ScELA: Scalable and Extensible Launching
Architecture for Clusters*

Jaidev K. Sridhar, Matthew J. Koop, Jonathan L. Perkins, and Dhabaleswar K. Panda

Network-Based Computing Laboratory
The Ohio State University
2015 Neil Ave., Columbus, OH 43210 USA
{ sridharj, koop, perkinjo, panda }@cse.ohio-state.edu

Abstract. As cluster sizes head into tens of thousands, current job launch mechanisms do not scale
as they are limited by resource constraints as well as performance bottlenecks. The job launch process
includes two phases — spawning of processes on processors and information exchange between processes
for job initialization. Implementations of various programming models follow distinct protocols for the
information exchange phase. We present the designs of a scalable, extensible and high-performance
job launch architecture for very large scale parallel computing. We present implementations of this
architecture which achieve a speedup of more than 700% in launching a simple Hello World MPI
application on 10,240 processor cores and also scale to more than 3 times the number of processor
cores compared to prior solutions.

1 Introduction

Clusters continue to increase rapidly in size, fueled by the ever-increasing computing de-
mands of applications. As an example of this trend we examine the Top500 list [1]. This
list is a bi-annual list of the top 500 supercomputers in the World as ranked in performance
on the Linpack benchmark. In 2000 the largest cluster, ASCI White, had 8,192 cores. By
comparison, last year the top-ranked BlueGene/L had over 200,000 cores. Even as clusters
increase in node counts, an emerging trend is increase in number of processing cores per
node. For instance, the Sandia Thunderbird [2] cluster introduced in 2006 has 4K nodes —
each with dual CPUs for a total of 8 K processors, while the TACC Ranger cluster introduced
in 2008 has 4K nodes — each with four quad-core CPUs for a total of 64K processors.

Programming models and their scalability have been a large focus as cluster size continue
to increase. In addition to these concerns, other more basic concerns with regard to the system
software must also be addressed. In particular, the mechanism by which jobs are launched
on these large-scale clusters must also be examined. All programming models require some
executable to be started on each node in the cluster. Others, such as the Message Passing
Interface (MPI) [3], may have multiple processes per node — one per core. Our work shows
that current designs for launching of MPI jobs can take more than 3 minutes for 10,000
processes and have trouble scaling above that level.

* This research is supported in part by U.S. Department of Energy grants #DE-FC02-06ER25749 and #DE-FC02-
06ER25755; National Science Foundation grants #CNS-0403342 and #CCF-0702675; grant from Wright Center for
Innovation #WCI04-010-OSU-0; grants from Intel, Mellanox, Cisco, and Sun Microsystems; Equipment donations
from Intel, Mellanox, AMD, Advanced Clustering, IBM, Appro, QLogic, and Sun Microsystems.

In this paper we present a scalable and extensible launching architecture (ScELA) for
clusters to address this need. We note that the initialization phase of most programming
models involve some form of communication to discover other processes in a parallel job and
exchange initialization information. Our multi-core aware architecture provides two main
components: a scalable spawning agent and a set of communication primitives. The first of
these, the spawning agent, starts executables on target processors. The communication prim-
itives are used within the executables to communicate necessary initialization information.
We form an architecture to support a variety of launching needs.

We note that job initialization on most programming models involve exchange of re-
dundant information as identical executables are launched on multiple cores. We design a
hierarchical information cache to reduce the amount of communication over the network
which inherently causes delays.

To demonstrate the scalability and extensibility of the framework we redesign the launch
mechanisms for both MVAPICH [4], a popular MPI library, and the Process Management
Interface (PMI). The PMI interface is a generic interface that is used by MPI libraries such
as MPICH2 [5] and MVAPICH2 [6]. We show that ScELA is able to improve launch times
at large cluster sizes by over 700%. We further demonstrate that our proposed framework
is also able to scale to at least 32,000 cores, more than three times the scalability of the
previous design.

Although our case studies use MPI, ScELA is agnostic as to the programming model or
program being launched. We expect other models such as Unified Parallel C (UPC) [7] and
others to be able to use this architecture as well. In addition, SCELA can be used to run
commands remotely on other nodes in parallel, such as simple commands like ‘hostname’ or
maintenance tasks. It is a generic launching framework for large-scale systems.

The remaining parts of the paper are organized as follows: In Section 2 we describe the
goals and design issues for our launch framework. We use our framework to redesign two
job launch protocols and communication layers and present these case studies in Section 3.
Section 4 contains our performance evaluation of the SCELA design. Related work is discussed
in Section 5. We conclude in Section 6 sand give future directions in Section 7.

2 Proposed Design

In this section we describe the ScELA framework. The main goals of the design are scal-
ability towards a large number of processing cores, ease of extensibility and elimination of
bottlenecks such as network congestion and resource limits.

For ease of extensibility the various components of SCELA are divided into distinct layers.
Figure 1 shows an overview of the framework. The following sections describe each of these
layers in detail.

2.1 Launcher

The launcher is the central manager of the framework. The job-launch process starts with
the launcher and it is the only layer that has user interaction. The main task of the launcher

Communication Protocols

Communication Primitives
| Point-to-Point | | Collective | | Bulletin-Board |

| Node Level Agent (NLA) Interconnection Layer |

| Launcher |

Fig. 1. ScELA Framework

is to identify target nodes, set up the runtime environment and launch processes on the
target nodes.

Process Launching Modern clusters deploy multi-core compute nodes which enable mul-
tiple processes to be launched on a node. On such systems, the launcher would have to
duplicate effort to launch multiple processes on a node. ScCELA has a Node Launch Agent
(NLA) which is used to launch all processes on a particular node. The launcher establishes a
connection to target nodes and sets up a NLA on each of them. This mechanism allows the
Launcher to make progress on launching processes on other nodes while the NLA handles
node level process launching. The NLAs are active for the duration of the launched process
after which they terminate.

Consider a cluster with n compute nodes and ¢ processor cores per node. Table 1 shows a
comparison of times taken to spawn n X ¢ processes such a cluster. T,,,,, is the time taken to
establish a connection to a node, Tj4unen is the time taken to spawn a single process and T},
is the time taken to setup a NLA. We see that as the number of cores per node increases,
the time taken to start the processes decreases with the NLA approach. Since the dominant
factor on most clusters is Tiop, (around 5 ms on our testbed), the use of NLAs on multi-core
systems keeps the spawn time practically constant for a fixed number of nodes irrespective
of the number of cores per node.

Table 1. Time Taken to Spawn Processes With and Without NLAs

With NLAs Without NLAs
n X (Tconn + Tnla) + ¢ X Tiqunch (TL X C) X (Tconn + na'unch)

Process Health An important task of job launchers is to handle process termination. When
a process fails, a job launcher must clean up other processes. Failure to do so would leave

zombie processes which would impact performance of future processes. Having a node level
agent allows ScELA to handle monitoring of process health in parallel. The NLAs monitor
the health of the processes on a node and when a failure is observed the NLA sends a
PROCESS_FAIL notification message to the central launcher. On receipt of such a message,
the Launcher sends a PROCESS_TERMINATE message to all other NLAs which then terminate
all processes. User signals are handled in an identical way.

2.2 NLA Interconnection Layer

After processes are spawned, many programming models require some form of information
exchange and synchronization between processes before they complete initialization. For in-
stance, MPI processes may need to discover other processes on the same node to utilize
efficient shared memory communication channels or processes may need a barrier synchro-
nization before they can enter a subsequent phase of initialization. Having a connection
between every process does not scale for a large number of processes as the number of
connections required is O(n?). Other approaches have all processes connect to a central con-
troller which coordinates information exchange and synchronization. However, when a large
number of processes initiate connections to a central controller, a bottleneck is created with
the controller being overloaded. The resultant network congestion causes TCP SYN packets
being dropped. Since SYN retransmission timeouts increase with every attempt on most
TCP implementations [8], this introduces a large delay in the overall launch process. Some
job launchers handle this problem by having processes initiate connections after a random
intervals or by setting up connections in batches. This mechanism, however, can result in
slower launch times. Also, most operating systems limit the number of connections that can
be kept open which makes a central controller unfeasible.

We have designed a communication layer over the NLAs to facilitate communication and
synchronization between processes. Each NLA aggregates initialization information from all
processes on the node. This aggregation limits the total number of network connections
needed per entity (process, NLA or the Launcher) on the system. NLAs from different nodes
form a hierarchical k-ary tree [9] for communication of information between processes across
nodes. The hierarchical tree improves overall parallelism in communication. A k-ary tree
allows ScELA to launch processes over an arbitrary number of nodes while also keeping
the number of steps required for synchronization and other collective operations such as
broadcast or gather at a minimum at logx(n) where n is the number of nodes. An example
of a 3-ary tree of depth 3 is given in Figure 2.

The degree k of the k-ary tree determines the scalability and the performance of ScELA.
An NLA in the hierarchical tree should be able to handle connection setup and communica-
tion from all processes on a node as well as the parent and children in the NLA tree. If the
degree of the tree is too high, each NLA would have to process too many connections which
would create further bottlenecks. If the degree is too low, the depth of the tree would result
in too many communication hops.

We determine the degree k of the tree as follows. If n is the number of nodes, we determine
an ideal degree k such that the number of levels in the tree logg(n) is as follows: logg(n) <

4

[]
/‘\[
| /I¢|\ || /Vl\ || |‘/|¢|\ |

Fig. 2. Example 3-ary NLA Interconnection (with depth 3)

MAX _DEPTH. If ¢ is the number of cores per node and ¢+ k < MAX _CONN, then we
select k as the degree. If not, we select k = MAX _CONN —c. The parameter MAX_CONN
is the number of connections that an entity can process in parallel without performance
degradation. From our experiments (Section 4.2) we have determined that a process can
handle up to 128 connections with acceptable performance degradation on current generation
systems.

2.3 Communication Primitives

The characteristics of the information exchange between processes depends on the program-
ming model as well as specific implementations. The communication pattern could be point-
to-point, collective communication such as broadcast, reduce, or a protocol such as a global
bulletin board. We have designed the following communication primitives over the NLA
Interconnection Layer for use by the processes for efficient communication.

Point-to-point Communication Primitives Some initialization protocols have processes
communicating directly with each other. For such protocols, we have designed two point-to-
point communication primitives — NLA_Send and NLA Recv

Data from a sending process is forwarded to the NLA of the receiving process over
the NLA tree. Each process is assigned a unique identifier. During the setup of the NLA
Interconnection Layer, every NLA discovers the location of each process. A process is either
on the same node as the NLA, or it can be found in specific lower branch of the NLA tree
or higher up the NLA tree. These primitives can be used for point-to-point communication
between processes.

Collective Communication Primitives In most programming models, all processes go
through identical initialization phases with identical communication patterns. These commu-
nication protocols resemble MPI-style collective communication. To support such protocols,
we have designed the following MPI-style collective communication primitives over ScELA.

— NLA_Gather — Gather data from all processes to a root process on the root NLA. At each
level of the NLA tree, a NLA gathers data from all of its NLA children as well as all
processes on its node. Once it has all the data, it forwards the gathered data to its parent
NLA.

— NLA Broadcast — Send data from a specified process on the root NLA to all processes.
The root NLA sends data down the NLA tree and to all of the processes on the node.
On receipt of broadcast data from a parent, each NLA forwards the data down the NLA
tree and to all processes on the node.

— NLA_AllGather — Gather data from all processes at every process. This primitive is pro-
vided as a combination of NLA_Gather and NLA Broadcast. The root NLA gathers data
from all processes and performs a broadcast operation.

— NLA_Scatter — Send specific chunks of data from a process on the root NLA to every
process. The root NLA sends data to be scattered down the tree, extracts data meant for
processes on its node and sends them to the destination processes . On receipt of a scatter
message each NLA forwards it down the NLA tree, extracts data meant for processes on
its node and sends them to the destination processes.

— NLA_A11ToAll — Send specific chunks of data from every processes to every process. The
AllToAll primitive is provided as a combination of NLA Gather and NLA Scatter. The
root NLA gathers data from all processes, re-organizes the data such that all data destined
to a process is grouped together and does a scatter operation.

Bulletin Board Primitives Some communication protocols have processes publish infor-
mation about themselves on a global bulletin board and processes needing that information
read it off the bulletin board. To support such protocols over ScCELA we have designed two
primitives — NLA_Put and NLA Get.

NLA_Put publishes data to all NLAs up the tree up to the root. When a process needs to
read data, it invokes the NLA_Get primitive. When data is not available at a NLA, it forwards
the request to the parent NLA. When data is found at a higher level NLA, it is sent down
the tree to the requesting NLA.

Synchronization Primitive In some programming models, the information exchange
phase consists of smaller sub-phases with synchronization of the processes at the end of each
sub-phase. For instance, in MVAPICH, processes can not initiate InfiniBand [10] channels
until all processes have pre-posted receive buffers on the NIC.

We have designed a synchronization primitive — NLA_Barrier which provides barrier syn-
chronization over the NLA tree. Processes are released from an invocation of NLA Barrier
primitive only when all other processes have invoked the primitive. The NLA_Barrier prim-
itive can be used in conjunction with NLA Send and NLA Recv to design other forms of
communication required by a specific communication protocol.

2.4 Hierarchical Cache

On multi-core nodes, with communication patterns such as the use of a bulletin board,
many processes on a node may request for the same information during initialization. To
take advantage of such patterns, we have designed a NLA level cache for frequently accessed
data. When a process posts information through NLA Put, the data is sent up to the root
of the NLA tree while also being cached at intermediate levels. When a process requests for

information through NLA Get, the request is forwarded up the NLA tree until it is found at
a NLA. The response gets cached at all intermediate levels of the tree. Hence subsequent
requests for the same piece of information are served from a nearer cache. This reduces
network traffic and improves the overall responsiveness of the information exchange.

Our mechanism is advantageous even on non multi-core nodes or communication patterns
with lack of repeated access to common information because the caching mechanism propa-
gates information down the NLA tree. Thus subsequent requests from other sub-branches of
the tree may be served from an intermediate NLA and would not have to go up to the root.

In Section 3.1 we describe an extension to the PMI_Put primitive that enables better
utilization of the Hierarchical Cache.

2.5 Communication Protocols

As described in Section 2.3, the processes being launched may have their own protocol for
communicating initialization information. We have designed the ScELA framework to be
extensible so that various communication protocols can be developed over it by using the
basic communication primitives provided. In Section 3 we describe two implementations of
such protocols over the ScCELA architecture.

3 Case Studies

In this section we describe implementations of two startup protocols on our architecture. We
first describe an implementation of the Process Management Interface (PMI), an information
exchange protocol used by popular MPI libraries such as MPICH2 and MVAPICH2 over the
ScELA framework. We also describe an implementation of another startup protocol - PMGR
used by MPI libraries such as MVICH [11] and MVAPICH.

3.1 Designing PMI Bulletin Board with ScELA

When MPI processes start up, they invoke MPI_Init to set up the parallel environment. This
phase involves discovery of other processes in the parallel job and exchange of information
with them. The PMI protocol defines a bulletin board mechanism for information exchange.
Processes do a PMI_Put operation on a (key, value) pair to publish information followed
by a PMI_Commit to make the published information visible to all other processes. When
other processes need to read information, they perform a PMI_Get operation by specifying a
key. The PMI protocol also defines a barrier synchronization primitive PMI Barrier.

To implement PMI bulletin board over the ScELA framework, we utilized the NLA_Put
and NLA_Get primitives designed over the NLA Interconnection Layer. A PMI_Put by a pro-
cess invokes a corresponding NLA_Put to propagate information over the NLA tree. When a
process does a PMI_Get, a corresponding NLA_Get is invoked to search for information in the
Hierarchical Cache. Since the PMI_Puts are propagated immediately, we ignore PMI_Commit
operations.

We have observed that with the PMI protocol, information reuse is high for some in-
formation. In such cases it is beneficial to populate the node level caches with information
before the first PMI_Get request. We have designed an extension to the NLA_Put primitive
that propagates information to all NLAs in the tree so that all NLA_Gets can be served from
the cache. To reduce the number of NLA Puts active in the tree, we aggregate puts from
all processes on a node before propagating this information over the tree. We invoke the
NLA Barrier primitive when a process invokes PMI Barrier. Processes are released from
NLA Barrier when the NLA Barrier operation completes over the NLA tree.

We evaluate our design against the current startup mechanism in MVAPICH2 in Section
4.1.

3.2 Designing PMGR (Collective Startup) with ScCELA

The PMGR protocol defines MPI style collectives for communication of initialization data.
When MPI processes start execution, they call the MPI_Init function to initialize the MPI
environment. When processes need to exchange information, they invoke a collective com-
munication interface. When all processes have arrived at the interface, information exchange
if facilitated by the job launcher. Thus these operations also act as implicit synchronization
between processes.

The PMGR interface defines a set of collective operations — PMGR_Gather, PMGR_Broadcast,
PMGR_A11toAll, PMGR_AllGather and PMGR_Scatter and an explicit synchronization opera-
tion PMGR_Barrier. In our implementation when a process invokes a PMGR primitive, it is
directly translated to an invocation of the corresponding collective communication primitive
designed over the NLA tree.

We evaluate our design against the current startup mechanism in MVAPICH in Section
4.2.

4 Evaluation

In this section we evaluate the two case studies described in Section 3. We evaluate our designs
against the previous launching mechanisms in MVAPICH2 and MVAPICH respectively. Our
testbed is a 64 node InfiniBand Linux cluster. Each compute node has dual 2.33 GHz Intel
Xeon “Clovertown” quad-core processors for a total of 8 cores per node. Overall, the cluster
has 512 processing cores. The nodes have a Gigabit Ethernet adapter for all management
traffic such as job launching. We evaluated the startup performance on various system sizes
and configuration. We represent a system size as n X ¢, where n is the number of nodes and
¢ is the number of cores per node used in a test.

We have written a MPI microbenchmark to measure time taken to launch MPI processes
and the time spent in MPI_Init which represents the information exchange phase. For the
purpose of these microbenchmark level tests, we disable all optional features to keep the
initialization time minimum.

4.1 PMI over ScELA

In this section we compare the performance of our design of PMI over ScELA (ScELA-PMI)
against the default launch framework in MVAPICH2 (MVAPICH2-PMI). The default startup
mechanism of MVAPICH2 utilizes a ring of daemons — mpd [12] on the target nodes. The
launcher — mpiexec identifies target nodes and instructs the mpd ring to launch processes
on them. PMI information exchange is done over the mpd ring. Figure 3 shows the time
taken to establish the initial ring with various number of nodes. We observe a linear increase
which is not scalable over larger number of nodes. We have also observed that the mpd ring
can not be setup on larger sizes such as thousands of nodes. While a mpd ring can be reused
for launching subsequent MPI jobs, most job schedulers elect to establish a separate ring as
both target nodes and job sizes may be different.

MPD Lauﬁch Tirﬁe

Time (s)

0.5

0 8 16 24 32 40 48 56
Compute Nodes

Fig. 3. Time to Setup MPD Ring with MVAPICH2

Figure 4 shows a comparison of the launch times for various system sizes and configura-
tions. On ScELA-PMI, the spawn phase represents the time taken for the Launcher to setup
NLAs on the target nodes and for the NLAs to launch the MPI processes. The MPI _Init
phase represents the time taken to establish the NLA Interconnection Layer and for PMI
information exchange. On MVAPICH2-PMI the mpdboot phase represents time taken to
establish the ring of mpd daemons. The spawn phase represents the time needed to launch
MPI processes over the mpd ring and the MPI_Init phase represents the time taken for
information exchange.

We observe that as we increase the number of processes per node, ScELA-PMI demon-
strates better scalability characteristics. For a fixed node count, the duration of the spawn

‘Spawn m== | Spawn m==

MPI_Init o | 35 MPI_Init o

3 mpdboot ——= mpdboot ———=

Time (s)
Time (s)

8x1_8x2 8x4 8x8 8x1 8x2 8x4 8x8
ScELA-PMI MVAPICH2-PMI
(a) 8 Compute Nodes (b) 16 Compute Nodes
7 T T T T 14 T T T T
Spawn === Spawn ===
MPI_Inijt e MPI_Init ===

6 I mpdboot —= 1 12 | mpdboot ——=

Time (s)
Time (s)

32x132x2 32x4 32x8 32x1 32x2 32x4 32x8 64xXL 64X2 64x4 64x8 64x1 64x2 64x4 648
SCELAPMI MVAPICH2-PMT SCELA-PMI MVAPICH2-PMI
(c) 32 Compute Nodes (d) 64 Compute Nodes

Fig. 4. Comparison of Startup Time on MVAPICH2

phase in ScELA-PMI is constant due to parallelism achieved through having NLAs. In Fig-
ure 4(d) we see the spawn time for MVAPICH2-PMI increase from around 1s to 6.7s when
the number of cores used per node is increased from 1 to 8 but ScELA-PMI is able to keep
spawn time constant at around 0.5s. At larger job sizes, for instance 512 processes on 64
nodes (64 x 8 in Figure 4(d)), we see an improvement in the MPI_Init phase from around 2.5s
to 0.7s due to the better response times of communication over the NLA Interconnection
Layer and due to reduced network communication due to NLA cache hits.

4.2 PMGR over ScELA

In this section we compare our design of PMGR over ScELA (ScELA-PMGR) against the
default startup mechanism in MVAPICH (MVAPICH-PMGR). The default startup mecha-
nism in MVAPICH has a central launcher which establishes a connection to target nodes and
launches each process individually. On multi-core systems, this needs multiple connections

10

to each node. Also, the MPI processes establish a connection to the central controller which
facilitates the PMGR information exchange. As the number of processes increase, this causes
a flood of incoming connections at the central controller which leads to delays due to seri-
alization of handling these requests and network congestion. The number of MPI processes
that can be handled simultaneously is also limited by resource constraints such as open file
descriptor limits, which is typically 1024.

Figure 5 shows a comparison of the launch times. With SCELA-PMGR, the spawn phase
represents the time taken to setup NLAs on the target nodes and for the NLAs to launch
MPI processes on the node. The MPI_Init phase represents the time taken to setup the NLA
Interconnection Layer and the PMGR information exchange between MPI processes. With
the previous MVAPICH startup, the spawn phase represents the time taken for the central
controller to launch each MPI processes on target nodes. In the MPI_Init phase, the MPI
processes establish connections to the central controller and exchange information over the
PMGR protocol.

We see that for a fixed node count, SCELA-PMGR takes constant time for the spawn
phase as it benefits from having NLAs while spawn phase with MVAPICH-PMGR grows with
increase in number of processes per node. For instance in 5(d), we see that SCELA-PMGR
is able to keep spawn time constant at 0.6s, but on MVAPICH-PMGR the spawn phase
increases from 0.5s to 3.6 as we increase the number of cores used per node from 1 to 8. Also,
when the overall job size is small, the central controller in the MVAPICH startup mechanism
is not inundated by a large number of connections. We see that the central controller is able
to handle connections from up to 128 processes with little performance degradation in the
MPI_Init phase. Hence the MVAPICH startup performs better at a small scale, but as the
job sizes increases we observe larger delays in the MPI_Init phase. From Figure 5(d) we see
that for 512 processes (64 x 8), the MPI_Init phase takes 4.3s on MVAPICH-PMGR, but on
ScELA-PMGR it takes around 0.3s. For 512 processes we see an improvement of 800% in
the the overall launch time.

When only one process is launched per node, we introduce an additional overhead in the
spawn phase as we first launch a NLA on a node and the NLA launches the sole process.
However

Figure 6 shows an evaluation of SCELA-PMGR and the previous MVAPICH startup
mechanism on a large scale cluster — the TACC Ranger [13]. The TACC Ranger is an Infini-
Band cluster with 3,936 nodes with four 2.0 GHz Quad-Core AMD “Barcelona” Opteron
processors making a total of 16 processing cores per node. The Figure shows the runtime
of a simple hello world MPI program that initializes the MPI environment and terminates
immediately. In terms of number of processing cores, SCELA-PMGR scales up to at least
three times more than the previous MVAPICH startup mechanism. On 10,240 cores, we
observe that MVAPICH-PMGR takes around 185s while SCELA-PMGR takes around 25s
which represents a speedup of more than 700%. We also see that MVAPICH-PMGR is not
able to scale beyond 10, 240 cores, while SCELA-PMGR is able to scale to at least 3 times
that number.

11

12

0.7

Spawn == Spawn E==
MPI_Init o MPI_Init oo
s s
E E
= =
(a) 8 Compute Nodes (b) 16 Compute Nodes
2.2 T T T T 9 T T T T
Spawn == Spawn ===
2 F MPI_Init o 1 g8 | MPI_Init mmm
7 -
6 -
O @ 5
g g
= =
3 L
2 -
l -
0
(c) 32 Compute Nodes (d) 64 Compute Nodes

Fig. 5. Comparison of Startup Time on MVAPICH

5 Related Work

The scalability and performance of job startup mechanisms in clusters have been studied in
depth before. Yu, et. al. [14] have previously explored reducing the volume of data exchanged
during initialization of MPI programs in InfiniBand clusters.

In our work, we have assumed availability of executable files on target nodes through
network based storage as this is a common model on modern clusters. Brightwell, et. al. [15]
have proposed a job-startup mechanism where network storage is not available.

SLURM [16] is a resource manager for Linux clusters that implements various interfaces
such as PMI and PMGR for starting and monitoring parallel jobs. Unlike ScCELA, SLURM
has persistent daemons on all nodes through which it starts and monitors processes.

12

200

SCELA-PMGR ———

180 | MVAPICH 0.9.9
160 |

@

S 140 |

E 120!

c

T 100 F

% 80

S 60

<

40
20

O L L L L L L
1024 2048 4096 8192 10240 16384 20480 32768

Processor Cores

Fig. 6. Runtime of Hello World Program on a Large Scale Cluster (Courtesy TACC)

6 Conclusion

Clusters continue to scale in core counts. Node counts are increasing significantly, but much
of the growth in core counts is coming from multi-core clusters.

In this paper we have demonstrated a scalable launching architecture that improves the
launch performance on multi-core clusters by more than an order of magnitude than previous
solutions. Although our case studies have been with two MPI libraries, we have presented
an architecture extensible to any cluster launching requirements. For launching parallel jobs,
we provide scalable and efficient communication primitives for job initialization.

With an implementation of our architecture, we have achieved a speedup of 700% in MPI
job launch time on a very large scale cluster at 10, 240 processing cores by taking advantage
of multi-core nodes. We have demonstrated scalability up to at least 32,768 cores.

Our solutions are being used by several large scale clusters running MVAPICH such as
the TACC Ranger — currently the largest computing system for open research.

Software Distribution Our implementation of PMGR over ScELA (ScELA-PMGR) is in-
tegrated with the 1.0 release of MVAPICH. The PMI implementation over ScCELA (ScELA-
PMI) will be available with the upcoming 1.1 release of MVAPICH2. More details on MVA-
PICH and MVAPICH2 are available at [17].

13

7 Future Work

In our solution, the Launcher launches Node Launch Agents serially. This could be a po-
tential bottleneck with larger node counts. However, this is easily extended so that NLAs
are launched hierarchically by other previously launched NLAs. We plan to explore this
mechanism in the future.

Some of the collective communication primitives such as NLA_Gather can only gather
data at a process on the root NLA. In future we plan to design collective communication
primitives with a generic root process. With the recent demonstration of a 80 core processor
by Intel, the number of cores per node on large scale clusters is projected to increase further.
We can use more efficient communication channels such as UDP or shared memory for
communication between processes and the NLA on a node so that the degree of the NLA
tree can be decoupled from the number of cores on a node.

Acknowledgment

We would like to thank Dr. Karl W. Schulz for helping us evaluate our designs on the TACC
Ranger system. We would also like to thank Mr. Adam Moody for providing the PMGR
framework in MVAPICH.

References

1. TOP 500 Project: TOP 500 Supercomputer Sites. (http://www.top500.0rg)
2. Sandia National Laboratories: Thunderbird Linux Cluster. (http://www.cs.sandia.gov/platforms/ Thunder-

bird.html)

3. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. (1994)

4. Network-Based Computing Laboratory: MVAPICH: MPI-1 over InfiniBand and iWARP.
(http://mvapich.cse.ohio-state.edu/overview /mvapich)

5. Argonne National Laboratory: MPICH2 : High-performance and Widely Portable MPI.

(http://www.mcs.anl.gov /research/projects/mpich2/)

6. Huang, W. and Santhanaraman, G. and Jin, H.-W. and Gao, Q. and Panda, D.K.: Design of high performance
mvapich2: Mpi2 over infiniband. Sixth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID 06). (2006)

7. Carlson, W., Draper, J., Culler, D., Yelick, K., Brooks, E., Warren, K.: Introduction to upc and language
specification. CCS-TR-99-157, IDA Center for Computing Sciences (1999)

8. Shukla, A., Brecht, T.: Tcp connection management mechanisms for improving internet server performance. Hot
Topics in Web Systems and Technologies, 2006. HOTWEB ’06. 1st IEEE Workshop on (13-14 Nov. 2006) 1-12

9. Moody, A., Fernandez, J., Petrini, F., Panda, D.: Scalable nic-based reduction on large-scale clusters. Super-
computing, 2003 ACM/IEEE Conference (15-21 Nov. 2003)

10. InfiniBand Trade Association: InfiniBand Architecture Specification. (http://www.infinibandta.com)

11. Lawrence Berkeley National Laboratory: MVICH: MPI for Virtual Interface Architecture.
http://www.nersc.gov/research/FTG/mvich/ index.html (2001)

12. R. Butler and W. Gropp and E. Lusk: Components and interfaces of a process management system for parallel
programs. In: Parallel Computing. (2001)

13. Texas Advanced Computing Center: HPC Systems. (http://www.tacc.utexas.edu/resources/hpcsystems/)

14. W. Yu and J. Wu and D. K. Panda: Scalable startup of parallel programs over infiniband. In: International
Conference on High Performance Computing (HiPC04), Bangalore, India (2004)

15. Brightwell, R., Fisk, L.: Scalable parallel application launch on cplant. Supercomputing, ACM/IEEE 2001
Conference (10-16 Nov. 2001)

16. Lawrence Livermore National Laboratory and Hewlett Packard and Bull and Linux NetworX: Simple Linux
Utility for Resource Management. (https://computing.llnl.gov/linux/slurm/)

17. Network-based Computing Laboratory: MVAPICH: MPI over InfiniBband and iWARP.
(http://mvapich.cse.ohio-state.edu)

14

