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Abstract

Efficient on-chip cache utilization is critical to achievagh performance for many memory-intensive applicationse T
shared cache structure of multi-core processors has masgatmore challenging issue due to the increasingly intenisiter-
thread contention for shared cache resources. Exsitinghfvare and software solutions address this problem by aelytiv
allocating space in the shared cache to multiple threaddragmat minimizing the cache contetion. However, in many iappl
cations that cache contention can also be caused by dataaes¢o several commonly defined data objects in private/dha
caches due to the lack of object-level locality knowleddgs ®bservation holds for collaborative threads and/orhivita
single thread, with a concequence that data of an objectigh utility are evicted by accesses to a low-utility objélc ad-
dress this problem, we present a software framework forapdgyel cache partitioning. We first collect object-rédat stack
histograms and inter-object interference histograms véary trace sampling. With several low-cost training rums,are
able to distinguish data objects of three significant typik different locality patterns: (1) objects with signifitetemporal
resue, (2) object with little temporal reuse but with a laiggehe footprint, and (3) objects without clear locality feas.
Our cache partitioning policies segregate data objectsdmality types and properly allocate cache spaces to datacibj
aiming at maximizing cache usage. We have implementedtdéjet cache partitioning support in Linux kernel, andtess
our framework on a commaodity multi-core processor. Expental results show the effectiveness of our system frankewor
with single- and multi-threaded programs from the SPEC CBQRbenchmark suite and NAS benchmarks. In comparison

to uncontrolled LRU caching, our framework provides up t®11speedups and up to 62.5% L2 cache miss reductions in our



experiments.

1 Introduction

The performance gap between the processor and DRAM has besasing exponentially for over two decades. This
“memory wall” problem is likely to persist due to the limitedf-chip bandwidth [3]. By providing fast data and instriect
buffers to on-chip computing resources, caching has beed tasbridge the performance gap between the processor and
DRAM. Reducing cache misses and therefore avoiding off-elticesses is a key to achieve high performance on modern
architectures. The technological trend of having chip iprdtessors (i.e. multi-core processors) due to power @ad h
constraints only makes efficient utilization of limited ohip cache resources a more challenging problem. Because mo
proposals choose to use a shared last level cache (LLC)asulch or L3 cache to simplify coherence protocols and reduce
capacity misses, threads running on different cores mag kignificant interference with each other in the sharedeach
Problems such as performance degradation and unfairnessasfse because of such cache contention.

Previous studies [25, 13, 18, 6, 9] have shown the limitatioihunconstrained cache sharing and proposed approaches to
solving this problem. Despite their differences in metacsl designs, the solutions follow two directions: (1) Riarting
the cache space between threads with additional hardwppogu For example, a set-associative cache can be paetitio
into ways and different ways can be allocated to differem¢dls. In addition to the basic cache partitioning mechanis
special hardware support is often needed to detect programise utility functions and decide cache partitions attime.

(2) Selecting threads with non-conflicting cache accedeipet as co-runners to share the cache. While this approash do
not need any hardware support, its usage is limited by th@negent of a large job pool.

The above studies share one common limitation: they tangiefpendent workloads in a multiprogramming environment
where programs do not share data. However, data-sharingjoads and parallel programs, such as OpenMP programs
are becoming increasingly important with chip multiprazas (CMPs). To address this limitation, we propose odmat
cache partitioning to reduce cache misses of sequentiadatadsharing parallel programs, an approach orthogonatdn
thread cache partitioning or optimizing co-running jobssbiteduling. Our approach is motivated by an observatiomian p
work such as [18]:.LRU caching is demand-driven instead of utility-driveWith inter-thread cache sharing, a program
with higher cache demands obtains more cache resources bitieén unable to translate them to higher performance. This
observation also holds at finer granularity levels such eseaharing between data objects and even instructiongsidress
this problem and maximize the utility of cache resourcespmpose to segregate objects that have conflicting acctssms=a

in the shared cache, such as the L2 cache.



In this paper we focus on partitioning the L2 cache space gntange global and heap objects for high-performance
applications. For a given program, our proposed framewaosk fjenerates profiles for frequently accessed large abject
using training inputs. Based on the profiles we then detecptitern of the profiles. When the program is scheduled to
run with an actual input, we predict its locality profile withe detected access patterns and the actual cache configurat
parameters, and then make an object-level partition dectisiVe have implemented our cache partitioning framework in
Linux kernel running on a commodity CMP, and shown its effextess.

The contributions of the paper are as follows. First, to testtof our knowledge, this paper is the first work that uses
object-level cache partitioning to reduce cache missekdtr sequential and OpenMP-style data-sharing paraligrams.

In comparison, previous related studies [2, 5, 27] eitheusoon reducing conflict misses or depend on additional heew
support and modified instruction sets. Second, our appneadks across program inputs and cache configurations. Te pr
posed framework is also independent of compiler implemniems by working on binary executables. Third, our framekwor
has been implemented and evaluated in commodity systetesdhef simulation environments, therefore it can be diyect
used in practice to improve application performance.

The rest of the paper is organized as follows. We first disaus®tivating example for our work in Sec. sec:motivation.
We then present an overview of the proposed object-levdiecaartitioning framework in Sec. 3. In Secs. 4, 5 and 6, we
describe how we generate program profiles, analyze gedepadéiles and make partition decisions based on the analysis
results with a given cache configuration respectively. \Wduate the effectiveness of our approach in Sec. 7 on a coiymod
CMP using several programs from SPEC CPU2000 and NAS benmkkmale discuss related work in Sec. 8 and present our

conclusions in Sec. 9.

2 A Motivating Example

Here we use the conjugate gradient (CG) program in NAS beadtsras a motivating example to illustrate the problem.
As shown in Fig. 1, CG spends most of its running time on a spanatrix-vector multiplicationv = a - p, wherea is a
sparse matrixyowstr andcolidz are row and column index arrays andandp are dense vectors. In CG, the majority of

accesses are on arraysp andcolidz. Although vectorp has high temporal reuse in the matrix-vector multiplicattode,

depending on its size, its elements may get constantlyez/fcom cache before their reuses due to the streaming ascess
arraysa andcolidz. As the result of this thrashing effect from accessing artegndcolidx, CG reveals a streaming cache
access pattern in cache. Without special code/data treatvtased on domain knowledge, general compiler optiminatio

such as tiling, cannot be applied in this case because ofribguiar nature of this program — there is indirection in mos



array accesses.

for (i =0; i <niters; i++) {
/'l other code, with accesses to arrays not shown
for (j =1; j <= lastrowfirstrowl; j++) {
sum = 0.0;

for (k = rowstr[j]; k <rowstr[j+1]; k++) {
sum = sum + a[ k] *p[colidx[k]];

}

Wjl = sum

/1 other code, with accesses to arrays not shown

Figure 1. An outline of NAS-CG code.

If we allow the cache space to be partitioned between ohjtutse are different ways to reduce and even completely
eliminate capacity misses on arrayvithout increasing the misses on other objects. One apbrisdabat we can protegtin
an exclusive cache space and leave the remaining cachedtgapabe rest of the objects. Alternatively, we can divitie t
cache such that the minimum cache quota is given to ar@ygr anda. This optimization is not limited to single-thread
performance. When the code is augmented with OpenMP diesgtwith a shared cache the above partition decisions can
also reduce capacity misses. If we take the approach torgédpé minimum cache quota for arraydidxz anda and
co-schedule CG with other programs, since it does not revetileaming access pattern that significantly interferéls wi
its co-runners, high throughput can be achieved with jadisiinter-thread cache partitioning. In this paper, we $ocn
object-level cache partitioning and leave the combinatibmter-object and inter-thread cache partitioning to future
work.

To quantify the improvement from object-level cache pantiing, let us assume that CG runs on processors with 64-byte
L2 cache lines and 2MB L2 cache capacity. For simplicity of discussion, we also assume non-zero elemendsand
colidz are distributed in such a way that exactly one of every twaseountive elements inis used in the innermost loop in
Fig. 1. Assuming has 160000 elements (1250KB) and theredare10° total accesses on arrayin CG, there are x 10°
accesses on arraysandcolidx respectively. As floating-point elementsdrandp are 8 bytes and elementsdnlidxz are
4 bytes, while accesses grtouch 20000 cache lines in the innermost loop of Fig. 1, asesnp andcolidx only read
10000 and 5000 cache lines respectively. With uncontraéeghe sharing, because 35000 distinct cache lines aremeéat
between a data reuse prwhile the L2 cache only has 32768 cache lines, CG’s cache naisds 100%. If we can apply
either one of the discussed object-level cache partitpeghemes, we can eliminate all the misseg,omhich reduces the

miss rate to 42.9%. We keep using the assumed cache pararapteprogram inputs here in the next several sections to
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Figure 2. Overall structure of the object-level cache parti tioning framework.

illustrate our cache partitioning framework.

3 Overview of the Approach

The CG example in Fig. 1 demonstrates the benefits of panititipcache space at the object level. In order to do so, we
need to solve the following important problems: (1) How camidentify important objects as partitioning candidated an
capture the interference among the objects that share anpete for cache space? (2) In which way can we capture data
reuse patterns at the object level, across cache configusadind program inputs? (3) How can we make quick inter-objec
partition decisions with a new program input? (4) What is theimum hardware support we need to enforce cache partition
decisions? Without such a mechanism available, can weestiluate our approach in an efficient way and even still make
our approach useful in practice?

To solve the above problems, we propose a framework to detegtams’ data reuse patterns at the object level through
memory trace profiling and pattern recognition and enfor@itpon decisions at run time with operating system suppor

This proposed framework consists of the following stepsiasdimmarized in Fig. 2.

1. Profile GenerationFor a given program and its training inputs, we capture mgrtraces in an object-relative form
through binary instrumentation. Instead of keeping rawesawe obtain object-relative stack distance histogrards a

inter-object interference histograms for large or fredlyeaccessed objects. These histograms are program profiles

that represent the program’s data locality patterns.

2. Profile Analysis.Based on program profiles from training runs, we detect tognam’s object-relative data locality



patterns, using a modified version of the data locality pattecognition algorithm by Zhong et al. [29].

3. Cache Partition Decision Making and Enforcement/hen the program is scheduled to run with an actual input,
we predict its object-relative stack histograms. with tle¢edted access patterns. In combination with inter-object
interference information, we obtain the the locality pefibr the input. Then using this locality profile and the cache
configuration information of the underlying system, we makebject-level partition decision. Our partition deciso
are finally enforced on commodity CMPs based on an operagisigis technique callggage coloring14].

In this paper, we focus on global and heap objects largerartanesholdl,,;. If an object’s size is less thdh,;, it is

merged into a special object groufyj,. There are two reasons for this decision: First, we focusedinetion of L2 cache
misses for scientific programs. In these programs, datditiesaon small objects are often exploited in L1 instead &f L

cache. Second, it is simply not feasible to include all oigjelcie to the complexity and large memory requirement.

4  Profile Generation

In order to make cache partition decisions, we need to utatetdocality patterns of a program at the object level. We
make several important decisions with respect to referbroadity modeling.

e The classical reference locality model categories datalitges into temporal and spatial localities. In this wovke
only focus on temporal locality at the cache line granwabiécause spatial locality is taken care of by viewing a
complete cache as the basic unit. While this approach mayaappaffect the proposed framework’s generality, it is
not a problem because our framework aims at detecting tlaelolzdlity patterns of a given program binary that works
on processors in the same processor family. While cache itiggaend degrees of associativity often vary, processors
in a modern processor family are unlikely to use differemé¢ Isizes at the same cache level. For example, Intel X86

processors with NetBurst and Core microarchitecturessallé4-byte L2 cache lines.

e An important design choice is to model reference localiitisally or dynamically. While there has been prior work
such as [7, 4] that models programs’ cache behaviors dtgtarad symbolically, these approaches can hardly be used
in practice. They are limited to regular loop code and do notkwacross compilers that apply different compiler

optimizations to the same program. We choose to follow a ayoapproach through binary instrumentation.

4.1 Modeling Object-Relative Temporal Locality

We model temporal locality usingtack distancéi.e. reuse distance) [29, 4], defined as the number of distiata refer-

ences between two references to the same data. Since we tteoiddel data locality at the cache line granularity, stisk



1800000 1800000

1600000 1600000
1400000 1400000
1200000 1200000
1000000 1000000
800000 800000
600000 600000
400000 400000

200000 200000 D»

0 . . . . . . . . : 0 . . . . . . . . :

4K 8K 12K 16K 20K 24K 28K 32K >32K 4K 8K 12K 16K 20K 24K 28K 32K >32K

@) (b)

1800000 1800000
1600000 1600000
1400000 1400000
1200000 1200000
1000000 1000000
800000 800000
600000 600000
400000 400000
200000 200000
0 0

4K 8K 12K 16K 20K 24K 28K 32K >32K 4K 8K 12K 16K 20K 24K 28K 32K >32K

() ()
Figure 3. Object-relative stack distance histograms for fr equently accessed objects in CG and the
whole-program stack distance histogram for CG. (a) Object- relative stack distance histogram for  p.
(b) Object-relative stack distance histogram for colidz. (c) Object-relative stack distance histogram

for a. (d) Whole-program stack distance histogram for CG.

tance refers to the number of distinct cache lines accesgaebn two accesses to the same cache line. As itis notliessib
record the stack distance between each data reuse, a histegused to summarize the temporal locality. In a stackdcs
histogram, the distance space is divided iffaconsecutive data rangé8, R:], (R1, Ra],...{Rn—2, Rmaz],(Rmaz, +00)
and the value of each range represents the percentage dsthlate number of temporal reuses whose stack distandieg fal
in to this range R, is the largest cache capacity we consider in terms of canhs.liOur approach differs from prior work
on reference locality modeling in several aspects: (1)iSdétances in prior work are at the whole program level bihis
paper we model temporal locality by keeping a stack distdmstgramd 4 for accesses within each objedt In such a
way we are able to identify individual objects’ locality feis and treat objects differently in later stages of taenBwork.
(2) For each object-relative stack distance histogranteatsof using a relative metric, we keep absolute reuse soiihis
is because with different inputs an object’'s accesses may daarying weight the whole-program accesses. (3) We @nor
reuses with zero stack distances because such reuses aletmosdled by L1 cache while we optimize L2 cache accesses
in this paper.

Assuming we run CG with the cache configurations and the progmput in Sec. 2, we have object-relative stack distance
histograms for objects , colidx anda as shown in Fig. 3(a), Fig. 3(b) and Fig. 3(c) respectivatycomparison, a whole-
program stack distance histogram for CG is shown in Fig.,3(tgre all accesses have stack distances larger than tie cac

capacity.



4.2 Modeling Inter-Object Interference

With object-relative temporal reuse information alone \aarot decide if a partition decision is better than anotiié.
need to predict the overall cache miss rate by composingateeldcality profiles of individual objects. In order to dg, so
we model reference interference between different ohjénter-object interferencé 4 5 is defined as the average number
of distinct data references to objeBt per distinct reference to object. In our framework, similar to temporal locality
modeling, we extend the above definition and model inteeatipterference at the cache line level. Note that int¢eaib
interferencel is not symmetric, that is] 4, 5 andIp 4 may not be identical. For a simple regular progrdms can be a
constant. However, for complex programs with multiple @sas, 5 may vary with phase changes, often with changes on
stack distances of objectsandB. Therefore we use a histogram to summarize inter-objeeiference 4 p whose ranges
correspond to those in stack distance histogramd fcendd g and heights represent inter-object interference values.

As an example, Fig. 4 shows the interference histograms.fprand/, , in CG. Fig. 4(a) shows that interference from
objectp to objecta’s locality is almost O since vectgris accessed repeatedly between any temporal reuseliofcontrast,
Fig. 4(b) shows thal, ,, = 2 because there are two distinct cache linep atcessed between a temporal reuse on a cache

line of a. We can see objectsignificantly interferes with objegt's temporal reuses.

25
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Figure 4. Examples of inter-object interference histogram s for CG. (a)Inter-object interference I, ,.

(b)Inter-object interference 1, ,.

4.3 Profile Generator

Fig. 5 illustrates how a program profile, which consists geobrelative stack distance histograms and inter-ohject
terference histograms, is generated with a training inpbere are three important components used in profile geoerat
object table custom memory allocat@ndmemory profiler

The object table maintains the basic information of eveofij@d object. As the hub of the profiling process, it is update

and queried by both the custom memory allocator and the meprofiler. Object information stored in the object table



Training Input

Executable | Symbol Table mallocsiree | CUStom Memory Allocator
(profiling version)

Binary Instrumentation global object info
heap object info
load/store
address
ID name startAddr size  type thread
. 1 A 00AOOEFD 00BOOEFD global 0
Memory Profiler 3 N/A  O000BOEFD 000FOEFD heap 0
I \ Object Table
obj i iandj
e oObjj _-—-_j_and k
. m  mobjk L | iand k

Object-Relative Stack Distance Histograms Inter-object Interference Histograms
Figure 5. Program profile generation with a training input.

includes object identifier, name, starting address, syge,tand thread number. In this paper we focus on global aag he
objects therefore an object’s type is eitleapor global. An object’s identifier is used to facilitate fast query aettieval.
A global object’s identifier is decided by its order in the dyohtable of the binary executable. A heap object’s idemtifie
is calculated by a hash function that takes its allocatio®, sillocation order and the total number of global objests a
parameters. Identifier O is reserved for the special objexifgpbj,. Similar to identifiers, object names are retrieved from
the symbol table for global objects and decided by a funatiamgling allocation sites and allocation order for heagcis;
The thread number field is used to record the allocator of @ bégect in order to identify thread-private data. However,
in this paper we focus on shared objects and in our expergrahheap objects are allocated by thread 0. Therefore we
ignore this aspect in the following discussion. Becaus@ lndgects may have overlapping address ranges due to their no
overlapping life cycles, a raw address can be found withiftiple objects. To avoid this problem, when a heap object’s
memory space is released, we move its information to an a@iaated to freed objects in the object table.

The custom memory allocator is used to capture each heaptshjesation and deletion. We replace standard memory
management functions such as malloc(), calloc(), freaf),raalloc() with our implementations. In this way durin@fiiing
runs these memory management requests are redirectedcande@.

The memory profiler controls the profiling process and stargsofiling run by updating the object table with global
object information read from the program’s symbol table.relies on binary instrumentation to obtain the raw address

stream of a given program. Our current profiler implemeatei$ written as a tool based on PIN [16] that inserts insioact



and object probes before every instruction accessing thmame The core components in the profiler are a sestatk
distance profiler&ind aninter-object interference counter tabl@ stack distance profiler is used to track the stack distance
of one object and implemented with a hash table and a Splayfditowing Sugumar and Abraham [24]. The inter-object
interference counter table is two-dimensional and usediopte inter-object interference between temporal reu3és
memory profiling algorithm used is summarized in AlgorithmBy sampling 10% of memory references and employing
several optimizations, our current implementation of theory profiler has a reasonable slowdown of 50 to 80 timesawhil

also maintaining a high accuracy.

Algorithm 1 The memory profiling algorithm.
tracedAddr[0..0bj Num — 1] < 0
for each memory reference with raw addreddr do

Search the object table for such a live objeigt thatobj.start Addr < addr andobj.start Addr + obj.size > addr
addr < addr /CacheLineSize
if obj existsthen

(objID,of fset) « (obj.ID,addr — obj.startAddr)
else

(objID,of fset) « (0,addr)
end if
stackDist «— stackDistProfiler[objID].trace(of fset)
objStackDist Histogram[objI D].sample(stackDist, 1)
if tracedAddr|objID] = 0 then

tracedAddr(objI D] «— addr

continue to process next memory access
end if
if tracedAddr(objlD] = addr andstackDist # 0 then

tracedAddrobjID] — 0

for eachi wherei # objID do

if inter ferenceCounter|objID][i] # 0 then
inter ferenceCount Histogram|obj|[i|.sample(stackDist, inter ferenceCounter|objl D][i]/stackDist)

sampleCounter Histgram|obj][i].sample(stackDist, 1)
inter ferenceCounter[objID][i] — 0
end if
end for
end if
for eachj wherej # objID do
if stackDist > inter ferenceCounter[j][objID] then
inter ferenceCounter|j][objI D] « inter ferenceCounter[j][objI D] + 1
end if
end for
for each obj do
for each obj where # j do
for each rangé do
inte ference Histograml[i|[7][k] <
end for
end for
end for
end for

inter ferenceCountHistogram|i][j][k]
sampleCounter Histgram[i][j][k]




5 Profile Analysis

After at least two program profiles with different trainingputs are obtained from the profiling process, we analyze
these profiles with the three goals: (1) categorizing objéeised on their locality types, (2) searching object chomed

(3) detecting the patterns of object-relative localityjeaib sizes and data access volumes.

Object Categorization. With program profiles, we categorize objects into four typased on their data locality patterns:
1. Cold objectgefer to the objects that have few memory accesses whilgratied in the profiling process because of
their large sizes. We set a threshdld,; to detect cold objects. For an objedtj, if % < Trora, itis

categorized as an cold objeétaccesses_obj is the number of accesses to the objdgt and+#total Accesses is the

total number of accesses to all the objects. As an exceptiemever try to identitybj, as a cold object.

2. Hog objectsrefer to the objects that have high memory demands but réit@lor no temporal locality. With a

#accessesopj(stackDist< Rmax)
ne
#accessesop;

thresholdT},.4, If an objectob; is not a cold object a < Theg, then it is a hog object.
#Haccessesqyj(stackDist < Ri,q,) refers to the number of references to objelgt with reuse distances less than

Rmam .

#accessesoy; (stackDist< Ry aq) >
F#accessesop;

3. Hot objectsare the objects with high temporal locality. For an objdgt, if we have

T _hot and ifobj is not a cold object, then it is a hot object.

4. Other objectsare the objects that do not belong in any above category.
For example, after object categorization, profiled obj@ttSG are categorized into groups, as shown in Table 5. Becaus
the majority of the objects are categorized as cold objécssgnificantly simplifies further analysis and partitioraision

making procedure.

Cold Objects Hog Objects| Hot Objects| Other Objects

iv,v,acol,arow,rowstr,r,w,r,q,z,aelt a, colidx P objo

Table 1. Categorizing objects in CG'’s profiles.

Object Cligue Search. We view a set of objects and their interference relatiorshpa graph with vertices representing
objects and unweighted edges representing interferemtegén objects. Based on the graph representation, we eat@me
the cliques inside hog objects. As we will show in the nextisa¢the cumulative object size of the maximum clique desid
the memory requirement of all hog objects and thus decidzs ¢thche allocation. While the cligue enumeration problem

has exponential space and time complexities, it does nog Imnuch overhead in our particular problem because the numbe



of hog object cliques is always fairly small in real prograrsr example, CG has only one hog object clique that inclpdes

andcolidz.

Pattern Recognition We detect object-relative data locality patterns follogvthe approach by Zhong et al. [29]. Each
object-relative stack distance histogram is divided imtemall groups. With two profilep; andp, having different input
sizes, we find a functiotfy, to fit each group formed for the two profileg, , andgs j for k from 1 ton. f matches stack
distancesl j, d2 x such thatfy (inputSize1) = di ; and fi(inputSizes) = da . What differs ours from the approach by
Zhong et al. is thaf}, in our approach is a polynomial function instead of funcsisach as square root. This is because we
use one program argument as the input parameter insteageof sizes. As we keep absolute numbers instead of per@ntag
in histograms, we detect the data access volume and dataadteens of each object as well. The approach to detectesgth
patterns is similar to temporal locality pattern recogmitpresented above. As an example, after pattern recognitefind
that in CGp’s object-relative stack distances grow linearly with giag parametena. In contrastcolidx andp's stack

distances are simply predicted as larger than the cachaaiass input sizes.

6 Cache Partition Decision Making and Enforcement

Fig. 6 illustrates how our framework makes a partition decisvith an actual input and how the partition decision is
enforced on a commodity CMP through software. When the progréh training profiles is scheduled to run with a large
input, we first predict the object-relative stack distanoégect sizes and data access volumes with patterns resabdirring
profile analysis. The partition decision maker then selebfscts to be isolated from the rest of the data space andeleci
their cache quotas. Finally this decision is enforced by @%ivtual-physical address mapping. This phase of the énaonk
shares several components with the profile generation gsaech as the object table and the custom memory allocdtor bu
with a few changes. For example, in the object table fieldrs is added to denote the cache space allocated to an object as
the total cache capacity is divided into a setoforgregions). Unlike the custom memory allocator of the prodjlprocess,
the memory allocator used in this stage reads the obje& talcheck and enforce cache partition decisions but neviatap

the table. The rest of this section discusses in detail th#&ipaing mechanism and the partition decision makingalym.

6.1 Partition Enforcement

The most straightforward way to enforce cache partitiorisi@as is through hardware support. Cache partitioning can
be at different granularity levels such as cache lines, &adys or pages. Because hardware-based partitioning $uppo

not readily available, here we provide a software mechatiistnessentially emulates page-level hardware cacheipairig
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based on a well accepted OS technique catlege coloring[26]. It works as follows. A physical address contains salver
common bits between the cache index and the physical pagberuifhese bits are referred to@age color A physically
addressed cache is therefore divided into non-overlapeigigns by page color, and pages in the same color are mapped t
the same cache region. We assign different page colorsfaretit objects and/or threads, thus, cache space is paetiti
among objects. By limiting the physical memory pages of geahwithin a subset of colors, the OS can limit the cache
used by the object to the corresponding cache regions. Iexqeriments, the Intel Xeon processor used has 4MB, 16-way
set associative L2 caches, each shared by two cores. Thaigads set to 4KB. Therefore, We can break the L2 cache to 64
colors (cache size / page size / cache associativity).

Our implementation is based on the Linux kernel. We mainégdage color tabl€for threads sharing the same virtual
memory space to guide the mapping between virtual and philysages. Each entry in the table specifies a set of colors that
the virtual page can be mapped to. Each thread has a pointertask structure pointing to the page color table. We also
modify the buddy system in the memory management moduleeotiux kernel, which is in charge of mapping virtual
pages to physical pages, to follow the guidance specifietlarpage color table. We add a set of system calls to update
the page color table at user level. These system calls atehysthe partition decision maker and the memory allocator to
enforce cache partition decisions for global and heap thjec

Because all the threads in a thread family share the sanuaMirtemory space, they share the same page color table. In



our implementation, each table entry occupies one byte laer@fiore the page color table incurs no more than 1MB space
overhead for each process family in 32-bit systems. Thusmplementation has a small space overhead. Because all the

decisions are made at user level, there is no run-time oadrimethe kernel.
6.2 Partition Decision Making

The partition decision making algorithm consists of thresgansteps. (1) To simplify late parts of the algorithm, wstfir
merge cold objects’ stack distance histograms and intiebmterference histograms with those of the specialailgjeoup
objo. (2) Although in theory hog objects do not need any cacheespee still need to allocate enough cache capacity to them
because the L2 cache and physical memory are co-partitiopedde page color-based partition enforcement mechanism.
(3) Finding the optimal cache partition is NP-hard becahselecision problem of integer linear programming can beced
to this problem. Since it is not feasible to search the beditipa decision in a brute-force way, we employ a heuristic
maximize the benefit-cost ratio at every cache allocatiep sintil there is no further benefit of cache partitioning.eTh
complete partition decision making algorithm is summatizeAlgorithm 2.

The key operation in the partition decision making alganils estimation of shared cache misses on a set of objectawith
given cache size. This essentially relies on mergence ettiglative stack distance histograms and inter-objgetfierence
histograms of a set of objects. Once we have the combineHl disiance histogram, all the accesses with stack distances

larger than the given cache capacity are concluded as miBsesombination process is as follows.

e For an reference on objettits stack distance in the combination objectSé$ computed as:

distg = dist; + Z inter ference((i,7), dist;)
jes—{i}

e For an object se$, its combined inter-object interference with an objeciot in this group is computed as:

inter ference((k, S), disty) = Z inter ference((k, j), disty)
JES

7 Experimental Results

In this section we present the experimental results usia@liject-level cache partitioning framework.

Experimental Environment We conducted experiments on a Dell PowerEdge 1900 workst#tiat has two quad-core
2.66GHz Xeon X5355 Processors and 16GB physical memory eigtht 2GB dual-ranked Fully Buffered DIMMs (FB-

DIMM). Each X5355 processor has two pairs of cores and coreach pair share a 4MB, 16-way set associative L2 cache.



Algorithm 2 The partition decision making algorithm.

Require: Predicted object-relative stack distance histograms and inter-objedéenetere histograms
STEP 1. (Merge cold objects)
All cold objects are merged intabjo
STEP 2. (Find the minimum cache space for hog objects)
Find the clique in hog objects with the largest memory requirementisogs
hogCacheColors «— [mempnogs/(total Memory/#pageColors)]
cacheColors «— totalCacheColors — hogCacheColors
STEP 3. (Heuristic-based cache partitioning for hot objects)
partitionedObjs «— ¢, objsLeft — hotObjs
while objsLeft # ¢ do
bestBenefitCost < 0
for each objecbbj in objsLeft do
for colors = 0to cacheColors do
Try to find non-conflicting colors in assigned colorspir-titionedObjs
cost < (colors — nonCon flictingColors)
benefit «— misses(cacheColors, objsLeft) — (misses(cacheColors — cost,objsLe ft) + misses(colors, obj))
if bene fit/cost > best BenefitCost then
bestBene fitCost «— bene fit/cost
(0bjvest, colorspest) < (obj, colors)
end if
end for
end for
if (0bjpest, colorspest) is NOt emptythen
partitionedObjs «— partitionedObj U {0objvest }
objsLeft « objsLeft — {objvest }
cacheColors « cacheColors — colorspest
else
Break from the while loop
end if
end while




Each core has a private 32KB instruction cache and a prizkK@&3lata cache. Both adjacent line prefetch and stride fotefe
are enabled on this machine. Because we target shared atbermance, in our experiments we used at most a pair of cores
via functionschedsetaffinitythat sets process/core affinity. Our cache partitioningharism was implemented in Linux
kernel 2.6.20.3. While there are 64 page colors in the sha2arathe, we only used 5 least significant color bits in a playsic
address. Therefore we have 32 colors and each color condspo 128KB cache space. Without incurring page swapping,

the maximum physical memory mapped to a page color is 512M#isrmachine.

Benchmark Selection We selected a set of memory-intensive programs from NAS Heacks [1] and Spec CPU2000
benchmark set [23]. These benchmarks and their chardaisr@se summarized in Table 7. In some cases, to fully test ou
framework, we had to make source code changes in the seleetetimarks due to two limiting factors. First, some Fortran
programs use common blocks which makes global objects imermm block indistinguishable in the symbol table. Due to
this we modifiedswim’s source code such that every global object was only in onenoon block. We also chose to use a
C implementation of NAS benchmarks instead of the origir@tian programs to avoid this complexity. Second, some C
programs use a programming idiom that creates a multi-dsinaal heap array from many dynamically allocated subyarra
We can modify such code by allocating memory to the array e€oBuch a change is needed dot from Spec CPU2000.
Note that there is no difference in performance or memoryireqent before and after such simple changes.

Table 7 also shows the training inputs and actual inputs wd & each benchmark. For each benchmark, we first had
two training runs to obtain training profiles through binamgtrumentation. We then analyzed the profiles by catemayiz
objects and different program patterns. Finally for eacitu@ input, thread number) combination in Table 7 a cachnitioa
decision was made and then enforced during an actual rurataige if there was an observable performance improvement
(i.e. over 2% running time reduction) over unconstrainezheasharing.

Table 7 shows that using object-level cache partitioningualgeved observable performance improvements on NAS-CG,
NAS-LU and Spec-art with at least one (actual input, threachiper) combination. For these three benchmarks, speedups
observed are up to 1.29 (Spec-art withjects = 40) and cache miss reduction is up to 34%(NAS-LU with 4M cache
problem_size = 30). For NAS-BT and Spec-swim, there was no observable pegoomimprovement with any given input
sizes and thread numbers and there is also no observabt#rparice degradation (i.e. over 2% running time increase).
Further investigation showed that for NAS-BT the partitt@tision maker did not choose to segregate any object witlalac
inputs under a 4MB cache. For Spec-swim, there were 6 hogtshipentified and segregated. However, the resulted cache
miss reduction is negligible because accesses on thesebjegonly account for a very small part of the total accesse

To further understand the effect of object-level cacheitp@ming, we focused on the three benchmarks with obseevabl



performance improvements. For each benchmark, extengdagiments were conducted by varying thread number (1 or 2),

input size and the effective cache capacity (2M or 4M thropgge coloring).

i

Benchmark Language Code modified? Num. of objects profiled Input parameter
NAS-CG C No 15 na
NAS-LU C No 9 problem_size
NAS-BT C No 13 problem_size
Spec-art C Yes 7 objects

Spec-swim Fortran Yes 15 N =N1=N2

Benchmark Training input Actual input Num. of Threads Improvement observed
NAS-CG | 7000 (Class W), 14000 (Class A) 75000 (Class B), 150000 (Class C) 1,2 Yes
NAS-LU 12 (Class S), 33 (Class W) 64 (Class A), 102 (Class B) 1,2 Yes
NAS-BT 12 (Class S), 24 (Class W) 64 (Class A), 102 (Class B) 1,2 No
Spec-art 10, 20 30,40 1 Yes

Spec-swim 257,513 1061, 1335 1 No.

1.160

Table 2. Characteristics of selected benchmarks and experi
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Figure 7. NAS-CG with object-level cache partitioning. (a)
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in comparison to uncontrolled LRU caching.

(b)

Speedups and (b) Cache miss reductions

Fig. 7 shows the speedups and cache miss reduction numbBBIHCG in comparison to an uncontrolled shared cache.

For NAS-CG, with different thread numbers, input sizes aadhe sizes, the partition decision is unchanged. It always

segregates hog objectslidx anda and lets the rest of the objects share the remaining caclaeitapr here is performance

improvement and miss rate reduction across cache configsatnd input sizes. When cache size is small (2MB), theteffec

of cache partitioning is more obvious than with a larger ea@MB). This is as expected sinpls capacity misses increase

when the cache capacity is reduced whikndcolidz's number of misses being close to a constant. When the threader
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Figure 8. NAS-LU with object-level cache partitioning. (a) Speedups and (b) Cache miss reductions

in comparison to uncontrolled LRU caching.
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Figure 9. Spec-art with object-level cache partitioning. ( a) Speedups and (b) Cache miss reductions

in comparison to uncontrolled LRU caching.

is increased from one to two, with NAS-CG the benefit of segtiag hog objects is reduced. For example, when two threads
are used, with 2MB cache size the average performance iraprent with object-level cache partitioning is reduced from
12.7% to 9.6%. Experimental data show that NAS-CG'’s totaili®ses increase from one thread to two threads wiéled
colidz’s cache miss rates do not change. The reduction of perfarenamprovement is likely due to increasing intra-object
cache contention op between two threads.

Figs. 8 and 9 show the speedups and cache miss reduction raiotbBIAS-LU and Spec-art, which are different from
those on NAS-CG. Object-level cache partitioning offersyvaigh performance improvements to NAS-LU and Spec-art
with certain input sizes. For instance, when the input sszé0, NAS-LU achieves an improvement of 31.7% relative to
uncontrolled cache sharing. However, unlike NAS-CG, wittaiage of different input sizes object-level cache partitig
are not always useful. For example, when the cache size is, 2B the range of our input sizes, cache partitioning is not
found profitable for NAS-LU and thus the default shared cashsed by the partition decision maker. The above diffezenc
are because the majority of NAS-LU and Spec-art's dataeafms are to hot objects, not to any hog object as with NAS-CG.

With a given configuration, the thrashing effect from acoegmultiple hot objects is significant with a certain rang@put



sizes but does not persist across inputs. As the result, iB-NMA partition decisions vary with given input sizes andhmac
sizes but always only involve hot objects from arrayssd, a, b, c andd. Similarly, partition decisions with Spec-art also
only use three hot heap objects in our experiments.

Results in Figs. 8 and 9 also show that in some cases we mayciotiject-level cache partitioning that actually incesas
the cache miss rate by up to 6%. However, performance ddipaddserved is never over 2%. We believe this comes from
inaccuracies in modeling shared cache misses. In our frankewe implicitly assume an in-order processor model and
do not model the hardware prefetching effect. While thisésdaserves further investigation, as a practical solutian,
can modify the cache partitioning algorithm such that ust@ined cache sharing is chosen when the predicted L2 miss

reduction is below a threshold (e.g. 10%).

8 Related Work

Many approaches have been proposed to overcome the cadieattam problem by partitioning the shared cache at the
thread or process level. Most proposed approaches added paditioning support at the micro-architecture levél,[25,
18]. Several studies highlighted the issues of QoS andds#ifil2, 17, 13, 11, 6]. There have been several studies on OS-
based cache partitioning policies and their interactiotin wie micro-architecture support [19, 8]. Our work différgm
these studies in that we focus on object-level cache pariitg and do not require any new architectural support. &her
has been prior work using OS scheduling to reduce the effdater-thread contention. Fedorova et al. [9, 10] improved
CMPs’ throughput by judiciously selecting co-runners aintetschedules in the operating system. In comparison,isn th
paper we focus on improving the performance of sequentépanallel collaborative workloads that may not have caaigid
co-runners to choose. Because our proposed object-leebkqgaartitioning framework works orthogonally to the above
thread-level techniques including inter-thread cachétjaring and job pairing, our framework is complementamythiese
techniques when there are a large number of cores sharimgthe.

Understanding data locality is critical to performancdmjation and is mostly through offline analysis of memoaces.
Wu et al. [28] proposed a data trace representation in a Bigtative form and demonstrated its application in conmuut
memory dependence frequencies and stride patterns. Olrisvalated to this work though we use object-relative tsdoe
a different way and do not attempt to store or compress datadr Zhong et al. [29] studied whole-program data locality
pattern recognition. We adapt their technique in our fraor&wo detect locality patterns at the object level.

There have been several studies that improve data lodatiygh using compiler and OS interaction [2, 22, 21, 5]. €hes
studies focus more on avoidance of conflict misses whichtissggnificant problem to L2/L3 caches nowadays due to their

high degrees of associativity. In comparison, we work omecgdn of capacity misses of the shared cache. The problem is



irrelevant to cache’s degree of associativity.

In the field of embedded systems, cache partitioning has beeelied to reduce cache misses and power consumption.
In particular, a recent study by Ravindran et al. [20] shaemynsimilarities with our work. Our work differs from their
study and other related work in embedded systems in sevepakts. First, our work is at the object level requiring no
hardware support while their work is at the instruction ldased on way partitioning. Second, we aim at reducing Lheac
capacity misses instead of L1 conflict misses, thereforeptexrtechniques are used to detect locality patterns. Thbind
framework does not employ static analysis, therefore nocgdevel information is needed. Fourth, our goal is perfamoe

improvement instead of power reduction.

9 Conclusion and Future Work

We have designed and implemented a framework that pagittcache at the object level, in order to improve program
performance for both single-thread and parallel dataisparograms. The framework consists of several major steps
cluding profile generation, profile analysis, cache pariitig decision making and enforcement. Experimental tesuith a
benchmark set from SPEC CPU2000 and OpenMP NAS benchmari@dérate the effectiveness of our system framework.

Ongoing and future work is planned along the following twiedtions. First, we will include small objects into congide
ation since small objects may reveal a collective localéidovior in many programs. A custom memory allocator sujgprt
co-allocation is necessary for this purpose. Second, wetplaarefully study the potential of combining inter-olijeache

partitioning and inter-thread techniques such as job mairi
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