
Histogram-based Visibility Culling in Visualizing Large Volume Data
Yuan Hong and Han-Wei Shen

the Ohio State University

ABSTRACT

Visibility culling can be used to increase the run time performance
when visualizing large volume data sets. Currently, most of the
existing visibility culling algorithms depend on pre-specified trans-
fer functions, which makes it difficult to perform general visibility
preprocessing and run time visibility culling for applications run-
ning on parallel machines. In this paper, we present a novel data-
centric visibility culling algorithm that is independent of any par-
ticular transfer function and can quickly estimate each data block’s
visibility at run time for a given view. The main concept in the algo-
rithm is the Perview Sample Histogram extracted from the original
volume data in a preprocessing step. These histogram profiles can
be used to build a compact linear model to quickly adapt to the run
time transfer function and calculate the block-wise visibilities. We
notice that, for large volume data sets, I/O is often the bottleneck
of the entire rendering pipeline. To improve the I/O performance,
the Perview Histogram can be used to construct a visibility feature
vector for each data block, which in turn will be used to group the
data blocks that are likely to be accessed together. We show that the
histogram profile is effective in predicting the pattern of block data
I/O.

1 INTRODUCTION

While visualization has been proven effective to analyze data from
many scientific and medical applications, the sheer size of data of-
ten handicaps the usability of many visualization tools due to the
large resource requirement in CPU cycles, memory, storage, and
network bandwidth. Among the many techniques available to han-
dle large data sets, visibility culling, a technique that avoids pro-
cessing invisible data blocks, is one of the most frequently used
approaches. Although there have been intensive efforts in the past
to develop visibility culling algorithms for volume rendering, two
issues still remain to be addressed. First, since the result of volume
rendering directly depends on the input transfer function, it is diffi-
cult to perform any visibility analysis without knowing the transfer
function or a family of transfer functions [6, 7] that will be used at
run time. The second challenge is that, as the size of data continues
to increase, I/O starts to become a major bottleneck in the visual-
ization pipeline. It is important to avoid introducing extra overhead
when reading only the visible data blocks. We have observed that
when we only load the visible portions of the data, a large number
of small I/O requests are often issued, which will slow down the
overall I/O performance. For this reason, it is better to reorganize
the layout of the data blocks based on their visibility patterns.

Previously researchers have not paid enough attention to the is-
sues related to improving the I/O performance by taking into ac-
count the data set’s visibility pattern. There was also no work on
visibility preprocessing for volume rendering that is completely in-
dependent of run time transfer functions. The latter is important
because computing the visibility and re-organizing the file layout
based on certain transfer functions do not guarantee satisfactory
results for general cases. In this paper, we propose a novel data-
centric visibility culling method, which is totally independent of
any particular transfer function. Based on this algorithm, We can
study the optimal data layout in the file by exploiting the visibility
pattern of the blocks in the data set. The algorithms we developed
are targeted at parallel visualization of large scientific and medical

datasets.
The basic algorithm for visibility culling in the context of vol-

ume rendering is early ray termination [17]. For parallel and out-
of-core applications, the main goal of visibility culling is to know
the exact set of visible blocks before the actual data loading and
rendering take place. In spite of the simple idea behind volume
visibility culling, one challenge is its dependency to the transfer
function, which usually can be changed at run time. This transfer
function dependency makes it difficult to perform useful visibility
preprocessing without being limited to a small number of trans-
fer functions known in advance. Previously, researchers [6, 7] have
proposed to calculate the block-wise opacity information based on a
set of given opacity transfer functions at a preprocessing stage. This
auxiliary opacity information for data blocks is then distributed to
the parallel processors along with the original volume data. During
the data loading and rendering phase, the visibility is estimated by
looking up those auxiliary information. This type of methods work
well only if the run-time transfer functions come from simple lin-
ear combinations of the transfer functions that are already known.
However, it is impractical to assume that the run time transfer func-
tions to be used by the user are always pre-determined.

To address this problem, in this paper we present a novel ap-
proach for visibility culling that is independent of any specific
transfer functions. Our method introduces a new concept called
Perview Sampled Histogram which represents a 1D histogram col-
lected from samples along view-dependent sampling rays. Direct
volume rendering essentially consists of two components: one is
the process of view-dependent sampling through the volume, which
is data-centric, and the other is to look up a transfer function to clas-
sify the sample values into colors and opacities. In our algorithm,
in a preprocessing stage, we compile the view-dependent samples
and collect the ray-based histograms to construct abstract statisti-
cal descriptors, called Perview Sampled Histograms, for each data
block. At run-time, with an arbitrary input transfer function, the
Perview Sampled Histograms can be used to construct a compact
linear model to efficiently compute the visibility of each data block.
Our algorithm is data-centric because the Perview Sampled His-
tograms are not subject to any transfer function and derived only
from the data.

The key research motivation of our work is based on the observa-
tion that ray-based spatial coherence is not unusual in volume data,
especially in small local volume blocks. The rays passing through
each block usually show local similarities in the histogram gener-
ated from the samples. We call this histogram similarity, which is
used as a metric to cluster the rays within each block. The Per-
view Sampled Histogram is constructed to describe the clustered
histograms. We show that the histograms can be used to compute
a block’s opacity quickly at run time without needing to render the
data. With the help of data-centric visibility preprocessing, it be-
comes possible to optimize I/O performance based on the visibility
pattern of data blocks without depending on any transfer functions.
In this paper we use the Perview Sampled Histograms calculated at
the preprocessing stage to construct a visibility feature vector for
each data block, which in turn is used as the clustering metric to
identify data blocks that are likely to be accessed together. The
clustering result is used to re-organize the layout of the data file
stored in a Parallel File System so that data needed for a given view
will be accessed from contiguous regions. Our visibility-assisted

I/O optimization method is data-centric and therefore not subject to
any specific transfer functions.

In the remainder of this paper, we first briefly discuss the re-
lated work of large scale volume visualization and visibility culling
in Section 2. The details of Perview sampled Histogram, run-time
visibility culling algorithm and its IO application are then presented
in Section 3. Visibility culling results and the IO performance im-
provements are shown in Section 4. In Section 5, we summarize
our contribution and conclude with a discussion of possible future
work.

2 RELATED WORK

Previously there have been various research works proposed for
visibility culling. In the context of volume visualization, most of
them require prior knowledge about the transfer functions. Very lit-
tle work has been done to perform visibility analysis based on the
scalar data only. In this section, we review some of the previous
work on visibility culling and also its relations to I/O.

2.1 Visibility Culling

Many parallel algorithms have been designed to utilize large scale
parallelism to accelerate rendering of larger volume data. In [20]
Ma et al. presented the Binary-Swap algorithm for image com-
positing that has an efficient O(logN) complexity. Ma and Crockett
[19] studied parallel rendering of unstructured grid data using cell
projections. To further improve the performance, visibility culling
is used to eliminate the occluded portion of the volume early in the
visualization pipeline. Visibility culling was introduced in view-
dependent rendering of isosurfaces in [18, 22]. Authors in [11] de-
veloped a visibility-assisted parallel splatting algorithm for volume
datasets with moderate to heavy occlusion. To accelerate parallel
isosurface extraction, Gao and Shen [4, 5] proposed a progressive
visibility culling method that efficiently eliminates invisible isosur-
face triangles to achieve satisfactory parallel speedups. Guthe and
Strasser [8, 25] applied visibility test to multiresolution volume ren-
dering which considers the change of transfer function. Liu et al.
[31] described a progressive view-dependent isosurface extraction
algorithm. This approach determines visible voxels by casting a
small number of viewing rays and then propagating the visibility
information up from these seed voxels to obtain the full visibility
information for the volume.

Recently, Gao et al. [6]proposed a highly-scalable visibility
culling method based on Plenoptic Opacity Functions (POFs). The
extended version of POF to time-varying data was presented in [7].
POF performs well if the transfer functions are known or can be de-
rived from a small set of base transfer functions. They assume that
the transfer functions to use can be expressed by a linear combina-
tion of the corresponding bases. But in some cases, as described
in [29], transfer functions can be generated from some non-linear
combinations of the existing transfer functions. In our work, we do
not rely on pre-existing transfer functions.

2.2 Visibility IO

While visibility culling can accelerate the rendering speed, special
care needs to be taken to minimize the I/O cost when large datasets
are concerned. Since visibility culling usually breaks the whole
data into many non-contiguous data blocks that will be accessed at
a time, additional optimization from the applications is needed to
ensure a good overall I/O performance.

In [1], a Parallel Virtual File System (PVFS) is used to imple-
ment list I/O to enhance performance of non-contiguous I/O. [26]
proposes the idea of collective caching, which coordinates the ap-
plication processes to manage cache data and achieve cache coher-
ence in the PVFS system. Worringen et al. [14] present listless
I/O, that can be incorporated into MPI-IO implementation as an

Figure 1: For each view, A histogram is created from the samples
along each ray marching through a data block. For each green pixel
in the screen footprint there is a sampled histogram created. These
sampled histograms are clustered into one or multiple Perview Sam-
pled Histograms to represent the data block in this view direction.

interface, thusly improving the performance of non-contiguous ac-
cesses. To achieve higher performance, file layouts and supporting
system are changed accordingly in [12]. Clusterfile is a parallel
file system provides parallel file access on a cluster of computers.
The authors in [12] introduce a file partitioning model that has been
used in the design of Clusterfile. The model uses a data representa-
tion that is optimized for multidimensional array partitioning while
still allowing arbitrary partitions. To effectively exploit parallel re-
sources, Wang et al. [27] present a new profile-guided greedy par-
titioning algorithm to parallelize I/O access for file-intensive appli-
cations run on cluster-based systems.

Relatively little attention has been paid to the I/O issue for paral-
lel visualization algorithms. Yu et al. [9] presented an I/O solution
for visualization of time-varying volume data in a parallel and dis-
tributed computing environment. They built a rendering model to
calculate the number of I/O nodes necessary for keeping the ren-
dering pipeline full. Yang et al. designed an application-specific
file system that transparently maximizes the overlap between disk
I/O and computation without requiring application modifications
[30, 3]. I/O patterns related to visibility have some particular fea-
tures: they are highly dependent on the transfer functions. The
resulting I/O accessing may contains many non-contiguous pieces.
In our paper we utilize our fast visibility approximation to estimate
the possible accessing patterns and optimize the I/O speed.

3 ALGORITHM

Our visibility culling algorithm contains two major components:
one is a preprocessing step, described in Section 3.1 and Section
3.2, that extracts the essential information from the data set for ef-
ficient run time visibility culling. The other component is the run
time algorithm, described in Section 3.3, that performs visibility
culling. Our algorithm is based on a novel concept called Perview
Sample Histogram, collected at a preprocessing step. Fig. 1 shows
the basic idea of Perview Sampled Histograms: First histograms are
collected along the sample rays cast from the image plane through
each data block. These Sampled Histograms are processed to obtain
compact Perview Sampled Histograms that represent the signatures
of a data block in one view direction. The details of our algorithm
is described in the following sections.

3.1 Ray-based Sampled Histogram
In [21], the accumulated opacity along a viewing ray can be ap-
proximated as:

α = 1−
n

∏
i=1

(1−α(Si)) (1)

where α is the accumulated opacity along the ray, α(Si) repre-
sents the accumulated opacity value within each ray segment Si,

and n represents the number of segments along the ray. In practice,
with a step size of 1.0, we usually approximate α(Si) by looking
up the transfer function using the value sampled at the i-th sample
point. Assuming we place the values of the samples along a ray into
a histogram, Eqn. 1 can be rewritten as:

α = 1−
m

∏
i=1

(1−α(Si))ki (2)

where m is the number of bins in the histogram, α(Si)) is the cor-
responding opacity for the scalar value represented by the i-th bin
of the histogram, and ki is the number of sampled voxels placed in
the i-th bin. From Eqn. 2, we can see that the accumulated opac-
ity for each ray can be derived from the histogram collected from
the samples when combined with a given transfer function. The
histogram alone, however, is independent of the transfer function.
We call this histogram the Ray-based Sampled Histogram which
is stored as a histogram vector. A histogram vector has a format
of [w1,w2, ...,wm], where wi shows how many sample points have
values that fall into the i-th bin of the histogram.

The idea behind the Ray-based Sampled Histogram is that even
though in the preprocessing stage we do not know yet what trans-
fer function will be used by the volume renderer, the histogram of
samples along each ray can be collected in a preprocessing stage.
This histogram later can be used to quickly compute the accumu-
lated opacity at run time once a transfer function is given. To create
the histogram, all we need to know is the resolution of the transfer
function, i.e., how many bins will be used for the transfer function
to represent the range of the scalar values for a volume data set. The
same number of bins will be used to create the histogram. A Ray-
based Sampled Histogram is sampled per view for each sampling
ray cast from the image plane. The same process is done for all
sample views around every block. The required memory storage,
however, is not as large as it seems since in most cases only a few
bins have non-zero occurrences while many other bins are empty.
This is because for a small data block, for example at a resolution of
32×32×32, in most cases due to spatial coherence, the variance of
the scalar values in the data block is quite low. The same situation
happens to the gradients too.

In our experiments, the number of bins needed for each his-
togram is small, usually 3 to 5. Therefore, a compact version of the
Ray-based Sampled Histogram can be used. For now, for a given
view one histogram will be created for each sampling ray. In the
next section, we describe how to combine the histograms among
rays to make the representation more compact.

3.2 Perview Sampled Histogram
The Ray-based Sampled Histograms created for different rays in
a given view are often very similar to each other due to the value
coherence in the data block. To take advantage of this, given the
Sampled Histograms from all rays in a given view direction, we
apply mean-shift clustering [2] to group them and use a Perview
Sampled Histogram to describe each of the clustered groups. The
Perview Sampled Histogram is an abstract representation of origi-
nal data and can be used at run-time to perform visibility culling(see
details in Section 3.3).

The reason to choose Mean-Shift is that it is a non-parametric
feature space analysis technique. The most attractive feature for
mean-shift clustering algorithm is its robustness: it does not require
prior knowledge of the appropriate number of clusters to use. Our
assumption on clustering is that similar ray-based histograms will
produce similar accumulated opacity values since in most cases, the
transfer functions are smooth. Our goal to cluster the sampled his-
tograms and use the representative perview histogram for the clus-
tered groups is to reduce the storage requirement.

To compute the difference between two histograms, the tradi-
tional Euclidean Distance metric will not work well since it is a flat

(a) bin pattern 1 (b) bin pattern 2 (c) bin pattern 3

Figure 2: different bins patterns. Fig. 2(c) has a different bin pattern
from the first two so it should not be clustered together with them al-
though the three histograms share the same number of occurrences.

metric, without considering the shape of the vectors. To address the
issue, we use the Earth Mover’s Distance(EMD)[28] as the distance
metric so that the distance calculation will take the bin patterns into
considerations. Figure 2 shows 3 histograms with 2 different bin
patterns. All these three histograms have the same total population.
For example, histogram in Fig. 2(a) has 3 samples in bin #1 and
5 in bin #2; histogram in Fig. 2(b) has 4 samples in bin #1 and 4
in bin #3; Each of the two histograms has a total of 8 samples and
their non-empty bins are close to each other which means they are
similar to each other. In the rendering process, similar histograms
are most likely to give approximately similar optical properties, due
to the smoothness of volume data. So it is more reasonable to group
them into the same cluster. The histogram in Fig. 2(c) has a non-
empty bin #10, which makes its bin pattern different from the first
two. So it is possible that the third histogram will result in a dif-
ferent optical appearance from the first two. If Euclidean distance
metric is used, all three histograms will be clustered together since
the distance between every two of them is the same, which is the
case we want to avoid. Our goal is to group the histograms in Fig-
ure 2(a) and Figure 2(b) together but not the histogram in Figure
2(c). The underlying idea is that the closer of the bins in histogram
are, the more likely they will be assigned with similar opacities.

The Earth Mover’s Distance (EMD) is a method to evaluate the
dissimilarity between two multi-dimensional distributions in cer-
tain feature space where a distance measure between two single
features, called the ground distance matrix C, is given. Since the
Ray-based Sampled Histograms have different vector sizes, EMD
is very suitable to be used as a metric to compare the histogram bin
patterns.

To fit EMD to our need, we redefine the ground distance ma-
trix C as follows: For 2 sampled histograms V1 = [pn1 , pn2 , ..., pnl]
and V2 = [qm1 ,qm2 , ...,qmh] where l and h are the length of the his-
tograms; pni and qm j represent the number of samples in bin ni and
m j, the ground distance matrix C is a matrix with dimensions n×m.
Each entry Ci j is defined as the ground distance from pni in V1 to
qm j in V2. Formally, ground distance matrix C is defined as:

Ci j =
||pni −qm j ||

wni,m j

(3)

where ||.|| is the norm operator and wi, j is the weight for adjust-
ing the distance between bin ni and bin m j: the larger the differ-
ence between ni and m j, the smaller the value of wi, j is. We use

a non-linear mapping to calculate wi, j = e−
(ni−m j)

2

σ2 , where σ is the
user-defined width to control the distance between 2 bins; ni and m j
are the bin index of the histogram. Computing the EMD is based
on a solution to the well-known transportation problem [10] which
can be formalized as a linear programming problem: feature vec-
tors are classified into supplier and consumer and for each supplier-
consumer pair, the cost of transporting a single unit of goods is
given by the ground distance matrix C. The transportation problem
is then to find the least-expensive flow of goods from the suppliers

to the consumers that satisfies the consumers’ demand [10].
After clustering we obtain one or more histogram groups, each of

which is described by a Perview Sampled Histogram. In our exper-
iments, most of the data blocks after the clustering, produce only
one such histogram group for one view direction. We treat these
Perview Sampled Histograms as the abstract representations of the
data blocks for that view direction. To store them, the following
information are recorded:

1. Number of the non-empty bins n and the indices of those bins.
Since the histogram vector is sparse we only need to save non-
empty bins;

2. Nmax : Maximal number of total samples in the histograms
from the group;

3. Nmin : Minimal number of total samples in the histograms
from the group;

4. Mmaxi : Maximal number of samples for each individual his-
togram bin in the clustered group;

5. Mmini : Minimal number of samples for each individual his-
togram bin in the clustered group;

For example, the Perview Sampled Histogram to describe the his-
tograms in Fig. 2(a) and Fig. 2(b) contains the following infor-
mation. These two histograms in this cluster have the same total
number of samples, e.g. Nmax = Nmin = 8; there are 3 distinct non-
empty bins in these two histograms; the histogram populations for
bin #1 range from the value 3 to 4, bin #2 from 0 to 5 and bin
#3 from 0 to 4. As we can see, the number of non-empty bins
in the Perview Sampled Histogram usually is greater than that of
its individual members in the cluster because our clustering strat-
egy is that, when a bin has a non-zero value in one of the clus-
tered members, this bin should be recorded, e.g. adding a pair
of Mmaxi and Mmini . More information can be added to describe
the Perview Sampled Histogram but it will require larger storage
space. In this paper the above information is sufficient for visibil-
ity computation. A Perview Sampled Histogram has a tuple-format
[n,Nmax,Nmin,Mmax1 ,Mmin1 , ...,Mmaxn ,Mminn]. The Perview Sam-
pled Histogram will be used to solve a linear programming problem
at run-time, which is discussed in the next section.

3.3 Run-Time Visibility Calculation
At run time, to estimate whether a block is visible from a given
view direction, we first estimate the minimum opacity of each data
block, and then composite the opacities from the blocks together
in a front to back order according to the view direction. A block
is considered invisible if the accumulated opacity from the blocks
in front of it is close to 1.0 or larger than a threshold. This is a
conservative approach because many rays going through a block
may accumulate a much higher opacity. Nevertheless, it makes sure
that no wrong result will be generated, i.e., no visible blocks will
be classified as invisible. In the previous work [6, 7], the minimum
opacities are pre-calculated based on Eqn. 2 for each block with
some presumed transfer functions. In this paper, we use the Perview
Sampled Histogram to represent a cluster of sampled histograms
for a block at a given view, so that no prior knowledge about the
run time transfer functions is required. With the Perview Sampled
Histogram, the problem of finding the minimal opacity is equivalent
to finding one sampled histogram from the cluster that will produce
the minimal opacity for a given run-time transfer function. Since
the exact information of each sampled histogram is merged into the
Perview Sampled Histogram, the problem of finding a histogram
with the minimal opacity is transformed to an optimization problem
based on certain given constraints.

Figure 3: Perview Sampled Histogram and run-time transfer func-
tion are input to create a linear programming problem. After solv-
ing this linear programming problem the maximal value f should be
converted back to the minimal value of α. Visibility determination is
implemented by checking the accumulated α. The process is done
along the view direction.

To tackle the problem of finding the minimal opacity, we use a
linear programming model in order to avoid brute-forcedly check-
ing all the possibilities or introducing dependency to specific trans-
fer functions. To do this, we first rewrite Eqn. 2 as:

1−α =
m

∏
i=1

(1−α(Si))ki (4)

If we apply the log function to both sides and let f = log(1−α),
then we have:

f = log(1−α) =
m

∑
i=1

log(1−α(Si))ki =
m

∑
i=1

ciki (5)

where ci = log(1−α(Si)), and can be computed when the transfer
function is known at run time. Since Eqn. 5 is a linear combi-
nation of variable ki which is non-negative, we can build a linear
programming model to calculate the maximum value of f in the
above equation, which is equivalent to finding the minimal value of
α in Eqn. 2.

The linear programming model is defined as follow:

Objective function : Maximize f
Subject to :ki ≥ 0 i=1...n

Nmin ≤
n

∑
i=1

ki ≤ Nmax

Mmini ≤ ki ≤Mmaxi i=1...n
Other user-defined constraints

The above linear programming problem can be constructed from
the pre-computed Perview Sampled Histograms with a given run-
time transfer function. The histograms are used to formulate the
constraints for the linear problem, and the run-time transfer func-
tion is used to calculate the coefficients ci. Given a run-time transfer
function, ci only needs to be computed once as long as the transfer
function stays the same. The complexity of computing ci is linear,
which is proportional to the number of bins in the transfer function.
The first entry of the Perview Histogram is used to set up the num-
ber of ki in the linear programming model; the following entries
set up the range of each ki in the constraints. The goal of this lin-
ear programming problem is to find out the maximum value of f ,
thereby finding the minimal value of α in Eqn. 2.

Fig. 3 shows the run-time process to estimate the block-wise
visibilities. At run-time, along the view direction, each data block
calculates its minimal opacity by solving the linear programming
problem constructed from the corresponding Perview Sampled His-
tograms and the run-time transfer function. Extra constraints can be
added if prior knowledge of the data is available. These constraints
depict a feasible region for the linear programming problem. Our
method is to search the boundary of the feasible region in the lin-
ear model to acquire the max f. There are trade-offs between the
number of the constraints and the final maximal value of f : if more
constraints are used, the resulting fmax is closer to the exact one; On
the other hand, the storage requirement becomes larger. However,
some heuristics can be utilized to reduce the storage. For instance,
in many scientific datasets there exist a large amount of uniform
data blocks. For those uniform blocks there is no need to calculate
the histograms.

The Simplex Tableau algorithm is used to solve the linear model
by constructing an admissible solution at each vertex of the polyhe-
dra, and walking along the edges of the polyhedron to find vertices
with higher values of the objective function until the optimum is
reached. The above linear programming problem can be solved
in polynomial time O(h) where h is related to the number of con-
straints. Since the Perview Sampled Histograms are created for
small 3D data blocks, the number of the constraints are limited.

3.4 I/O Optimization
In this section we discuss the use of Perview Sampled Histograms
to improve I/O performance. As the size of data continues to in-
crease, I/O is becoming one major bottleneck in the visualization
pipeline. There are two sources of inefficiency. One is that load-
ing large files from the storage devices would naturally take longer.
The other is that even when we only load the data that is necessary
to create the visualization, such as the visible data blocks, the raw
data can be scattered across the entire disk so a large number of
small I/O requests will be issued. These so-called non-contiguous
I/O requests can cause extra overheads and further slow down the
I/O performance.

In this work, we aim to improve the overall I/O performance re-
lated to visualizing large volume data sets by taking advantage of
visibility. Our algorithm is based on the Parallel Virtual File Sys-
tem (PVFS). PVFS has been recently used in a rendering system
[9] to provide global user accesses across different processors or
clusters. Its goal is to provide a higher and scalable performance
compared with the traditional methods where the user has to sub-
divide the data files in advance and distribute them to different clus-
ter nodes’ local storage. The main idea of our algorithm is to use
the Perview Sampled Histograms calculated in the preprocessing
stage to build Perview Visibility Vectors that are metrics to identify
data blocks that have similar visibility properties. Our method is to
create a more efficient data distribution strategy to groups together
data blocks that are more likely to be accessed together to avoid
non-contiguous I/O requests. Our approach is described in detail in
Section 3.4.2. In the following, we first briefly introduce the main
concept of PVFS.

3.4.1 PVFS and Non-Contiguous I/O

The Parallel Virtual File System (PVFS) is an Open Source paral-
lel file system, which is a type of distributed file system that dis-
tributes data in a file across multiple servers and allows for concur-
rent access by multiple tasks in a parallel application. PVFS was
designed for use in large scale cluster computers. Fig. 4 shows
an overall view of a standard PVFS and its data migration flows.
In PVFS, data are striped along each I/O server in a round-robin
manner. If the useful or visible data blocks are scattered sparsely in
the large dataset, there exist two I/O related problems if only these
visible or useful data blocks are loaded. First, these visible or use-

(a) PVFS overview

(b) Data Migration

Figure 4: PVFS overview and data migration.

ful blocks might be stripped into one or a few I/O servers, hence
produce I/O congestions during the rendering time. Second, these
visible or useful blocks may also scatter very sparsely in an indi-
vidual I/O server, which will increase the seeking time for external
storage devices. Fig. 5 displays two I/O access patterns in two I/O
servers for the viswoman data set stored in PVFS2, where the data
(512×512×1728) is distributed to 32 I/O servers with the strip size
equal to 1K bytes. Fig. 5 shows that, even in PVFS, the data I/O ac-
cess patterns can be very sparse and generate many non-contiguous
I/O requests to the I/O servers.

Many previous system research works have focused on non-
contiguous I/O issues. For example, MPI has implemented collec-
tive I/O functions such as MPI File read all to ameliorate the I/O
overheads. The main idea behind it is to utilize 2-phase loading
and data sieving which load more data blocks than necessary and
sieve the useful ones out [24, 23, 13]; In this way fewer I/O op-
erations are needed and thus better performances can be obtained.
ROMIO implements a similar idea in their fundamental I/O mod-
ules and uses the List-I/O data structure to buffer the individual I/O
requests and sends them together in a later time [15].

In spite of all the existing system support, the performance
of applications still degrade significantly as the number of non-
contiguous I/O requests increase, which are not unusual in scien-
tific visualizations applications. Generally, there are up to 70 to 80
percent of data blocks that are transparent, and hence meaningless
to load, and among those meaningful blocks, half of them can be
invisible after visibility culling. Therefore, more steps can be taken
to further reduce the I/O overhead. Our strategy is to utilize the
Perview Sampled Histograms to construct a visibility feature vec-
tor for each data block. We use these visibility feature vectors as
signatures to identify the data blocks that have similar access pat-
terns: either visible or invisible. The following Section discusses
our approach in detail.

3.4.2 Visibility Feature Vector

As mentioned previously, in the preprocessing stage we calculate
the Perview Sampled Histogram, which can be used to compute

(a) I/O Pattern in the #2 IO server (b) IO Pattern for in the #15 IO
server

Figure 5: Sparse I/O access patterns In Viswoman(512×512×1728)
with data block size 16× 16× 16. The sequential data file is re-
organized into a 2D block square representation. The green blocks
represent the data strips in the I/O server and the red ones repre-
sent the visible/useful data strips that should be loaded. Data access
patterns in two servers are shown.

the minimum opacity for each data block from a given view. To
improve the I/O performance and minimize the number of non-
contiguous I/O requests, we want to group together the data blocks
that share similar visibility characteristics and place them together
in the data file. To achieve this, we cluster data blocks based on
their Accumulated Sampled Histograms. The Accumulated Sam-
pled Histogram is the histogram created from the samples gener-
ated by a viewing ray from the image plane through all the blocks
before the ray reaches the block in question. The idea behind is
that if two blocks have similar Accumulated Sampled Histograms,
they should have similar visibility since the Sampled Histogram is
used to estimate the accumulated opacity before the ray reaches the
block.

Given a view direction, there are two possible ways to obtain
the accumulated histogram for each data block. The first is to cast
rays through the volume and collect the sampled voxels along the
rays to build the accumulated histograms; The other way is to take
advantage of the pre-calculated Perview Sampled Histograms from
the individual data blocks by combining them along the view direc-
tion, which is an approximation of the first approach. In this paper
we use the second method to minimize the computational cost. For
each data block, we add up the Perview Sampled Histograms of the
blocks which are spatially located in front of the current block. The
result is a block-wise accumulated histogram for the current block.
The whole process repeats for each view direction.

With the Accumulated Histograms generated for a set of sampled
views, for each data block we create a Visibility Feature Vector. A
visibility feature vector is a n-dimensional tuple in the format of
[h1,h2, ...,hn], where each dimension represents a sampled view di-
rection. The entry hi is the corresponding Accumulated Histogram
with respect to the i-th view direction. The purpose of the visibility
feature vector is to keep an overall description of a block’s visibility
status for all possible view directions. Each block has a visibility
feature vector, based on which it is possible to compare the visi-
bility characteristics among multiple blocks. The block-wise visi-
bility feature vector is constructed based on the data only and not
depending on run time transfer functions. By clustering the data
blocks based on the visibility feature vectors, it is possible to iden-
tify those blocks with approximately the same visibility status, and
hence the same usage pattern.

We apply the clustering technique described in Section 3.2.
Since each entry of a visibility feature vector is a vector instead
of a scalar value, the distance metric is defined as the EMD
metric. Given two visibility feature vectors [h1,h2, ...,hn] and

[g1,g2, ...,gn], where n is the length of two vectors, the distance
is calculated in following:

D =

√
n

∑
i=1

EMD(hi,gi)
2 (6)

where EMD is the Earth Mover Distance. Eqn. 6 first calculates
the EMD between each pair of the vector entries, then normalize
them into a scalar value D which is used as the clustering metric. By
grouping blocks with close values of D we can classify data blocks
based upon their visibility status. The overall process to build the
visibility feature vector and clustering is listed blow in Algorithm
1.

Algorithm 1 Visibility Feature Vector Algorithm
1: for each view direction P do
2: for each block i in the order of view direction P do
3: Accumulate histograms of blocks in front of block i
4: Add up to a histogram vector vi
5: end for
6: end for
7: for each pair of vi and v j do

8: D =
√

∑EMD(vi,v j)
2

9: clustering based on D
10: end for

When coping data file into the PVFS, data blocks are stripped
along various I/O servers in terms of clusters: the blocks within
the same cluster are distributed contiguously into a sequence of I/O
servers. This new layout strategy has the advantage that, since the
data blocks in the same cluster are likely to be accessed together,
distributing the I/O load to all servers can avoid imbalanced traffic
congestion in a few I/O servers or multiple non-contiguous IO re-
quests in a single IO server. Our experimental tests showed that the
new file layout can greatly reduce the I/O cost.

4 RESULTS

4.1 Visibility Culling
In this section, we present experimental results to study the ef-
fectiveness of our algorithm. All our tests were run on an IBM
Blue Gene/L supercomputer at the Argonne National Laboratory,
which has up to 2048 700 MHz PowerPC 440 embedded proces-
sors, each with a double-pipeline-double-precision Floating Point
Unit (FPU), a cache sub-system with built-in DRAM controller
and the logic to support multiple communication sub-systems. The
dual FPUs give each BlueGene/L node a theoretical peak perfor-
mance of 5.6 GFLOPS (gigaFLOPS). The 512× 512× 1728 Visi-
bleWoman dataset from the National Library of Medicine and the
1024× 1024× 960 Richtmyer-Mevhkov Instability (RMI) simu-
lation dataset from the Lawrence Livermore National Laboratory
were used in our tests. In our experiments, the Viswoman vol-
ume is partitioned into 110,592 (16× 16× 16 = 4096 voxels)
volume blocks and the RMI volume is partitioned into 245,760
(16× 16× 16 = 4096 voxels) blocks. All volume data are stored
in the PVFS2 with the strip size of 2K and 25 I/O servers. All of
our experiments were conducted using 64 processors.

To conduct our experiments, we implemented a benchmark visi-
bility culling program to calculate the exact visibility of each block
for a given transfer function. The goal of this benchmark is to
verify the correctness and effectiveness of our algorithm. In the
benchmark implementation, blocks are rendered in a front-to-back
order. When a block is visited, its visibility is checked by looking
up the composited opacity from the previously rendered blocks in
its screen projection area. The visibility of each block from this

benchmark test is collected for later use. In our experiments, all
data blocks are classified into 3 classes: a transparent block is the
block that has a nearly zero overall opacity; an visible block is the
block that has some contribution to the final image and hence can-
not be removed; and a invisible block is the block that is occluded
by others and thus can be culled away to improve rendering per-
formance. The transparent blocks are determined directly by the
transfer function and not dependent on the view direction. But vis-
ible and invisible blocks depend on both the transfer function and
the view direction. To precisely evaluate the benefit of visibility
culling, we do not consider the transparent blocks in the rendering
pipeline, since they can be trivially rejected by checking the varia-
tion of the block’s minimal and maximal opacity or using the value
histogram [16].

In visibility culling, false positives are the invisible blocks that
are wrongly classified as visible. On the contrary, false negatives
are the visible blocks classified as invisible, which will cause in-
correct images being generated. The effect of false positive is to
introduce unnecessary overhead since invisible blocks contribute
nothing to the final image. The goal of our culling algorithm is
to reduce the number of false positives while preventing any false
negative to happen.

All of our experiments were conducted in the following way.
First we run the benchmark program to obtain the precise visibility
information for all the data blocks with respect to a specific transfer
function; then we run our histogram-based culling algorithm using
the same transfer function. The culling results from our algorithm
are compared with the benchmark results.

4.1.1 VisWoman Dataset

(a) Total rendered vs Total Non-empty (b) Total Culled vs Total Invisible
//

(c) Total rendered vs Total Non-empty (d) Total Culled vs Total Invisible

Figure 6: Results from the visibility culling tests using the
Viswoman(512× 512× 1728) data set with the data block size 16×
16× 16. The numbers of data blocks that are rendered and culled
are compared with their corresponding benchmark results. The View
direction was rotated along the X and Y axes and the data was ren-
dered once from each direction. One of the rendered image using
this transfer function is shown in Fig. 10(a).

(a) Total rendered vs Total Non-empty (b) Total Culled vs Total Invisible

(c) Total rendered vs Total Non-empty (d) Total Culled vs Total Invisible

Figure 7: Results from the visibility culling tests using the
Viswoman(512× 512× 1728) data set with the data block size 16×
16× 16. The numbers of data blocks that are rendered and culled
are compared with their corresponding benchmark results. The view
direction was rotated along the X and Y axes and the data was ren-
dered once from each direction. One of the rendered image using
this transfer function is shown in Fig. 10(b).

Fig. 6, 7, 8 show results from a series of experiments on the
VisWoman with three different transfer function. Different view di-
rections by rotating the data around X axis and Y axis are used in the
tests. The corresponding images rendered using the transfer func-
tions are shown in Fig. 10. The rendered image using the transfer
function in Fig. 6 is shown in Fig. 10(a), which has more semi-
transparent voxels. In Fig. 6(a) and Fig. 6(b), the view directions
are sampled along the X axis with an 18 degree increment. In Fig.
6(c) and Fig. 6(d), the view directions are sampled with the same
increment but along the Y axis. For each view direction the results
of our culling algorithm are compared with that in the benchmark.
Fig. 6(a) compares the number of data blocks that were rendered
after applying our histogram-based visibility culling algorithm and
the total number of non-empty data blocks. The total number of
non-empty data blocks equals to the sum of the numbers of visible
and invisible blocks. Eighteen tests were conducted with different
view directions to verify if our culling method is stable. Fig. 6(b)
compares the number of blocks culled by our algorithm with the
number of actual invisible blocks. The difference between these
two are due to the false positives. From Fig. 6(b) we can clearly
see that our culling method can remove around 80% of the invisi-
ble blocks and this culling rate is stable in different view directions.
Fig. 7 shows the culling result using another transfer function to test
if our culling method can perform well when the transfer function
changes. The image rendered from this transfer function is shown
in Fig .10(b). In our test, the view directions were rotated along X
axis in Fig. 7(a),7(b) and Y axis in Fig. 7(c),7(d), both with a 18
degree increment. Similarly to Fig. 6, the number of the rendered
data blocks and culled blocks are compared with the benchmark re-
sults. Form Fig. 6 and Fig. 7, we can see that the culling rate of

our method is stable, independent of the run time transfer function
and view directions. We further tested our algorithm with another
transfer function. Fig. 10(c) is the rendered image, which shows
the flesh combined with bones in the VisVoman data. The compari-
son results are drawn in Fig. 8(a)-8(d). From Fig. 8(b) and 8(d) we
can easily find the culling rate is around 82% and stable as well.

Table 1 shows the average visibility culling time for three differ-
ent tests: each test has a specific transfer function with six different
view directions (VD1-VD6). The visibility culling time includes
reading pre-computed sampled histograms; estimating the visibil-
ity for each block and finally communicate to gather the visibility
information.

Test with different TF VD1 VD2 VD3 VD4 VD5 VD6
1 0.13 0.25 0.37 0.23 0.31 0.25
2 0.14 0.31 0.49 0.21 0.43 0.17
3 0.20 0.35 0.21 0.11 0.29 0.15

Table 1: The average time (in seconds) to perform visibility culling in
different tests

Table 1 shows that our histogram-based culling has relatively
low overheads. It is possible to further speed up the culling process.
Since there are many uniform data blocks with similar voxel values
within, to these blocks, the culling procedures can be replaced with
a quick transfer function lookup and a multiplication of the block’s
depth along the view direction.

(a) Total rendered vs Total Non-empty (b) Total Culled vs Total Invisible

(c) Total rendered vs Total Non-empty (d) Total Culled vs Total Invisible

Figure 8: Results from the visibility culling tests using the
Viswoman(512× 512× 1728) data set with the data block size 16×
16× 16. The numbers of data blocks that are rendered and culled
are compared with their corresponding benchmark results. The view
direction was rotated along the X and Y axes and the data was ren-
dered once from each direction. One of the rendered image using
this transfer function is shown in Fig. 10(c).

(a) Total rendered vs Total Non-empty (b) Total Culled vs Total Invisible

Figure 9: Results from the visibility culling tests using the 228th time
step of the RMI(1024×1024×960) data set with data block size 16×
16× 16. The number of data blocks that are rendered and culled
are compared with their corresponding benchmark results. The view
direction was rotated along the axis [225 0 0] with Y increasing 15
degree each step. The data was rendered once from each direction.
One of the rendered image using this transfer function is shown in
Fig. 10(d).

4.1.2 RMI Dataset
The 228th time step of RMI dataset was used to test our algorithm.
Scientific simulation datasets have some different natures compared
to medical datasets in that they sometime produce large potions of
uniform data blocks. Moreover, the boundaries of regions are of-
ten not so obvious in scientific data as in medical dataset. In our
experiments, we compared the result of visibility culling with the
benchmarks, as illustrated in Fig. 9. The number of data blocks
that were rendered and culled are compared with the correspond-
ing benchmark numbers. As shown in Fig. 9 the data set has a
total of 245760 data blocks, out of which 147439 are non-empty
blocks. This is also equal to the sum of the visible blocks and in-
visible blocks. The remaining 98321 data blocks are transparent. It
can be seen that the number of blocks that can be possibly culled is
smaller compared with the VisWoman dataset. The culling rate was
around 77% and remained stable which is similar to the case in the
VisWoman dataset.

4.2 I/O Performance
For the Viswoman dataset we computed the Visibility Feature Vec-
tors described in Section 3.4.2. The sampled view directions were
rotated along the X axis and Y axis with a 20 degree increment in
each step, which produced a total of 64 sampled view directions.
Based on the Visibility Feature Vectors a clustering process was
conducted to group those blocks with similar feature vectors. Our
I/O strategy is to place those data blocks in the same cluster con-
tiguously in the logical file layout since members in the same clus-
ter should have similar visibility characteristics, hence similar us-
age patterns. When a data file is stored in a PVFS, the system will
strip the data in a round-robin manner to several I/O servers. An
I/O request for a chunk of logical contiguous data blocks will cost
much less than several individual I/O requests for non-contiguous
data blocks. The latest PVFS has optimizations that can combine
individual I/O requests into a larger one if the logical file addresses
of the requested data blocks are contiguous. In volume rendering,
visibility culling can substantially speed up the process. Therefore,
the layout method described in Section 3.4.2 can optimize both the
rendering and I/O speed.

We conducted a series of experiments to test the I/O performance
of our algorithm. Two different file layouts were tested on the Vis-
Woman dataset: one was the original layout where the data blocks
were stored sequentially according to their spatial locations, and

(a) TF1 for Viswoman (b) TF2 for Viswoman

(c) TF3 for Viswoman (d) TF1 for RMI

Figure 10: Rendered images in Viswoman and RMI for Different
transfer functions.

the other was the new layout using our visibility-based clustering.
To ensure that the I/O performance improvement was stable un-
der different the transfer functions, 4 transfer functions were used
for each layout, and 35 view directions were sampled to test with
each transfer function. During the run-time rendering process, af-
ter visibility culling, each processor reads the needed data blocks
by sending individual I/O requests. The PVFS is then exploited
to optimize these I/O requests. In our implementation we first use
MPI File set view() to adjust individual process’s view of the data
in the file. Then we call MPI File read all() to utilize the non-
contiguous I/O optimizations provided in PVFS2. For each view
direction, the I/O time was collected for each processor and the av-
erage time was calculated as the metric to compare between the
two layouts. We set up the data file in PVFS using 32 I/O servers
with 3 strip sizes: 1024, 4096 and 8192 bytes to further explore the
relationships of the PVFS performance and our layout algorithm.

Fig. 11 shows the comparisons of I/O performance between the
two file layouts with the 1024 bytes PVFS strip size. Fig. 11(a),
11(b), 11(c), 11(d) clearly illustrate the improvements achieved by
the visibility-based file layout. For each view direction the same
number of data blocks were read in both file layouts. PVFS’s non-
contiguous optimizations performed more efficiently when using
the visibility-based layout. Results show that there were up to 50%
of I/O time reduction using the visibility-based file layout under dif-
ferent view directions. The same performance improvements were
observed using different transfer functions. Moreover, the variances
of I/O time under different view directions with the visibility-based
layout were far less than those with the original layout. This is be-
cause in the visibility-based layout, there existed fewer numbers of
non-contiguous I/O requests compared with the original file layout.
Therefore, the I/O performance was much more stable. Fig. 12 and
Fig. 13 show the comparisons of I/O time between the two file lay-
outs with 4096 and 8192 bytes PVFS strip sizes. With a fixed num-

ber of I/O servers, we increased the strip sizes and performed the
same tests as in Fig. 11. We observed that with a larger strip size the
time needed to read the same number of data blocks decreased. The
visibility-based file layout still outperformed the original layout by
about 50%. Since the size of a data block is 16×16×16×2 = 8192
voxels, it is unnecessary to use a larger strip size than the size of a
block. Results in Fig. 11, 12, 13 demonstrate that the Perview
Sampled Histogram can effectively predicted the I/O patterns and
optimize the I/O speed when rendering large data sets.

(a) I/O time for TF1 (b) I/O time for TF2

(c) I/O time for TF3 (d) I/O time for TF4

Figure 11: Comparisons of I/O time between the original file layout
and the visibility-based file layout using the Viswoman(512× 512×
1728) data set with a data block size of 16× 16× 16 voxels. Four
transfer functions (TF1-TF4) were used. The PVFS strip size was
1024 bytes and 32 I/O servers were used.

5 CONCLUSIONS AND FUTURE WORK

This paper introduces the concept of Perview Sampled Histogram
to represent the visibility information for each data block in a paral-
lel volume rendering algorithm. Such histograms are pre-computed
for each block from a set of sample views. Perview Sampled His-
togram can be used in parallel volume rendering algorithms to assist
culling invisible volume blocks. The major advantage of the Per-
view Sampled Histogram is its independency of any transfer func-
tion. Since it is completely data-centric, visibility culling using
Perview Sampled Histograms is more flexible and robust. Exper-
imental results of the I/O performance show that the Perview Sam-
pled Histograms are effective in predicting the pattern of block data
I/O. Theoretically, Perview Sampled Histograms can work well be-
yond the 1D transfer function. But with higher dimensional transfer
functions, the amount of information needed to be stored will grow.
In the future, we plan to design more compact representation for
the histograms to reduce the storage requirements. The concept of
Perview Sampled Histograms can be used in time-varying volume
rendering and we will explore this in the future.

REFERENCES

[1] W.-K. L. R. R. A. Ching, A. Choudhary and W. Gropp. Noncontigu-
ous i/o through pvfs. In IEEE International Conference on Cluster
Computing ’02, 2002.

(a) I/O time for TF1 (b) I/O time for TF2

(c) I/O time for TF3 (d) I/O time for TF4

Figure 12: Comparisons of I/O time between the original file layout
and the visibility-based file layout using the Viswoman(512× 512×
1728) data set with a data block size of 16× 16× 16 voxels. Four
transfer functions (TF1-TF4) were used. The PVFS strip size was
4096 bytes and 32 I/O servers were used.

[2] D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(5), May 1995.

[3] V. O. G. S. W. T. F. Isaila, G. Malpohl. Integrating collective i/o and
cooperative caching into the clusterfile parallel file system. In the 18th
annual international conference on Supercomputing, Oct. 2004.

[4] J. Gao and H.-W. Shen. Parallel view-dependent isosurface extraction
using multi-pass occlusion culling. Oct. 2001.

[5] J. Gao and H.-W. Shen. Hardware-assisted view-dependent isosurface
extraction using spherical partition. In Joint EUROGRAPHICS-IEEE
TCVG Symposium on Visualization, pages 67–75, Oct. 2003.

[6] J. Gao and H.-W. Shen. Visibility culling using plenoptic opacity func-
tions for large volume visualization. In Visualization ’2003, pages
341–348, Oct. 2003.

[7] J. Gao and H.-W. Shen. Visibility culling for time-varying volume
rendernig using temporal occlusion coherence. In Visualization ’2004,
pages 147–154, Oct. 2004.

[8] S. Guthe and W. Strasser. Advanced techniques for high-quality multi-
resolution volume rendering. Computers & Graphics, 28(1):51–58,
June 2004.

[9] K.-L. M. H-F. Yu and J. Welling. I/o strategies for parallel rendering
of large time-varying volume data. In Eurographics Symposium on
Parallel Graphics and Visualization ’04, 2004.

[10] F. Hillier and G. Lieberman. Introduction to Mathematical Program-
ming. McGraw-Hill, second edition, 1995.

[11] S. N.-C. R. S. P. HUANG, J. and K. MUELLER. A parallel splatting
algorithm with occlusion culling. In 3rd Eurographics Workshop on
Parallel Graphics and Visualization, Girona, Spain, pages 125–132,
2000.

[12] F. Isaila and W. F. Tichy. Clusterfile: a flexible physical layout paral-
lel file system. CONCURRENCY AND COMPUTATION: PRACTICE
AND EXPERIENCE, 15:653–679, 2003.

[13] B. J. R. H. J.-P. Prost, R. Treumann and A. Koniges. Mpi-io/gpfs, an
optimized implementation of mpi-io on top of gpfs. In ACM/IEEE
SuperComputing ’01, pages 17–17, 2001.

[14] J. L. T. J. Worringen and H. Ritzdorf. Fast parallel non-contiguous file
access. In ACM/IEEE SuperComputing ’03, Nov. 2003.

[15] J. L. T. J. Worringen and H. Ritzdorf. Improving generic non-
contiguous file access for mpi-io. Recent Advances in Parallel Virtual
Machine and Message Passing Interface., 2840 of Lecture Notes in
Computer Science:309–318, 2003.

[16] C. R. J. J.Z. Gao, J. Huang and S. Atchley. Distributed data man-
agement for large volume visualization. In Visualization ’2005, Oct.

(a) I/O time for TF1 (b) I/O time for TF2

(c) I/O time for TF3 (d) I/O time for TF4

Figure 13: Comparisons of I/O time between the original file layout
and the visibility-based file layout using the Viswoman(512× 512×
1728) data set with a data block size of 16× 16× 16 voxels. Four
transfer functions (TF1-TF4) were used. The PVFS strip size was
8192 bytes and 32 I/O servers were used.

2005.
[17] M. Levoy. Display of surfaces from volume data. In IEEE Computer

Graphics and Applications ’88, volume 8, May 1988.
[18] M. Levoy. Display of Surfaces from Volume Data. PhD thesis, Uni-

versity of North Carolina at Chapel Hill, 1989.
[19] K.-L. MA and T. CROCKETT. A scalable, cell-projection volume

rendering algorithm for 3d unstructured data. In 1997 Symposium on
Parallel Rendering, IEEE CS Press, pages 95–104, 1997.

[20] P. J. S. H. C. D. MA, K.-L. and M. F. KROGH. Parallel volume ren-
dering using binary-swap compositing. In IEEE Computer Graphics
and Applications, volume 14, pages 59–68, 1994.

[21] N. MAX. Optical models for direct volume rendering. IEEE Transac-
tions on Visualization and Computer Graphics, 1(2), 1995.

[22] S. P. L. Y. H. C. PARKER, S. and P.-P. SLOAN. Interactive ray tracing
for isosurface rendering. In IEEE Visualization ’98, pages 233–238,
1998.

[23] W. G. R. Thakur and E. Lusk. Data sieving and collective i/o in romio.
In the 7th Symposium on the Frontiers of Massively Parallel Compu-
tation, pages 182–189, 1999.

[24] W. G. R. Thakur and E. Lusk. Optimizing noncontiguous accesses in
mpi-io. Parallel Computing, 28:83–105, 2002.

[25] J. G. S. Guthe, M. Wand and W. StraBer. Interactive rendering of large
volume data sets. In IEEE Visualization ’02, Oct. 2002.

[26] K. C. W-K. Liao and C. A. Collective caching: Application-aware
client-side file caching. In Symposium on High Performance Dis-
tributed Computing ’05, 2005.

[27] Y. Wang and D. Kaeli. Profile guided i/o partitioning. In ACM Inter-
national Conference on Supercompuing ’03, June 2003.

[28] C. T. Y. Rubner and L. J. Guibas. A metric for distributions with
applications to image databases. In IEEE International Conference on
Computer Vision,98, Jan. 1998.

[29] H. Z. Y. Wu, H. Qu and M. Chan. Transfer function fusing. In IEEE
Visualization ’06, 2006.

[30] C.-K. Yang and T.-C. Chiueh. I/o conscious volume rendering. In the
Joint Eurographics/IEEE TCVG Symposium on Visualizatation ’01,
pages 263–272, May 2001.

[31] A. F. Z. Liu and K. Li. Progressive view-dependent isosurface propa-
gation. In the Joint EurographicsłIEEE TCVG Symposium on Visual-
ization 01’, 2001.

