type 

Voxels >60 fps 10 fps <1 fps 
 

     Given the nature of scenes with dynamic geometry, it is 
difficult to provide exact, average performance for each 
representation. It is important to note that performance for 
voxel and prism-fields depend on the complexity of the 
object represented, since both handle more complex 
topology than a heightfield. Further study and more explicit 
use cases are required for a more accurate comparison of 
the methods.  

5.  CONCLUSION 
In this paper we have introduced a new system for modeling 
dynamic 3D objects, caves in particular, in interactive 
simulations along with a convenient data structure to aid in 
representing the system. We also describe operations to 
interactively manipulate and maintain the system. The new 
data structure, inspired by techniques from terrain 
rendering, incorporates beneficial characteristics of the two 
most popular models from that field: heightfields and voxels. 
A set of prism-fields can represent more varied geometry 
than a heightfield and is cheaper to render than a collection 
of voxels. Manipulation and rendering are fairly simple 
operations, so the development cost of a basic system is 
low. Even without optimization, a low resolution, CPU 
implementation of a prism-field meets frame rate 
requirements for an interactive application (>10 frames per 
second), making it a viable coarse representation for 3D 
caves. 

     In future work, we hope to incorporate the fine details of 
a 3D cave environment, such as stalagmites, stalactites, 
and other speleothems. Level of detail techniques for prism-
fields may suffice for this task, but they may only be suitable 
for creating even larger, more expansive cave systems. 
Since 3D caves could be very complex, navigation 
techniques are also an area for further study. Lastly, 
optimizations could make a prism-field based environment 

suitable for use in computer games, creating more 
opportunities to experience a truly for dynamic virtual world. 
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Figure 7. Cave Model 
(Top Left) Original Prism-Field box model. 
(Top Right, Bottom Left, Bottom Right) Procedurally sculpted cave model. A 
destructive sphere was randomly and discontinuously moved about a prism-field 
system initially representing an axis aligned box. 
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Figure 8. Bridge Model 
This bridge model was created by an artist from a prism-field 
initially shaped as an axis aligned box. 
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