
Distributed Roadmap Aided Routing in Sensor Networks

Zizhan Zheng, Kai-Wei Fan, Prasun Sinha, Yusu Wang
Department of Computer Science and Engineering, The Ohio State University

Email: {zhengz, fank, prasun, yusu}@cse.ohio-state.edu

Abstract
Communication between arbitrary pairs of nodes has

become critical to support in emerging sensor network-
ing applications. Traditional routing techniques for multi-
hop wireless networks either require high control over-
head in computing and maintaining routes, or may lead to
unbounded route-stretch. In addition, protocols designed
specifically for sensor networks usually consider routing to
and from a single sink only.In order to bound the route-
stretch, we propose a distributed shortest-path roadmap
based routing paradigm that embodies two ideas: rout-
ing hole approximation that summaries the critical infor-
mation about hole boundaries and controlled advertise-
ment that advertises the boundary information of each hole
within limited neighborhoods. Through such techniques, we
show how geographic routing can be leveraged to guar-
antee bounded route stretch.We furthershow that our ap-
proach makes a desired tradeoff between the worst case
route-stretch and the message overhead through both anal-
ysis and simulations.

1 Introduction

With emerging sensor applications where packets may orig-
inate from anywhere in the network and may be destined to
any node, such as pursuer-evader tracking [4] and battle-
field monitoring [14], pairwise communication between ar-
bitrary sensors becomes an essential requirement in sensor
networks. New functionalities such as in-network storage
[13] also require communication between arbitrary nodes.
Stateful routing protocols designed for multi-hop wireless
networks can incur high communication and storage over-
head (up to O(n) per node in the worst case where n is the
number of nodes in the network), and therefore are not suit-
able for resource constrained sensor networks. Although
stateless routing protocols based on geographic information
have been proposed [2, 7, 8, 10], and perform well in net-
works with dense deployments, their performance can be
severely impacted in presence of holes in the network.

Geographic routing protocols typically operate in two
phases. A packet is greedily forwarded towards the desti-
nation until a “local minimum” is reached, where the for-
warding node has no neighbor closer to the destination due
to the incidence of a routing hole. A recovery phase is then
followed to bypass the hole until the greedy phase can be
continued. Due to the reactive routing decisions upon en-
countering a hole, the discovered path may be substantially
longer than the shortest path in terms of the number of hops,
especially when the hole is big. Figure 1 shows an scenario
from our simulations. The path found by GPSR [7], a clas-
sic geographic routing protocol, has 66 hops. However if
the hole is known by the nodes in its neighborhood and by-
passed in advance, the path length can be lowered to 26
hops. Large holes may exist in a network due to the pres-
ence of large obstacles such as a building or a lake, or an
irregular deployment of sensing nodes.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

26 : 66

s

t

Figure 1. Geographic routing can result in sub-optimal
routes and high route-stretch. The dashed line is the routing
path of GPSR, and the straight line is the routing path if the
hole can be bypassed before its boundary is touched. The
boundary nodes of the hole are highlighted.

One of the critical metrics for routing in sensor networks
is the route-stretch, which is the ratio of the number of hops
on the computed route to the number of hops on the shortest
route. The route-stretch is closely related to the end-to-end

latency as well as the energy consumption. In Figure 1, as
the “concave” regions of the hole can be arbitrarily deep,
the stretch is unbounded for GPSR. There do have several
recent works that deal with holes explicitly so that packets
can bypass holes in advance without getting trapped [1, 6,
15]. However, none of these works ensure a bound on route-
stretch and some of them [6,15] only support “many to one”
communications, where all the data are forwarded towards
a single sink. The key observation is that the presence of
a hole has to be made known to at least the nodes in the
vicinity of the hole to bound the stretch.

We propose a distributed shortest-path roadmap based
routing paradigm where each routing hole is treated as a
polygonal obstacle. and explore two ideas, routing hole ap-
proximation and controlled advertisement, to support low-
overhead critical information propagation for holes to assist
in computing routes with bounded stretch.Instead of han-
dling holes passively, we proactively advertise information
on holes, but within a controlled region where route-stretch
is most affected by the holes. Our approach is composed of
the following two components:

• Hole approximation and advertisement: Each rout-
ing hole is approximated by its core, a simple polygon
enclosed by the hole, controlled by a single parame-
ter α. Each routing core is then flooded to the k-hop
neighborhood of the hole, where k is proportional to
the size of the hole.

• Hole bypassing routing: Each node sets up a shortest-
path roadmap [9] locally by treating the cores it knows
as obstacles, and makes routing decisions based on that
map. The real path mimics the planned one and is re-
alized by greedy forwarding and hole traversing, and
is further optimized by a local strategy.

The contributions of this paper are:

• We propose a protocol for routing between any pair of
nodes in a sensor network, which has low storage and
message overhead, and guarantees a bounded route-
stretch.

• We prove that the route-stretch of our protocol is
bounded by 1/ cos(α/2) if all the cores are advertised
to the entire network. We also derive a bound for the
route stretch when the cores are advertised locally.

By guaranteeing route-stretch with low message and
storage overhead, our approach is suited for sensor net-
works to support efficient pairwise communication.

The remainder of this paper is organized as follows. In
the next section, we present the main idea of the hole by-
passing routing protocol. The details on the approximation

and advertisement of routing holes are discussed in Sec-
tion 3, and the bounds on route-stretch are analyzed in Sec-
tion 4. In Section 5, the basic routing scheme is further
optimized by a local strategy. Our approach is compared
with GPSR [7] and GLDR [12] in Section 6 through simu-
lations. The related work are summarized in Section 7. We
conclude our work in Section 8.

2 Hole Bypassing Routing (HBR)
We assume in this paper that each node knows the positions
of itself and its 1-hop neighbors, and each routing hole H
is a closed region bounded by a simple polygon ∂H , where
there is a node at each vertex, and two adjacent boundary
nodes are within the transmission ranges of each other. No-
tice that, routing holes are not necessarily disjoint from each
other and may share boundary nodes or edges. In the con-
tinuous domain where the network density is so high that we
can assume that there is a node at every point in the target
field, it is well known from motion planning [9] and com-
putational geometry [3] that if every node s knows the com-
plete boundaries of all routing holes, s can build a complete
shortest-path roadmap locally by viewing routing holes as
polygonal obstacles, and then for a given destination t, s
can find an optimal path to t. Furthermore, an optimal path
is composed of line segments connecting convex boundary
vertices defined as follows.

Definition 2.1. Convex vertex, concave vertex: A convex
(resp. concave) vertex of a polygon P is a vertex of P for
which the interior angle is less (resp. greater) than π.

The main problem of applying this approach to a sen-
sor network directly is its high message overhead due to the
flooding of the complete hole boundaries to the entire net-
work and the high storage overhead at each node to main-
tain a complete shortest-path map. The main idea of our ap-
proach is to approximate each routing hole H with a core,
a simple polygon Hc enclosed by H that satisfies special
requirements defined precisely in Section 3.2. One of these
requirements relevant now is that every convex vertex of Hc

must be a boundary node of H .
Cores are then advertised to its k-hop neighborhood

where k is determined by the size of the hole. Every node
can build a shortest-path roadmap locally by viewing the
cores it knows as obstacles. Since each core is contained
in a routing hole, cores do not intersect with each other ex-
cept possibly at boundaries. Furthermore, a path computed
is composed of segments ending at the convex vertices of
cores, which are boundary nodes by definition. Therefore,
by substituting every such segment with a subpath imple-
mented by either greedy forwarding or hole traversing, a
realistic path can be constructed. We will show that such

a hole approximation and advertising approach can signif-
icantly reduce the control overhead while still ensuring a
desired route-stretch.

Definition 2.2. Route-stretch: For a given routing proto-
col R, its route-stretch with respect to a source destination
pair (s, t) is ρ(s, t) = |fR|/|fopt|, where fR and fopt are
the paths from s to t found by R and the shortest path, re-
spectively, and |f | is the length of f in continuous domain
or the number of hops of the path in discrete domain.

In this section, we present the main idea of the routing
protocol, and assume that all the routing holes have been
discovered, approximated, and advertised. These mecha-
nisms will be presented in Section 3.

t

s

t

v4

x

yv3

v2
v0

v1

x

Figure 2. A shortest-path roadmap and a path from s to t
computed by HBR in the continuous domain. The three
polygons are routing holes and the dashed polygons are
their cores. The dotted segments are the bitangent edges of
the map. The path computed using cores is (s, v0, v2, v4, t).
The real path is highlighted. x and y are the intersections of
line v2v4 with the boundary of the hole in the middle.

2.1 Building Roadmaps

Once a node s learns about a set of cores, it builds a shortest-
path roadmap locally, which is defined as follows [9]. See
Figure 2 for reference.

Definition 2.3. Shortest-path roadmap: A shortest-path
roadmap at node s consists of the set of the convex vertices
Vs of the cores that s knows and the set of edges Es. For any
two vertices a, b ∈ Vs, (a, b) ∈ Es if a and b are visible to
each other, and either (a, b) is an edge of a core or the line
going through a and b is a bitangent line, that is, a tangent
line at a and at b with respect to the cores they belong to.

The shortest-path roadmap at node s can be built in
O(|V |2log|V |) time, where V is the set of core vertices that
s knows [9].

2.2 Routing Protocol
Consider an arbitrary source-destination pair (s, t). Algo-
rithm 1 shows how a packet p is forwarded from s to t. See
Figure 2 for reference.

Algorithm 1 Hole bypassing routing
1. Initialize: v ← s.

2. v makes a routing plan locally to select the next convex ver-
tex v′ on the shortest path from v to t.

3. p is forwarded towards v′ as follows.

(a) If v and v′ are consecutive vertices of a core Hc for
some hole H , ∂H is traversed to reach v′.

(b) Otherwise, p is forwarded greedily towards v′. If a
hole H is touched before reaching v′, ∂H is traversed
to reach the node that is closest to the intersection of
∂H and vv′ where v′ is visible, then greedy forward-
ing continues.

4. Let v ← v′ and repeat step 2 and 3 until t is reached.

At step 2, the routing plan at node v is made as follows.
First, the shortest-path roadmap is extended by connecting
v and t to all the visible roadmap vertices. Second, Dijk-
stra’s algorithm is applied to find the first convex vertex on
a shortest path from v to t.

At step 3(b), there are two possible directions when
traversing ∂H is required. Suppose p touches ∂H at node
x. x will make a routing plan towards v′ using only the core
of H to determine which direction to go. If xv′ is disjoint
from the core, the packet will follow the direction so that
the real path is also disjoint from the core. For instance, in
Figure 2, a packet forwarded by x towards y traverses the
hole boundary in clockwise order, which is planned by x.

To assist the routing protocol, each data packet header
carries the locations and node IDs of the source, the desti-
nation, and the next route planning node(a convex vertex).

In the above protocol, a new routing plan is made at each
convex vertex on a path from s to t. This can be opti-
mized as follows. First, when a planned path includes a
sequence of contiguous convex vertices on the same hole,
routing plans could be made only at the first and last con-
vex vertices, and let the packet header carry the last one
so that the intermediate convex vertices can simply forward
the packet towards the last vertex. Second, a packet header
could carry part of the routing plan (a sequence of convex
vertices) made at the source or an intermediate node. Third,
a node could cache the routing plans made for certain desti-
nations. In this case, a protocol that handles outdated plans
due to the changes of network topology is needed, which is
left for future work.

We will analyze the performance of the routing protocol
in Section 4, and a local optimization strategy is presented

in Section 5.

3 Hole Approximation and Adver-
tisement

In this section, we discuss how a routing hole is discovered,
approximated by its core, and advertised in a controlled
way.

3.1 Hole Discovery
We apply the approach proposed in [5] to discover routing
holes in a network, which involves a local rule called TENT
that finds nodes where packets may get stuck in greedy for-
warding and the BoundHole algorithm that discovers rout-
ing holes with stuck nodes on their boundaries. The nodes
on the same hole boundary then cooperate to elect the node
with the smallest node ID as the hole coordinator. That ID
is also used as the hole ID. Each boundary node then sends
a message containing its position to the coordinator. Fur-
thermore, every boundary node keeps the positions of the
two neighboring boundary nodes in each direction. The co-
ordinator then approximates the hole boundary as discussed
below.

3.2 Hole Approximation
In this section, we discuss how to approximate a routing
hole by its core. Our approach can be viewed as a polygon
simplification approach since each routing hole is bounded
by a polygon. Although many work on polygon simplifi-
cation have been done in computational geometry, they can
not be directly applied to our scenario because the approx-
imation has to satisfy the following two properties to sim-
plify the routing protocol and bound route-stretch:

1. A core is contained in the original routing hole, and
its convex vertices must be the boundary nodes of the
hole.

2. A core should be a good approximation of the origi-
nal routing hole so that the route-stretch of our hole
bypassing protocol can be bounded.

We will first consider how to approximate a routing hole
bounded by a convex polygon, and then extend the approach
to a general polygon. In both cases, we assume a routing
hole has at least 4 boundary nodes since a polygon with less
than 4 vertices can not be simplified any further.

3.2.1 Holes with Convex Boundary

Consider a routing hole H bounded by a convex polygon
∂H with vertices v0, v1, v2, ..., vn−1(n ≥ 4) sorted in coun-

terclockwise order. The idea is to divide ∂H into chains and
replace each chain with a line segment. The approximation
has only one parameter α, which determines how vertices
are grouped. Let βkk′ ∈ [0, π), k′ ≥ k + 1 1 denote the
angle from line vkvk+1 to line vk′−1vk′ (see Figure 3). The
following algorithm is named as α-approximation, which
begins at a vertex v0 and traverses the hole boundary in
counterclockwise order. See Figure 3 for reference.

Algorithm 2 α-approximation of a convex hole H

1: Hc ← {v0}, k ← 0
2: repeat
3: find the largest k′ s.t. k < k′ ≤ n and βkk′ ≤ α
4: Hc ← Hc ∪ {vk′}, k ← k′

5: until k = n

The time complexity of the above procedure is O(n).
The following proposition states that the size of a core in
terms of the number of vertices on it is independent of the
size of the hole, and is only determined by α, which directly
follows from the fact that the sum of the exterior angles of
any convex polygon is 2π.

Proposition 3.1. The size of the core of a convex hole ob-
tained by α-approximation is bounded by b2π/αc.

v6v v6v

v4

v5

6v7
v8

v4

v5v8

6v7

v2

v3

4
v9

v

v3

4
v9

v
�� � ��

v0 v1

v10

v0 v1

v2
v10�� ������ 	 ��
 ��
 ��

Figure 3. The approximation of convex holes.

3.2.2 Holes with non-Convex Boundary

Consider a routing hole H bounded by a non-convex poly-
gon ∂H with vertices v0, v1, v2, ..., vn−1(n ≥ 4) sorted in
counterclockwise order. ∂H can be divided into multiple
disjoint interleaving convex and concave chains defined as
follows.

Definition 3.1. Convex chain, concave chain: A sequence
of vertices Cij = (vi, vi+1, ..., vj) (without repetition) of a
polygon P is a convex (resp. concave) chain if every vertex
in the chain is a convex (resp. concave) vertex, and the
chain can not be extended further to maintain the above
property.

1In this section, all the arithmetic operations on subscripts are modulo
n operations, and vn := v0.

The approximation of a non-convex ∂H works as fol-
lows.

1. Apply α-approximation to every convex chain of ∂H
starting at one end of the chain, with the additional
requirement that the line segments used to replace the
chain must lie in the core computed so far. Name the
resulting polygon P .

2. Simplify every concave chain of P (discussed below)
to get Hc.

There are two things to be noted. First, a line segment
vivj lies in a polygon P iff (1) vivj is disjoint from any
edges of P except possibly at vi and vj and (2) for any point
x in the segment other than vi and vj , x lies in P . Both
conditions can be checked in O(n) time. Therefore, the
time complexity of the above procedure is O(n2). Second,
step 1 and step 2 may be applied alternately more than once
to reduce the size of Hc.

Algorithm 3 Simplification of a concave chain (vi, ..., vj)
1: C ← {vi−1}, k ← i− 1
2: repeat
3: find the largest k′ s.t. k < k′ ≤ j + 1 and both segments

vkwkk′ and wkk′vk′ lie in the polygon computed so far
4: C ← C ∪ {wkk′ , vk′}, k ← k′

5: until k = j + 1

To simplify concave chains, we recall that the concave
vertices of a core are not part of the shortest-path map,
and therefore a concave chain could be simplified with-
out considering the error criterion – the worst case route-
stretch in our scenario. Consider a concave chain Cij . Let
wkk′ , k

′ ≥ k + 1 denote the intersection of line vkvk+1

and line vk′−1vk′ (see Figure 4). Algorithm 3 embodies the
similar idea of α-approximation and outputs C, the simpli-
fication of Cij . See Figure 4 for reference.The running time
of the algorithm is O(|Cij |n) and the total time complex-
ity of the approximation of a routing hole with non-convex
boundary of size n is therefore O(n2).

Notice that for any concave chain Cij , vi−1 and vj+1

must exist and must be convex vertices. Further more, vi−1

and vj+1 will not be removed by the approximation algo-
rithm, which implies the following two properties about
cores.

Property 3.1. The vertex set of a convex (resp. concave)
chain of Hc is a subset of the vertex set of a convex (resp.
concave) chain of H .

Property 3.2. For any shortest path f computed using
cores, if f is disjoint from a core Hc, then either f is dis-
joint from the corresponding hole H , or f intersects a sin-
gle convex chain of H .

vv
v5v8

v6v7

v4
v

w10�1
v11

v3

v9
v12 v0

v1

v2v10

Figure 4. The approximation of a routing hole with one
convex chain and one concave chain. α = π/2 for the
convex chain. The hole is simplified to the polygon with
vertices v1, v2, v5, v8, v10, w10,1.

HHHH

xxxx

RRRR
HHHH

HHHH
�

HHHH

Figure 5. Controlled hole advertisement. The small cir-
cle centered at x is the minimum bounding circle of hole
H . The core of H is advertised within the large circle also
centered at x with radius RH . Besides flooding, to reach
the shaded region, the message will also traverse ∂H ′.

3.3 Controlled Hole Advertisement
After Hc is computed, the coordinator of H computes CH ,
the minimum bounding circle of H , which can be done in
linear time [11]. Suppose CH is centered at x. The coordi-
nator then sends a message containing all the vertices of Hc

sorted in counterclockwise order. The message is flooded
to all the nodes within a big circle C ′H centered at x with
radius RH = λpH , where λ ≥ 1 is a constant and pH is the
perimeter of H , which equals to the size of H in the discrete
domain. The impact of different choices of λ on the worst
case route-stretch will be discussed in Section 4.2 . To reach
obstructed regions within C ′H (such as the shaded region in
Figure 5), the flooding messages also hug the boundary of
holes intersecting with C ′H .

4 Bounded Worst Case Stretch in
Continuous Domain

In this section, we analyze the worst case route-stretch of
HBR in the continuous domain, assuming routing holes are

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

xxxx
xxxx

yyyy

ββββ
wwww��� ��� ���

Figure 6. A line segment in f ′ vs. the correspond-
ing segment in f . The convex chain (v0, v1, v2, v3, v4)
is approximated by the line segment v0v4. (a) v0v4 vs.
(v0, v1, v2, v3, v4). (b) xv4 vs. (x, v2, v3, v4). (c) xy vs.
(x, v1, v2, v3, y).

approximated using Algorithms 2 and 3. In Section 4.1,
we assume all the cores are advertised to the entire net-
work, and show that the worst case route-stretch is only
determined by α. The impact of controlled advertisement
on route stretch is considered in Section 4.2.

4.1 Hole Approximation
Consider an arbitrary source-destination pair (s, t). Let
f denote the path from s to t found by HBR with α-
approximation and fopt denote the shortest path. We have
the following theorem.

Theorem 4.1. |f | ≤ |fopt|/cos(α/2).

Proof. Let f ′ denote the shortest path planned using cores.
First, we have |f ′| ≤ |fopt| since every core is contained
in the corresponding routing hole. We show that |f | ≤
|f ′|/cos(α/2), which implies the theorem.

It is known that f ′ is composed of contiguous line seg-
ments ending at convex vertices of cores (we can view s
and t as cores with only one vertex). By Algorithm 1 and
Properties 3.1 and 3.2, f is also composed of a sequence of
segments, and every such segment ω corresponds to a line
segment ω′ in f ′. Furthermore, there are only three cases
where ω and ω′ are different, as shown in Figure 6. It is
sufficient to show that |ω| ≤ |ω′|/cos(α/2) for each ω.

Without loss of generality, consider the case (c) in Fig-
ure 6, where ω = (x, v1, v2, v3, y) is part of a convex
chain and ω′ = xy. By geometric argument, we have
|ω| ≤ |xw|+ |yw| ≤ |ω′|/cos(β/2) ≤ |ω′|/cos(α/2).

4.2 Controlled Hole Advertisement
In this section, we consider the impact of controlled ad-
vertisement on route-stretch. For an arbitrary source-
destination pair (s, t), we still use f to denote the path from
s to t found by HBR, with both α-approximation and con-
trolled advertisement applied, and use fopt to denote the

vvvv
vvvv

vvvv

vvvv

vvvv

HHHH

vvvv

xxxx
vvvv

vvvv

vvvv

vvvv

vvvv

HHHH

vvvv

xxxx

HHHH
�

vvvv vvvv��� ���
Figure 7. Convex chain (v0, v1, ..., v4) is approximated
by v0v4. A packet is forwarded by v towards v4. (a) The op-
timization of HBR by early bypassing. (v, x, v1, v2, v3, v4)
and (v, v2, v3, v4) are pathes found by HBR without and
with optimization, respectively. (b) The optimization can
not be applied if the extreme node is not visible.

shortest path. Let h denote the number of routing holes
whose core intersects f ′ but is not used in route planning.
We have the following theorem.

Theorem 4.2. |f | ≤ |fopt|(1/cos(α/2) + h/(λ− 1)).

Proof. Let f ′ denote the shortest path planned using cores.
First, we have |f ′| ≤ |fopt| since only a subset of cores
are used to make routing plans and every core is contained
in the corresponding routing hole. Therefore, it is suffi-
cient to show |f | ≤ |f ′|(1/cos(α/2) + h/(λ − 1)). Let
H denote the routing holes that intersect f ′ but not used
in route planning. |H| = h. Since each H ∈ H in-
creases the route by at most pH , combining with Theo-
rem 4.1, we have |f | ≤ |f ′|/cos(α/2) + ΣH∈HpH . For
every H ∈ H, since f ′ intersects H and H is not known
by the last route planning node before ∂H is touched, we
have |f ′| > λpH − rH according to the advertising proto-
col, where rH is the radius of the minimum bounding circle
of H . Since rH ≤ pH , we have |f ′| > (λ−1)pH . It follows
that |f | ≤ |f ′|(1/cos(α/2) + h/(λ− 1)).

5 An Optimization of HBR
In this section, we consider an optimization of HBR moti-
vated by the following observation. See Figure 7 for refer-
ence. Suppose a packet is forwarded by node v towards v4

on ∂H . By Algorithm 1 proposed in Section 2.2, the packet
will follow the path (v, x, v1, v2, v3, v4) where x is the in-
tersection of line vv4 with ∂H . However, if v2 is visible to
v, a shorter path would be (v, v2, v3, v4).

The example also reveals a typical drawback of most ge-
ographic routing protocols that treat holes in a reactive way.

vvvv
vvvv

vvvv

vvvv

vvvv

aaaa

HHHH
IIII

IIIIIIII

IIIIIIIIIIII

IVIVIVIV

VVVVCCCC

Figure 8. EVRs of a convex chain of hole H . For in-
stance, regions I, II, and III are EVRs of (v2, v3), (v2, v4),
and (v3, v4), respectively.

It shows that even if there is no “local minima”, the simple
greedy forwarding strategy may lead to a suboptimal path.
To optimize this scenario, we first give the following defini-
tions.

Definition 5.1. Visible region of a convex chain: Given a
convex chain C = (vi, vi+1, ..., vj), each line vkvk+1(i ≤
k < j) induces a half plane Ak that is disjoint from the
chain except at vkvk+1. The visible region VC of C is de-
fined as

⋃
i≤k<j Ak.

Definition 5.2. Extreme nodes: Given a convex chain C =
(vi, vi+1, ..., vj) and a point s ∈ VC , there are two vertices
vk, vk′ , i ≤ k < k′ ≤ j such that vk and vk′ are visible to
s while vk+1 and vk′−1 are not, with respect to C. vk and
vk′ are called extreme nodes of s, with respect to C.

For instance, in Figure 7(a), v0 and v2 are extreme nodes
of v; in Figure 8, v2 and v3 are extreme nodes of a. By the
above definition, we make the following observation.

Property 5.1. Given a convex chain C, the two extreme
nodes of a point s ∈ VC are separated by any straight line
that goes through s and intersects C.

For instance, in Figure 7(a), v0 and v2 are separated by
line vv4.

Definition 5.3. EVR: Given a pair of vertices vi and vj

of a convex chain, the connected subregion in the network
in which every point has vi and vj as the extreme nodes is
named as an extremely visible region (EVR) relative to vi

and vj .

The above optimization can be more precisely described
as follows. Suppose the positions of each pair of vertices
in any convex chain have been advertised to its EVR. How
this is implemented will be discussed later. Suppose node
v needs to forward a packet to convex vertex v′ of hole H ,
the step 3 of Algorithm 1 is modified as follows.

(a) If v and v′ are consecutive vertices of a core Hc for
some hole H , ∂H is traversed to reach v′.

(b) Let vi, vj denote the extreme nodes of v with respect
to the convex chain where v′ is on. If no such vi and
vj exist, goto (c). Suppose in the chain, vj is closer
to v′ than vi. If vj is visible to v, then p is forwarded
greedily towards vj .

(c) Otherwise, p is forwarded greedily towards v′. If a
hole H is touched before reaching v′, ∂H is traversed
to reach the node that is closest to the intersection of
∂H and vv′ where v′ is visible, then greedy forwarding
continues.

In step (b), v needs to check whether vj is visible. Fig-
ure 7(b) explains the reason. If vv2 intersects another hole
H ′, then using v2 does not necessarily give a shorter path.
The following proposition states a way for node v to check
whether a convex vertex vj is visible.

Proposition 5.1. Suppose node v knows the cores of all
routing holes and all the extreme nodes. Then for a given
convex vertex vj of hole H and another routing hole H ′, v
can locally check whether vvj intersects H ′ or not.

Proof. First if vvj intersects H ′
c, v can learn that since v

knows H ′
c. Suppose vvj is disjoint from H ′

c but intersects
H ′. By Property 3.2, vvj must intersect a single convex
chain of H ′. Then v knows the extreme nodes a and b
on that chain. Furthermore, vvj must intersect ab by Prop-
erty 5.1. Therefore, vvj is disjoint from H ′ iff vvj is disjoint
from both H ′

c and ab.

5.1 Advertising Extreme Nodes
In this section, we describe a protocol that advertises ex-
treme nodes to their EVRs. We first make the following
observation.

Property 5.2. An EVR is a convex region with at most 4
edges without counting the boundary of the network.

According to this property, an EVR of a pair of ver-
tex (vi, vj) are completely defined by the four edges go-
ing through vi and vj . See Figure 8 for reference. There-
fore, a node can determine whether it is in the EVR of
(vi, vj) once it knows the two tuples 〈vi−1, vi, vi+1〉 and
〈vj−1, vj , vj+1〉.

Algorithm 3 outlines the advertisement protocol. Each
advertisement contains two tuples defining the EVR where
it should be received. Initially, every convex node broad-
casts three messages (line 2). For instance, in Figure 8, v3

will broadcast 3 messages to the subregions I , II , and III ,
respectively. When a node receives an advertisement, it will

first check whether it is within the specific EVR by examin-
ing the two tuples in the message. If it is not, the message
is simply dropped (line 5). Otherwise, it stores the two tu-
ples locally and then forwards the advertisement (line 9). A
node at the common vertex of three or more EVRs may re-
ceive two advertisements. For instance, node a in Figure 8
will receive the advertisements from both v2 and v3. It can
then figure out from the four tuples received that v1 and v4

are the extreme nodes of region IV , and broadcasts a new
advertisement (line 8).

Algorithm 4 Local advertisement protocol at node v

1: if v = vi is vertex of a convex chain C then
2: Broadcast 3 advertisements:

m1: (〈vi−2, vi−1, vi〉, 〈vi−1, vi, vi+1〉)
m2: (〈vi−2, vi−1, vi〉, 〈vi, vi+1, vi+2〉)
m3: (〈vi−1, vi, vi+1〉, 〈vi, vi+1, vi+2〉)
where if a desired vertex is not on C, a null value will be
put in the message

3: [v received a new advertisement m from a chain C]
4: if v is outside the EVR defined by the two tuples in m then
5: drop m
6: else
7: if four tuples received from C then
8: Broadcast a new advertisement {suppose the extreme

nodes of the target EVR are vi and vj}:
m′: (〈vi−1, vi, vi+1〉, 〈vj−1, vj , vj+1〉)

9: Broadcast m

The algorithm may fail if there is no node at the common
vertex of multiple EVRs. For instance, in Figure 8, if there
is no node at position a, then region IV and all the other
regions depending on the advertisement from a will not be
covered. To address this problem, the protocol allows each
message to be sent to a small number of nodes outside the
desired region by a small margin δ. The desired value of δ
depends on the network density. In addition, if a message
touches the boundary of a routing hole, it also needs to be
forwarded along that boundary.

6 Evaluation

6.1 Simulation Setup
We evaluated the HBR protocol using ns2. We randomly
deployed 2000 nodes in 1000m × 1000m networks. The
transmission range is 40m and the average node degree is
around 15. Besides the small holes formed randomly in
a network, we artificially introduce various number of big
holes with different shapes and sizes.

HBR is compared with (1) GPSR [7], which uses greedy
forwarding whenever possible and uses perimeter routing
when holes are encountered; (2) GLDR [12], a virtual coor-
dinates based routing protocol. GLDR proposes a landmark

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

(a) Elliptic holes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

(b) Rectangular holes

Figure 9. Two typical simulation scenarios

selection algorithm and a greedy routing protocol based on
landmarks. The landmark selection ensures r-sampling,
which ensures that there is at least one landmark within r-
hops for every node. Every landmark then floods the entire
network to build the shortest path tree rooted at that land-
mark. The address of a node is identified by the number of
hops to its addressing landmarks. At each step of the rout-
ing procedure, a route planning node (called extreme node)
selects one of the addressing landmarks of the destination
that maximizes the ratio of the distances to this node and to
the destination, and forwards packet following the shortest
path tree to that landmark until the two distances are equal.
Then a new routing plan is made. This greedy rule ensures
success in the continuous domain. The IDs of 8 historical
extreme nodes are maintained in the packet header to detect
loops in the discrete domain. When local minimum hap-
pens or a loop is detected, L1-norm and then L∞-norm are
tried. If the destination is still not reachable, scoped flood-
ing is performed. In our simulation, 25 landmarks are used
on average. The routing success rate without flooding is
about 95%. The average hop distance from the node where
flooding is issued to the destination is about 3 hops.

In all simulations, we generated two types of holes: el-
liptical holes and rectangular holes with concave regions,
as illustrated in Fig.9. The size and shape of a hole is de-
termined as follows. The semimajor and semiminor axes of
an elliptical hole are uniformly distributed on [a/2, a], and
the length and width of a rectangular hole are uniformly dis-
tributed on [3b/4, b] and [9b/16, 3b/4], respectively, where
a and b are parameters. In addition, two concave regions are
introduced within each rectangular hole by subtracting two
smaller rectangles from the hole. The size of a concave re-
gion is 2l/7×w/2, where l and w are the length and width
of the hole respectively.

For each type of holes, we evaluated two cases. We first
fixed the number of holes to be 2 and varied the size (a or
b) of holes. Then we fixed the size of all holes to be 300,
and varied the number of holes. The positions of all holes
are randomly selected. Given the number, size, and shape
of holes, 5 network scenarios are generated randomly, and
the routes between all the 2000 × 2000 pair of nodes are

computed in each scenario. The results are averaged over
all these scenarios.

In all simulations, α is set to π/2, λ is set so that the
cores of the artificially introduced big holes are advertised
to the entire network, and δ is set to 10 hops.

6.2 Route-stretch

Figure 10 shows the average route-stretches for the three
protocols evaluated. We can see that in all the cases, HBR
performs much better than GPSR. For elliptic holes, HBR
performs better than both GPSR and GLDR. For rectan-
gular holes, GLDR has a relatively stable stretch and per-
forms better than HBR. This is because the performance of
GLDR mainly depends on the distribution of landmarks and
network density instead of the shapes of holes. However,
GLDR achieves the low stretch by paying a relatively high
overhead as discussed below. Furthermore, although Fig-
ure 10(b) shows that HBR can lead to an increasing stretch
with increasing hole size, the stretch is bounded by

√
2

(since α = π/2).

6.3 Message Overhead

In this section, we compare the message overhead of HBR
and GLDR. Figure 11 shows the normalized number of
packet transmissions, which is defined as the number of
transmissions for routing a single packet using a specific
routing protocol divided by that in shortest path routing, av-
eraged over all source-destination pairs. For both GPSR
and HBR, the values are the same as their stretches. For
GLDR, the value is much higher because scoped flooding is
used when destination is not reachable by greedy forward-
ing. Although this does not happen frequently, the impact
is huge, especially for a network with high density.

Besides the high transmission overhead, GLDR also suf-
fers from high overhead for each data packet because a big
packet header is used to save the distances to the 10 ad-
dressing landmarks of the destination, and IDs of the last 8
extreme nodes visited. In contrast, the packet header size of
HBR can be much smaller. In the case where a new routing
plan is made at each convex vertex in a path, only the des-
tination and the next convex vertex in the path need to be
maintained in the packet header.

Beside the message overhead in the routing stage, both
HBR and GLDR require extra control messages for setting
up certain roadmaps. For HBR, this includes the messages
for hole detection and approximation, and the advertisement
of cores and extreme nodes. The former are only needed for
nodes on hole boundaries, and only a small constant num-
ber of messages per node are required. The latter can be
significantly reduced if controlled advertisement is applied.
GLDR requires that all the landmarks flood the entire net-

 0

 5

 10

 15

 20

 25

 1 2 3 4A
ve

ra
ge

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Number of Holes

GPSR
GLDR

HBR

(a) Elliptic holes

 0

 5

 10

 15

 20

 25

 1 2 3 4A
ve

ra
ge

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Number of Holes

GPSR
GLDR

HBR

(b) Rectangular holes

Figure 11. Normalized number of packet transmissions
in routing procedure

work to build shortest path trees, which in the best case re-
quires K messages per node for ALL the nodes in network,
where K is the number of landmarks, which is typically
greater than 20 for a large network.

7 Related Work

Our approach is different from previous works in two key
aspects. First, we view routing holes as obstacles and prop-
agate them proactively in a controlled way. In contrast,
most geographic routing protocols treat holes in a reactive
way and only try to bypass them when greedy forwarding
fails [2, 7, 8, 10], leading to high stretch.

GFG [2] and GPSR [7] guarantee delivery by using
perimeter routing, or face routing, to recover from local
minima. In GFG and GPSR, nodes forward their packets
in greedy mode in the beginning. When a local minimum
is encountered, it switches to recovery mode by routing
around the hole. GOAFR+ [8] uses similar greedy forward-
ing and face routing concepts in geographic routing. Unlike
GFG and GPSR, GOAFR+ bounds the search on the bound-
ary of holes and therefore achieves asymptotic optimality.
GPVFR [10] routes packet greedily to the node whose ad-
jacent edge is closest to the destination on the same face as
the sender. GPVFR maintains partial information about the
nodes on the same face and uses this information to route
packets around the face. However, maintaining complete
face information is not a scalable approach.

There do have several recent works that deal with holes
explicitly so that packets can bypass holes in advance with-
out getting trapped [1,6,15], by filling the nodes in the con-
cave regions of routing holes with higher cost metrics [15],
or repositioning these nodes by virtual coordinates [1],
or propagating the local hole information to neighboring
nodes [6]. However, none of these works ensure a bound on
route-stretch and some of them [6, 15] only support “many
to one” communications.

Second, all the above works focus on dealing with lo-

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 200 300 400 500

A
ve

ra
ge

 S
tr

et
ch

Hole Size

GPSR
GLDR

HBR

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1 2 3 4

A
ve

ra
ge

 S
tr

et
ch

Number of Holes

GPSR
GLDR

HBR

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 200 300 400

A
ve

ra
ge

 S
tr

et
ch

Hole Size

GPSR
GLDR

HBR

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 3 4

A
ve

ra
ge

 S
tr

et
ch

Number of Holes

GPSR
GLDR

HBR

(a) Elliptic holes (b) Rectangular holes

Figure 10. Average route-stretches

cal minima or the non-convex regions of routing holes, and
apply greedy forwarding whenever possible. However, we
point out that with the presence of holes, even if there is
no local minima in the network, greedy forwarding can still
be suboptimal. Our approach can by used to improve the
greedy forwarding phase of existing protocols.

8 Conclusion
Emerging sensor networking scenarios require support for
routing between arbitrary pairs of nodes in the network. We
propose a distributed shortest path roadmap based routing
paradigm that is leveraged to achieve bounded route-stretch
with low-overhead for storing and forwarding control in-
formation at each node. We demonstrate its application in
the context of managing information on routing holes in the
most critical regions around the holes to guarantee bounded
stretch.

9 Acknowledgement
This material is based upon work supported by the National
Science Foundation under Grants CNS-0546630 (CAREER
Award), CNS-0721434, CNS-0721817 and CNS-0403342.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Sci-
ence Foundation.

References
[1] N. Arad and Y. Shavitt. Minimizing Recovery State in Ge-

ographic Ad-hoc Routing. In Proc. of the 7th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Com-
puting, pages 13–24, 2006.

[2] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing
with Guaranteed Delivery in Ad Hoc Wireless Networks. In
In Proc. of the 3rd ACM International Workshop on discrete
Algorithms and Methods for Mobile Computing and Com-
munications, pages 48–55, August 1999.

[3] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and
Applications. Springer, second edition, 2000.

[4] M. Demirbas, A. Arora, and M. Gouda. A Pursuer-Evader
Game for Sensor Networks. In Sixth Symposium on Self-
Stabilizing Systems(SSS’03), pages 1–16, 2003.

[5] Q. Fang, J. Gao, and L. J. Guibas. Locating and Bypassing
Routing Holes in Sensor Networks. In Proc. of INFOCOM,
volume 4, pages 2458–2468, Mar. 2004.

[6] W. Jia, T. Wang, G. Wang, and M. Guo. Hole Avoiding in
Advance Routing in Wireless Sensor Networks. In Proc. of
WCNC, pages 3519–3523, 2007.

[7] B. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks. In Proc. of ACM MOBI-
COM, pages 243–254, August 2000.

[8] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geo-
metric Ad-Hoc Routing: Of Theory and Practice. In Twenty-
Second ACM Symposium on Principles of Distributed Com-
puting, pages 63–72, July 2003.

[9] S. M. LaValle. Planning Algorithms. Cambridge University
Press, 2006.

[10] B. Leong, S. Mitra, and B. Liskov. Path Vector Face Rout-
ing: Geographic Routing with Local Face Information. In
Proc. of the 13th IEEE International Conference on Network
Protocols, pages 147–158, November 2005.

[11] N. Megiddo. Linear-Time Algorithms For Linear Program-
ming in R3 and Related Problems. SIAM Journal on Com-
puting, 12(4):759C776, 1983.

[12] A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. J.
Guibas. Landmark Selection and Greedy Landmark-
Descent Routing for Sensor Networks. In Proc. of INFO-
COM, May 2007.

[13] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan,
L. Yin, and F. Yu. Data-Centric Storage in Sensornets with
GHT, a Geographic Hash Table. volume 8, pages 427–442,
August 2003.

[14] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A Two-Tier
Data Dissemination Model for Large-scale Wireless Sen-
sor Networks. In ACM/IEEE Mobicom, pages 148–159,
September 2002.

[15] L. Zou, M. Lu, and Z. Xiong. A Distributed Algorithm for
the Dead End Problem of Location Based Routing in Sensor
Networks. In IEEE Transactions on Vehicular Technology,
volume 54, pages 1509–1522, July 2005.

