
Revisiting the Metadata Architecture of Parallel File Systems

NAWAB ALI, ANANTH DEVULAPALLI, DENNIS DALESSANDRO, PETE WYCKOFF AND P. SADAYAPPAN

Technical Report
OSU-CISRC-7/08-TR42

Revisiting the Metadata Architecture of Parallel File
Systems

Nawab Ali #1, Ananth Devulapalli ∗2, Dennis Dalessandro ∗3 Pete Wyckoff ∗4 P. Sadayappan #5

Department of Computer Science and Engineering, The Ohio State University
395 Dreese Laboratories, 2015 Neil Avenue, Columbus, OH 43210, USA

1 alin@cse.ohio-state.edu
5 saday@cse.ohio-state.edu
∗ Ohio Supercomputer Center

1224 Kinnear Road, Columbus, OH 43212, USA
2 ananth@osc.edu
3 dennis@osc.edu

4 pw@osc.edu

Abstract—As the types of problems we solve in high-
performance computing and other areas become more complex,
the amount of data generated and used is growing at a rapid rate.
Today many terabytes of data are common; tomorrow petabytes
of data will be the norm. Much work has been put into increasing
capacity and I/O performance for large-scale storage systems.
However, one often ignored area is metadata management.

Metadata can have a significant impact on the performance
of a system. Past approaches have moved metadata activities to
a separate server in order to avoid potential interference with
data operations. However, with the advent of object-based storage
technology, there is a compelling argument to recouple metadata
and data. In this paper we present two metadata management
schemes, both of which remove the need for a separate metadata
server and replace it with object-based storage.

I. INTRODUCTION

Increasingly, computational efforts rely on the processing
and generation of large data sets. It is not uncommon today
for scientific applications to generate data of the order of many
terabytes [1], [2]. The rate at which applications create and use
large-scale data sets has spurred the design of petabyte-scale
file systems which consist of potentially billions of files [3].

One of the current trends in file system research is a focus
on the I/O throughput of large-scale file systems [4], [5], [6],
[7]. The performance of metadata operations, such as query-
ing file attributes, enforcing access control, and maintaining
consistency, is often ignored. However, the performance of
metadata operations is intrinsic to the scalability and overall
capability of large-scale storage systems. Often dismissed as
a negligible cost, the metadata load in reality can be a major
bottleneck [8], [9], [10].

The recent introduction of the ANSI standard [11] for
object-based storage devices (OSDs) offers new opportunities
in file systems research. An OSD is a storage device that
exports an object-based interface to applications rather than
the block-based interface of traditional disks. OSDs manage
the internal data layout decisions, implement user-defined data
attributes, and also provide a fine-grained security policy. From
the perspective of the file system, a file is no longer a linear

array of blocks but rather an object, or a set of objects. By
abstracting the layout and attribute specifics from file systems,
OSDs can potentially simplify their design.

While OSDs offer a richer operational interface than tradi-
tional disks, they do not fulfill all the requirements of a parallel
file system. Previous work [12], showed that I/O operations
can be moved from dedicated I/O servers to OSDs. In this
current work we offload metadata operations (with the excep-
tion of directory operations) from a dedicated metadata server
to OSDs. Moving the data and metadata operations to an OSD-
based I/O sub-system, allows for a reduced number of servers
and a simpler design of parallel file systems. This reduces the
complexity associated with managing these systems and allows
them to scale with respect to I/O bandwidth and storage space.

The main contribution of our paper is to make the argument
that recoupling data and metadata using OSDs creates a
more modular and scalable architecture. We present two novel
ways of offloading metadata operations to an OSD-based I/O
sub-system along with a PVFS-based implementation of our
designs. Finally, we present results from microbenchmarks
and applications. Even with the overhead associated with
software OSDs, the performance of our OSD-based metadata
management techniques is comparable to, and on certain
workloads better than, dedicated PVFS metadata servers.

II. BACKGROUND

This section provides background information on the tech-
nologies and file systems we have used in our research.

A. Parallel Virtual File System

PVFS [4] is a parallel file system designed to provide
applications with high-performance I/O capabilities. A typical
PVFS system consists of clients, I/O servers, and metadata
servers. PVFS stripes a file across multiple I/O servers in
parallel, thereby providing applications high-bandwidth access
to the file system. The metadata server (MDS) handles the
metadata operations such as file open/close, access control,
directory traversals, and lookups.

B. Object-Based Storage Devices

Object-based storage devices (OSDs) are an extension of
traditional block-based disks. Instead of representing data as
a linear array of blocks, OSDs export data as objects. An-
other important distinction between an OSD and a traditional
block-based disk is the role of the operating system in data
placement. In traditional block-based disks, the host operating
system is responsible for block allocation and data placement.
In contrast, with object-based storage, the disk abstracts the
details of organizing the data on the storage medium from
the operating system. Figure 1 shows this difference between
block-based and object-based disks. By removing the respon-
sibility of block allocation and data placement, it is possible
to simplify the design of file systems. PVFS, for instance,
uses dedicated I/O servers to handle writing data to disk. The
introduction of OSDs eliminate the need for such I/O servers.

Applications Applications

Kernel Syscall Interface

File System User Interface

File System Storage Management

LBA Interface

Block I/O

Storage Medium

Block I/O

Storage Medium
Block-based Disk

OSD Interface

OSD Storage Management

File System User Interface

Kernel Syscall Interface

OSD

Fig. 1: Comparison of Block-based and Object-based storage
models.

Currently, there are no commodity object-based disks avail-
able. However, a related work [12] provides a software OSD
based on the OSD specification [11].

III. SYSTEM DESIGN

There are two main entities that make up the OSD ar-
chitecture: the initiator which translates client requests into
OSD commands, and the target which executes and responds
to OSD commands. The target and the initiator communicate
using the iSCSI protocol. The following sections explore the
initiator and target of the OSD software implementation [12].

A. OSD Initiator

The initiator library exports the OSD command interface to
clients. Initiators create and send requests, while the targets
process and respond to those requests. According to the
OSD specification [11], all client requests are translated into
complex Command Descriptor Blocks. Due to this complexity,

a generic initiator library is provided to help with the process.
It is used either directly by clients or through middleware such
as a file system. The implementation of the initiator library
involved exploiting the new “bsg” interface in the Linux kernel
for bi-directional SCSI commands as required by the OSD
specification. Other kernel modifications include support for
I/O vectors to minimize data copying and support structures
for bi-directional commands in the SCSI mid-layer and iSCSI
transport. Effort has been made to make the interface friendly
to userspace applications.

B. OSD Target

The OSD target is made up of a number of components
which include transport, iSCSI/SCSI layer, OSD command
processor, attribute, and data management backends.

The OSD specification [11] defines an object as an ordered
set of bytes associated with a unique identifier. Additionally,
each object has a set of mandatory and user-defined attributes,
or metadata about the object. Some of the predefined attributes
are familiar from most file system designs, such as size and
modification time.

The transport layer provides a generic interface for mul-
tiple transports like TCP/IP or InfiniBand. The iSCSI/SCSI
layer deals with iSCSI session management and SCSI header
parsing. The OSD command processing engine demarshals
OSD commands, executes the commands, and hands over the
marshaled response back to the iSCSI/SCSI layer, which is
dispatched back to the initiator. The attribute management
backend is implemented using SQLite [13], a light-weight
database, for faster and scalable implementation of attributes.
Details about design and implementation of the attribute stor-
age is explored in a previous publication [14]. Finally the data
storage backend relies on the underlying file system. Presently,
the OSD target supports all of the object manipulation, I/O,
attribute manipulation, and multi-object commands.

IV. OFFLOADING MDS OPERATIONS TO OSDS

One of the challenges in offloading metadata operations to
the disk is identifying the correct storage paradigm. In this
section we present two different OSD-based metadata storage
techniques and examine their advantages and drawbacks.

NAME SIZE EXPLANATION

Uid 4 bytes User id
Gid 4 bytes Group id
Permissions 4 bytes File permissions
Creation time 6 bytes File creation time
Modification time 6 bytes Last mod. time
Access time 6 bytes Last access time
Distribution Variable Layout type
Data Handle Array Variable Data file handles

TABLE I: File system metadata components.

In our current PVFS implementation, there are 8 compo-
nents to the metadata of a file, as shown in Table I. The

(a) Stock PVFS (b) OSD IOS

(c) Dedicated OSD MDS (d) Distributed OSD MDS

Fig. 2: Architecture of different metadata schemes.

first six are typical of any file system: owner and access
permissions of the file and timestamps of file activity. The
timestamps are supported natively by the OSD, and we need
not explicitly update them, while the owner and permission
information is specific to the file system. The last two attributes
contain information about the layout of the file contents.
The distribution is a small structure that contains the name
of a layout type along with its parameters; for instance,
“simple stripe” specifies that the bytes in the file are striped
across the data servers. The data handle array is a list of
handles (disk and object identifiers) that specify where the data
referenced in the distribution is stored. Using this information,
a client can directly access the disks that have the desired data.

A. Stock PVFS and OSD IOS

Figure 2 shows four different metadata distribution schemes.
In the top-left is unmodified (or “stock”) PVFS, which uses
dedicated servers for storing both data and metadata. These
are sometimes combined in practice, but presented separately
here for clarity. Previous work [12] replaced the I/O servers
with directly-attached disks, as is shown in the top-right corner
of the figure. This change does not affect metadata, which is
still stored in dedicated PVFS servers.

B. Dedicated OSD-based MDS
The simplest metadata offloading technique is to use a

dedicated, OSD-based metadata server (MDS) for all metadata
operations. Much like the transition that substituted OSDs for
servers in the data storage path, this modification replaces
PVFS metadata servers with dedicated metadata OSDs, except
for directory operations. Figure 2 shows this change in the
bottom-left. To accomplish this with an OSD-based storage
system, we employ a single, dedicated OSD to handle the
metadata operations. The MDS is essentially an OSD that
stores the metadata as attributes of a zero-length file. While
we could store the metadata information as the contents of
an object, it is both easier to access and potentially faster
to implement when stored as separate attributes of an object.
Storing metadata as attributes avoids the overhead of parsing
the file. Another benefit is this enables use of hardware-based
database operations that may be available in hardware OSDs.

C. Distributed OSD-based MDS
One of the advantages of OSDs is the ability to store user-

defined attributes along with data. This means that it is possible
to store metadata as attributes of the data. In the previous
design, attributes were used to store the metadata. However,
they were attached to a zero-length object on a dedicated OSD

MDS. Another alternative is to attach the metadata to one or
more of the data objects. The bottom-right of Figure 2 shows
the Distributed OSD MDS case.

In this design, file metadata is stored as attributes on the
first stripe of data. The advantage of this technique is that
since the first stripe of data for different files is stored on
different OSDs, we end up with more OSD metadata servers.
Essentially all data storage devices are now metadata storage
devices as well. This removes the need for separate dedicated
disks or servers for metadata, and ensures that metadata
operations are not bottlenecked by a single server. This also
provides a natural load-balancing for the file system in terms of
metadata operations, assuming that the way files are distributed
mimics the way that metadata is accessed.

A limitation with this design is that under heavy load, it is
possible that metadata and I/O operations can interfere with
each other, adversely affecting both. The next section shows
experiments that attempt to quantify this.

In this design we store the metadata only on the object that
contains the first stripe of data. An alternate approach would
be to replicate the metadata across multiple, or all, objects
that contain file data. This would provide multiple servers to
retrieve metadata information, but comes at the expense of
changing many metadata update operations to O(N) in the
number of servers instead of O(1).

D. Directory Operations

As shown in Figure 2, our current design still employs a
separate directory server. The reason is that in order to provide
consistency, directory operations such as entry creation and
removal have to be atomic. This is because these operations
are implemented by a series of smaller steps at the device,
including searching for an existing entry before creating a
new one. Most server-fronted file systems implement atomicity
by providing some form of a locking sub-system. OSDs lack
atomic operations, and do not provide any support for locking
or transaction semantics. Further, an OSD cannot initiate
communication, which complicates consistency enforcement.
We are proposing extensions to the OSD specification [11]
to include atomic operations. In the meantime we have used
a regular PVFS MDS for all directory operations in our
experiments.

Even though we use a dedicated PVFS MDS for directory
operations, it has no influence on the results presented in this
paper. The main argument that we make in this paper is that
dedicated I/O and metadata servers are an artifact in parallel
file system design and coupling data and metadata results in
a modular storage system. This work studies what happens if
we move non-directory metadata operations to OSDs. Related
work [15] addresses the separate issue of handling directory
manipulations on OSDs.

V. MICROBENCHMARKS

This section describes the experiments used to evaluate our
metadata offloading techniques. We present results from two
microbenchmarks first, then present a model to explain the

results and forecast trends. A later section presents metadata-
intensive application performance results. In the experiments
we evaluate the four configurations shown in Figure 2.

Our experimental testbed consists of 30 nodes in a Linux
cluster running kernel version 2.6.22. Each node has dual
AMD Opteron 250 processors, 2 GB RAM, and an 80 GB
SATA disk. The nodes are connected by onboard Tigon 3
Gigabit Ethernet and an SMC 48-port Gigabit switch.

A. Stat Latency

Figure 3 shows the latency of a stat (left) and a create (right)
operation as a function of the number of I/O elements. A PVFS
metadata server is used for directory operations in this and all
tests, having no effect on the differences among the results.
The stat operation communicates with the metadata servers to
find information such as file modification time, and also with
all the storage devices to find the file size. The create operation
creates multiple zero-length files on the file system.

As shown in Figure 3 (left), the stat latency for all the curves
increases with the number of I/O elements. This is as expected
due to the fact that the stat operation communicates with all
I/O servers to find the file size. The Dedicated OSD MDS
and the Distributed OSD MDS have almost identical latency
curves because they both use OSDs for I/O and metadata.
Stock PVFS has the lowest latency, 0.5 ms for 25 I/O servers.
This is the result of using a simpler database (DB4) for storing
metadata. Our OSD target uses SQLite for database operations.
The overhead associated with SQLite along with the protocol
processing time adversely affects the stat latency for all of the
OSD variants.

The create latency curves for stock PVFS, OSD IOS and
Dedicated OSD MDS have a similar slope of around 2.0-2.3
ms, because they are constrained by a single metadata server.
The Distributed OSD MDS however has a lower create latency,
around 1.6–1.7 ms, because it does not create an explicit
metafile object during the create operation.

B. Create Throughput

Figure 4 shows the aggregate “create” throughput as a
function of the number of clients. This microbenchmark cre-
ates multiple zero-length files on a file system with four I/O
elements and a PVFS metadata server for directory operations.
The idea is to study the effect of a metadata intensive operation
on the metadata servers. On the left, we see the create
throughput results for disk-based storage. The common factor
among all the curves is that they plateau almost immediately.
Only a handful of clients are required to saturate the create
capacity of the servers.

The curve for stock PVFS and OSD IOS are similar because
they both use a PVFS server for a MDS. The throughput in
the case of a Dedicated OSD MDS is better than stock PVFS
or OSD IOS because it uses two metadata servers. One is
an OSD-based MDS for file operations and the other is a
PVFS MDS for directory operations. The unique design of
the Distributed OSD MDS (metadata is stored on all the I/O
OSDs) avoids the bottleneck resulting from a single metadata

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14 16 18 20 22 24 26

La
te

nc
y

(m
s)

Number of I/O Elements

Stock PVFS
OSD IOS
Ded. OSD MDS
Dist. OSD MDS

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 0 2 4 6 8 10 12 14 16 18 20 22 24 26

La
te

nc
y

(m
s)

Number of I/O Elements

Stock PVFS
OSD IOS
Ded. OSD MDS
Dist. OSD MDS

Fig. 3: Latency as a function of the number of I/O elements; left: PVFS stat; right: PVFS create.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16 18 20

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (c
re

at
es

/s
ec

)

Number of clients

Stock PVFS
OSD IOS
Ded. OSD MDS
Dist. OSD MDS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16 18 20

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (c
re

at
es

/s
ec

)

Number of clients

Stock PVFS
OSD IOS
Ded. OSD MDS
Dist. OSD MDS

Fig. 4: Aggregate create throughput; left: disk-based storage; right: RAM-based storage.

server. As such, the mean aggregate create throughput for
twenty clients is almost two and half times more than stock
PVFS.

Figure 4 (right) shows the aggregate create throughput
results for RAM-based storage. Mounting the file system in
memory allows us to mitigate the effects of disk seek time
and also to analyze the OSD protocol processing costs. Stock
PVFS outperforms the other three OSD variants in this test
primarily due to multithreading and also because it uses a
simpler DB4 database. While SQLite offers some distinct
advantages over DB4, it also incurs a significant overhead. The
Distributed OSD MDS performs better than the Dedicated one,
again, because its design allows it to use multiple metadata
servers.

VI. SCALABILITY MODEL

In order to make projections for larger systems and to make
performance predictions based on future technological trends,
an analytical model is essential. Here we present a simple
first order model based on our experiments for the create
metadata operation using OSD IOS, Dedicated OSD MDS,
and Distributed OSD MDS.

A PVFS client takes the following steps to create a file. First
it selects a random metadata server and requests to create a
metafile, receiving the corresponding metafile handle. Then it
selects a subset of the I/O servers and creates datafiles, this

TERM DEFINITION VALUE

Nmd Number of metadata servers 1
Nmo Number of metadata OSDs 1
Nio Number of I/O elements 4
Nc Number of clients variable
Tmfp Metafile create time on PVFS 242 µs
Tmfo Metafile create time on OSD 318 µs
Tdfo Datafile create time on OSD 318 µs
Tsap Setattr time on PVFS 446 µs
Tsao Setattr time on OSD 457 µs
Tde Dirent create time on PVFS 419 µs
Tnet Network roundtrip 101 µs
C Client overheads 3 µs

TABLE II: Definition and the values of the model variables.

time receiving the corresponding datafile handles. Next the
client sets the attributes of the metafile handle, including the
list of datafile handles. Finally it creates a directory entry for
the newly created file on the metadata server hosting the parent
directory of the file.

With this process in mind we present the following equa-
tions to model the file create time for the three OSD metadata
schemes:

Tios = Tmfp+Tdfo +Tsap +Tde +4×Tnet +C

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (c

re
at

es
/s

ec
)

Number of Clients

Dist. OSD MDS
Ded. OSD MDS
OSD IOS

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (c

re
at

es
/s

ec
)

Number of Clients

Dist. OSD MDS
Ded. OSD MDS
OSD IOS

Fig. 5: Create throughput as a function of number of clients; left: performance using software OSDs; right: expected performance
on hardware OSDs.

Tded = Tmfo+Tdfo +Tsao +Tde +4×Tnet +C
Tdis = Tdfo +Tsap +Tde +3×Tnet +C

Table II gives the meanings and experimentally derived
values of the variables in the model. For example, in the
case of OSD IOS, ignoring the constant term, the time to
create a file (Tios) is the sum of the times required to create a
metahandle on a PVFS server (Tmfo), create datafiles on OSD
I/O elements (Tdfo), set attributes on a PVFS server (Tsap),
create the directory entry (Tde); and, the four network round
trip times (Tnet) required by these steps.

Given the models for the create operation, we can now
model the create throughput for the three cases. For OSD IOS,
the create throughput Thios is a function of the number of
clients (Nc), metadata (Nmd) and I/O servers (Nio). It is given
as

Thios = min

 Nc

Tios
,

1

max
(

Tdfo,
Tmfp+Tsap+Tde

Nmd

)
 .

The min expression has two terms. One is the upper bound
on client side throughput, and the other is the upper bound
on server side throughput. In the case of OSD IOS, the server
bound is determined by the two time components: the time to
create the datafiles in parallel on the I/O servers (Tdfo), and the
times related to metadata operations (Tmfp +Tsap +Tde). These
metadata operations can be distributed among multiple meta-
data servers, hence we factor by Nmd . Of the time components,
throughput is limited by the slowest of the two, and since
throughput is the inverse of the time to create, the server bound
for the create throughput is determined by the second term in
the min expression. Analogously, from the clients’ perspective,
if we keep adding clients, a first order model for the throughput
is given by the first term in the min expression. However, the
overall throughput is determined by the minimum of the two
components, giving the above expression.

The structure of the throughput expression in the case of
the Dedicated OSD MDS (Thded) is similar to the OSD IOS:

Thded = min

 Nc

Tded
,

1

max
(

Tdfo,
Tde
Nmd

,
Tmfo+Tsao

Nmo

)
 .

The main difference is in the expression for the upper bound
on the server side. In this case, the server side limit is
determined by the slowest of the following operations: the
time to create datafiles on the OSDs (Tdfo), the time to create
the metafile and set attributes on OSDs (Tmfo + Tsao) which
can be distributed on multiple Dedicated OSDs and the time
to create the directory entry on PVFS servers (Tde) which can
be distributed across Nmd metadata servers. The explanation
for the rest of the expression follows the same logic as OSD
IOS.

The throughput expression for the Distributed OSD MDS
(Thdis) has a similar structure:

Thdis = min

 Nc

Tdis
,

1

max
(

Tdfo + Tsao
Nio

, Tde
Nmd

)
 .

The server bound in this case is determined by three terms:
the time to create the directory entry which can be distributed
across Nmd metadata servers, the time to create the datafiles
(Tdfo), and the time to set attributes (Tsao). As explained in
Section IV-B, in the case of the Distributed OSD MDS, the
datafiles are created on each OSD and attributes are set on
one of them, hence the factor of Nio.

Figure 5 (left) shows the throughput curves for the three
schemes based on the models above, using the values in
Table II. Though the models predict the general shape of
curves shown in Figure 4 (left), the actual values are not
obtained. The curves for Dedicated OSD MDS and OSD IOS
asymptote quickly like the experimental data since very few
clients are needed to saturate the metadata servers. The curve
for Distributed OSD MDS saturates quickly compared to the
experimental data, because the model hits the upper bound
imposed by directory entry costs. The reason for this mismatch
is our simple first order model. Since we are interested in
general trends, we ignore factors such as server-side caching
effects, data size increases, and pipelining. We also assume
that each time variable does not vary with respect to Nc, which
is not accurate.

A. Expected Performance on Hardware OSDs

The models are parametrized based on values obtained using
the software OSD implementation. In the case of real OSD
disks, we expect the overheads associated with the emulation
to be reduced due to multiple factors, such as the use of custom
ASICs and content-addressable RAM for attribute operations,
a significant cache of FLASH memory, pipelining and fine-
grained hardware parallelism. In that case we expect the times
associated with the OSDs (Tdfo, Tsao, Tmfo) to be reduced to
roughly 10% of the values listed in Table II. If we take this into
account, we observe that all three curves are limited by PVFS
server costs (Tmfp, Tsap, Tde). For example, in the Distributed
OSD MDS case, reducing OSD times alone would have no
effect as it is already limited by directory entry costs. Figure 5
(right) shows the expected throughput using times reduced to
10% for OSD operations, and eliminating directory operation
times, which are identical in all three cases. This shows
the expected improvements by distributing metadata and by
placing it directly on storage devices instead of going through
a server. However, critical to obtaining this performance is the
need to address the issue of directory entry management. This
will be addressed in future work.

VII. APPLICATION PERFORMANCE

We now present performance data gathered on applications.
First we show a checkpoint program, which consists of the
kernel of a checkpoint operation commonly found in many
large scale parallel applications. We follow the checkpoint
analysis with the Scalable Synthetic Compact Application
(SSCA) benchmark.

A. Checkpoint

Most long-running parallel codes write their system states
periodically to checkpoint files. This enables the user to restart
the application from the previous checkpoint in the event
of a system or application crash. The checkpoint operation
is metadata intensive. Each process running the benchmark
writes to an individual checkpoint file.

The total number of checkpoint files created in a single run
is the product of the number of clients and the total number
of iterations. The size of the data stored by each client at each
iteration is another free parameter.

Figure 6 shows the checkpoint throughput results as a
function of the size of the parallel job for different checkpoint
file sizes (32 kB, 256 kB). We used four I/O servers and a
single PVFS metadata server for directory operations.

With the exception of stock PVFS, the file throughput scales
with the number of clients for each of the file systems. Stock
PVFS tends to perform poorly for small message sizes. This is
due to a default tuning that favors very large messages. Thus,
the PVFS performance plateaus or degrades as we increase
the number of clients. Distributed OSD MDS performs better
than the Dedicated OSD MDS because it can use I/O servers
for metadata operations. Even though OSD IOS uses a single
MDS, its performance is comparable to that of Distributed
OSD MDS. This is because by using a regular PVFS MDS,

OSD IOS can avoid the overheads of a software-based OSD,
such as the slower database, and increased protocol processing
time.

In the next set of experiments, we varied the number of I/O
elements for a fixed number of clients (8). Figure 7 shows
the checkpoint throughput results as a function of the number
of I/O elements. The curves of the OSD-based file system
plateau quickly and then degrade as we increase the number
of servers. In the 256 kB case, Distributed OSD MDS performs
better than the other schemes for reasons outlined above. The
32 kB results are similar with the exception that the checkpoint
performance degrades slightly with the number of servers. This
is due to the fact that increasing the number of I/O elements
requires more time to create the datafiles, as the operation is
not perfectly parallel.

B. Scalable Synthetic Compact Application

The Scalable Synthetic Compact Application (SSCA) [16]
Benchmarks are a set of pseudo-real applications that closely
mimic high-performance computing workloads. We have used
the file I/O component of SSCA-3 (Sensor Processing, Knowl-
edge Formation and File I/O) to evaluate our metadata offload-
ing techniques.

The SSCA-3 application creates a large number of files
and is I/O and metadata intensive. We have modified the
application to issue MPI-IO calls instead of using the POSIX
interface (fopen, fread, fwrite). This change makes it easier
to evaluate PVFS performance without the overhead of the
kernel interface, and should have minimal impact on metadata
operations. We also removed an odd behavior in SSCA-3
where it would break all read and write operations into loops
of 4-byte reads and writes; that is, even though the application
kernel produces reasonably sized operations, a subroutine
breaks them into a series of 4-byte reads or writes. We used
four I/O servers and a single client for all the test runs.

Figure 8 (left) shows the execution time of the SSCA-3
application for the test1 run, as described in the software
package. This configuration creates about 5000 files and writes
almost 1 GB of data. Since the test1 run is not metadata inten-
sive, stock PVFS outperforms the other OSD-based metadata
solutions which are limited by overheads in the software OSD.

Figure 8 (right) shows the results for the SSCA-3 test7GB
run. This more interesting configuration creates about 95000
files and writes almost 7 GB of data. With the exception
of OSD IOS, the average execution time of stock PVFS
and the other OSD variants is almost the same (about 77
minutes). While stock PVFS had outperformed the others
during the test1 run, its performance is comparable to the
other metadata offloading techniques during the test7GB run.
This result validates our hypothesis that current approaches to
distributed metadata do not scale sufficiently well for some
real workloads.

We were expecting the Distributed OSD MDS to have a
lower execution time for this metadata-intensive workload
since it uses multiple metadata servers. However, test7GB is
also data-intensive, so the benefits of using multiple OSDs

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (f

ile
s

pe
r s

ec
)

Number of clients

Stock PVFS
OSD IOS
Ded. OSD MDS
Dist. OSD MDS

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (f

ile
s

pe
r s

ec
)

Number of clients

Stock PVFS
OSD IOS
Ded. OSD MDS
Dist. OSD MDS

Fig. 6: Checkpoint throughput as a function of number of clients; left: checkpoint size = 32 kB; right: checkpoint size =
256 kB.

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (f

ile
s

pe
r s

ec
)

Number of I/O elements

Stock PVFS
OSD IOS
Ded. OSD MDS
Dist. OSD MDS

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (f

ile
s

pe
r s

ec
)

Number of I/O elements

Stock PVFS
OSD IOS
Ded. OSD MDS
Dist. OSD MDS

Fig. 7: Checkpoint throughput as a function of number of I/O elements; left: checkpoint size = 32 kB; right: checkpoint size
= 256 kB.

 0

 50

 100

 150

 200

 250

Stock PVFS OSD IOS Ded. MDS Dist. MDS

Ti
m

e
(s

)

 0

 1000

 2000

 3000

 4000

 5000

 6000

Stock PVFS OSD IOS Ded. MDS Dist. MDS

Ti
m

e
(s

)

Fig. 8: SSCA-3 execution time; left: SSCA-3 test1; right: SSCA-3 test7GB.

as metadata servers is lost because of the overheads (slower
SQLite DB and protocol processing time) associated with
performing I/O on OSDs implemented in software. In using
a hybrid deployment (PVFS MDS for metadata operations,
OSDs for I/O), OSD IOS strikes a happy medium. It avoids
the overhead of OSD-based metadata management while ex-
ploiting the high-throughput offered by OSD I/O disks.

One potential drawback of coupling data and metadata
on a single device is that data and metadata operations can
fall on the same critical I/O path and adversely affect the
application’s performance. Since SSCA-3 is both data and

metadata intensive, it affords us an opportunity to verify if this
is indeed the case. As we can see from Figure 8 (right), there
is no significant increase in the SSCA-3 execution time for the
Distributed OSD MDS file system. If the metadata operations
were interfering with the critical I/O path, we would have seen
an impact on the application execution time.

VIII. RELATED WORK

File system metadata management has long been an active
area of research [17]. With the advent of commodity clusters
and parallel file systems [4], [7], [5], managing metadata effi-

ciently and in a scalable manner offers significant challenges.
Distributed file systems often dedicate a subset of the servers

for metadata management. Mapping the semantics of data and
metadata across different, non-overlapping servers allows file
systems to scale in terms of I/O performance and storage ca-
pacity. File systems such as NFS [18], Lustre [5] and GFS [19]
use a single metadata server to manage a globally shared file
system namespace. While simple, this design does not scale,
resulting in the metadata server becoming a bottleneck and a
single point of failure.

To mitigate the problems associated with a central metadata
server, AFS [17] and NFS [18] employ static directory sub-
tree partitioning [20], [21] to partition the data namespace
across multiple metadata servers. Each server is delegated the
responsibility of managing the metadata associated with a sub-
tree. Hashing [21] is another technique used to partition the
file system namespace. It uses a hash of the file name to assign
metadata to the corresponding MDS.

A recent trend among distributed file systems is to use the
concept of objects to store data and metadata. CRUSH [22] is
a data distribution algorithm that maps object replicas across
a heterogeneous storage system. Lustre [5], PanFS [7] and
Ceph [6] use various non-standard object interfaces requiring
the use of dedicated I/O and metadata servers. Instead, our
work is an attempt to break away from the dedicated server
paradigm and redesign parallel file systems to use standards-
compliant OSDs [11], [23] for data and metadata storage.

IX. CONCLUSIONS AND FUTURE WORK

Dedicated metadata servers limit the performance and scal-
ability of parallel file systems. In this paper we make the case
for recoupling file data and metadata using OSDs. We have
successfully offloaded the metadata management capabilities
of a parallel file system to OSDs. We presented two MDS
offloading techniques that exploit the semantic opportunities
offered by OSDs to manage metadata. We also presented
results from microbenchmarks and applications. Despite the
overhead associated with using software-based OSDs, the per-
formance of our OSD-based metadata management techniques
is comparable to, and at times better than, that of dedicated
metadata servers.

A related publication addresses issues of using OSDs for
directory operations. While the tests in this paper were care-
fully designed to study the non-directory metadata aspects,
that study isolates just the directory aspects.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 0621484.

REFERENCES

[1] CERN, “The large hadron collider,” http://lhc.web.cern.ch/lhc/.
[2] SDSS, “Sloan digital sky survey,” http://www.sdss.org/.

[3] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
metadata management for petabyte-scale file systems,” in SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing.
Washington, DC, USA: IEEE Computer Society, 2004, p. 4.

[4] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A
parallel file system for Linux clusters,” in Proceedings of the 4th
Annual Linux Showcase and Conference, 2000, pp. 317–327.

[5] Cluster File Systems, Inc., “Lustre: a scalable high-performance file
system,” Cluster File Systems, Tech. Rep., Nov. 2002,
http://www.lustre.org/docs/whitepaper.pdf.

[6] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance distributed file
system,” in Proceedings of OSDI’06, Seattle, WA, Nov. 2006, pp.
307–320.

[7] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale
storage cluster—delivering scalable high bandwidth storage,” in
Proceedings of the ACM/IEEE SC2004 Conference (SC’04),
Pittsburgh, PA, Nov. 2004.

[8] D. Roselli, J. Lorch, and T. Anderson, “A comparison of file system
workloads,” in Proceedings of the 2000 USENIX Annual Technical
Conference, Jun. 2000, pp. 41–54.

[9] F. Wang, S. A. Brandt, E. L. Miller, and D. D. E. Long, “OBFS: A
file system for object-based storage devices,” in 21st IEEE / 12th
NASA Goddard Conference on Mass Storage Systems and
Technologies (MSST’04), College Park, MD, Apr. 2004, pp. 283–300.

[10] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long,
and T. T. McLarty, “File system workload analysis for large scale
scientific computing applications,” in Proceedings of the Twentieth
IEEE/Eleventh NASA Goddard Conference on Mass Storage Systems
and Technologies, College Park, MD, Apr. 2004.

[11] R. O. Weber, “Information technology—SCSI object-based storage
device commands -2 (OSD-2), revision 1,” INCITS Technical
Committee T10/1729-D, Tech. Rep., Jan. 2007.

[12] A. Devulapalli, D. Dalessandro, P. Wyckoff, N. Ali, and
P. Sadayappan, “Integrating parallel file systems with object-based
storage devices,” in Proceedings of SC’07, Reno, NV, Nov. 2007.

[13] D. R. Hipp et al., “SQLite,” http://www.sqlite.org/, 2007.
[14] A. Devulapalli, D. Dalessandro, P. Wyckoff, and N. Ali, “Attribute

storage design for object-based storage devices,” in 24th IEEE
Conference on Mass Storage Systems and Technologies (MSST 2007),
San Diego, CA, Sep. 2007.

[15] N. Ali, A. Devulapalli, D. Dalessandro, P. Wyckoff, and
P. Sadayappan, “An OSD-based approach to managing directory
operations in parallel file systems,” in IEEE International Conference
on Cluster Computing, Tsukuba, Japan, Sep. 2008.

[16] HPCS, “Scalable Synthetic Compact Application,”
http://www.highproductivity.org/SSCABmks.htm.

[17] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S.
Rosenthal, and F. D. Smith, “Andrew: a distributed personal computing
environment,” Communications of the ACM, vol. 29, no. 3, pp.
184–201, 1986.

[18] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and
D. Hitz, “NFS version 3: Design and implementation,” in USENIX
Summer Technical Conference, 1994, pp. 137–152.

[19] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in SOSP ’03: Proceedings of the nineteenth ACM symposium on
Operating systems principles. New York, NY, USA: ACM Press,
2003, pp. 29–43.

[20] E. Levy and A. Silberschatz, “Distributed file systems: concepts and
examples,” ACM Computing Surveys, vol. 22, no. 4, pp. 321–374,
1990.

[21] S. Brandt, E. Miller, D. Long, and L. Xue, “Efficient metadata
management in large distributed file systems,” in 20th IEEE/Eleventh
NASA Goddard Conference on Mass Storage Systems and
Technologies, Apr. 2003.

[22] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Crush:
controlled, scalable, decentralized placement of replicated data,” in SC
’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. New York, NY, USA: ACM Press, 2006, p. 122.

[23] Seagate Research, “The advantages of object-based storage,”
http://www.seagate.com/docs/pdf/whitepaper/tp 536.pdf, Seagate, Inc.,
Tech. Rep. TP-536, 2005.

