
Profile-Guided Object-Level Cache Partitioning

Qingda Lu1, Jiang Lin2, Xiaoning Ding1, Zhao Zhang2, Xiaodong Zhang1 and P. Sadayappan1

1Dept. of Computer Science and Engineering

The Ohio State University

2Dept. of Electrical and Computer Engineering

Iowa State University

Technical Report

OSU-CISRC-6/08-TR30

Profile-Guided Object-Level Cache Partitioning

Qingda Lu1, Jiang Lin2, Xiaoning Ding1, Zhao Zhang2, Xiaodong Zhang1 and P. Sadayappan1

1 Dept. of Computer Science and Engineering

The Ohio State University

Columbus, OH 43210

{luq,dingxn,zhang,saday}@cse.ohio-state.edu

2Dept. of Electrical and Computer Engineering

Iowa State University

Ames, IA 50011

{linj,zzhang}@iastate.edu

Abstract

Efficient on-chip cache utilization is critical to achieve high performance for many memory-intensive applications. The

shared cache structure of multi-core processors has made this a more challenging issue due to the increasingly intensive inter-

thread contention for shared cache resources. Exsiting hardware and software solutions address this problem by adptively

allocating space in the shared cache to multiple threads aiming at minimizing the cache contetion. However, in many appli-

cations that cache contention can also be caused by data accesses to several commonly defined data objects in private/shared

caches due to the lack of object-level locality knowledge. This observation holds for collaborative threads and/or within a

single thread, with a concequence that data of an object withhigh utility are evicted by accesses to a low-utility object. To ad-

dress this problem, we present a software framework for object-level cache partitioning. We first collect object-relative stack

histograms and inter-object interference histograms via memory trace sampling. With several low-cost training runs,we are

able to distinguish data objects of three significant types with different locality patterns: (1) objects with significant temporal

resue, (2) object with little temporal reuse but with a largecache footprint, and (3) objects without clear locality patterns.

Our cache partitioning policies segregate data objects by locality types and properly allocate cache spaces to data objects,

aiming at maximizing cache usage. We have implemented object-level cache partitioning support in Linux kernel, and tested

our framework on a commodity multi-core processor. Experimental results show the effectiveness of our system framework

with single- and multi-threaded programs from the SPEC CPU2000 benchmark suite and NAS benchmarks. In comparison

to uncontrolled LRU caching, our framework provides up to 1.31 speedups and up to 62.5% L2 cache miss reductions in our

experiments.

1 Introduction

The performance gap between the processor and DRAM has been increasing exponentially for over two decades. This

“memory wall” problem is likely to persist due to the limitedoff-chip bandwidth [3]. By providing fast data and instruction

buffers to on-chip computing resources, caching has been used to bridge the performance gap between the processor and

DRAM. Reducing cache misses and therefore avoiding off-chip accesses is a key to achieve high performance on modern

architectures. The technological trend of having chip multiprocessors (i.e. multi-core processors) due to power and heat

constraints only makes efficient utilization of limited on-chip cache resources a more challenging problem. Because most

proposals choose to use a shared last level cache (LLC), suchas L2 or L3 cache to simplify coherence protocols and reduce

capacity misses, threads running on different cores may have significant interference with each other in the shared cache.

Problems such as performance degradation and unfairness often arise because of such cache contention.

Previous studies [25, 13, 18, 6, 9] have shown the limitations of unconstrained cache sharing and proposed approaches to

solving this problem. Despite their differences in metricsand designs, the solutions follow two directions: (1) Partitioning

the cache space between threads with additional hardware support. For example, a set-associative cache can be partitioned

into ways and different ways can be allocated to different threads. In addition to the basic cache partitioning mechanism,

special hardware support is often needed to detect programs’ cache utility functions and decide cache partitions at runtime.

(2) Selecting threads with non-conflicting cache access patterns as co-runners to share the cache. While this approach does

not need any hardware support, its usage is limited by the requirement of a large job pool.

The above studies share one common limitation: they target independent workloads in a multiprogramming environment

where programs do not share data. However, data-sharing workloads and parallel programs, such as OpenMP programs

are becoming increasingly important with chip multiprocessors (CMPs). To address this limitation, we propose object-level

cache partitioning to reduce cache misses of sequential anddata-sharing parallel programs, an approach orthogonal tointer-

thread cache partitioning or optimizing co-running jobs byscheduling. Our approach is motivated by an observation in prior

work such as [18]:LRU caching is demand-driven instead of utility-driven. With inter-thread cache sharing, a program

with higher cache demands obtains more cache resources but is often unable to translate them to higher performance. This

observation also holds at finer granularity levels such as cache sharing between data objects and even instructions. To address

this problem and maximize the utility of cache resources, wepropose to segregate objects that have conflicting access patterns

in the shared cache, such as the L2 cache.

In this paper we focus on partitioning the L2 cache space among large global and heap objects for high-performance

applications. For a given program, our proposed framework first generates profiles for frequently accessed large objects

using training inputs. Based on the profiles we then detect the pattern of the profiles. When the program is scheduled to

run with an actual input, we predict its locality profile withthe detected access patterns and the actual cache configuration

parameters, and then make an object-level partition decision. We have implemented our cache partitioning framework in

Linux kernel running on a commodity CMP, and shown its effectiveness.

The contributions of the paper are as follows. First, to the best of our knowledge, this paper is the first work that uses

object-level cache partitioning to reduce cache misses forboth sequential and OpenMP-style data-sharing parallel programs.

In comparison, previous related studies [2, 5, 27] either focus on reducing conflict misses or depend on additional hardware

support and modified instruction sets. Second, our approachworks across program inputs and cache configurations. The pro-

posed framework is also independent of compiler implementations by working on binary executables. Third, our framework

has been implemented and evaluated in commodity systems instead of simulation environments, therefore it can be directly

used in practice to improve application performance.

The rest of the paper is organized as follows. We first discussa motivating example for our work in Sec. sec:motivation.

We then present an overview of the proposed object-level cache partitioning framework in Sec. 3. In Secs. 4, 5 and 6, we

describe how we generate program profiles, analyze generated profiles and make partition decisions based on the analysis

results with a given cache configuration respectively. We evaluate the effectiveness of our approach in Sec. 7 on a commodity

CMP using several programs from SPEC CPU2000 and NAS benchmarks. We discuss related work in Sec. 8 and present our

conclusions in Sec. 9.

2 A Motivating Example

Here we use the conjugate gradient (CG) program in NAS benchmarks as a motivating example to illustrate the problem.

As shown in Fig. 1, CG spends most of its running time on a sparse matrix-vector multiplicationw = a · p, wherea is a

sparse matrix,rowstr andcolidx are row and column index arrays andw andp are dense vectors. In CG, the majority of

accesses are on arraysa, p andcolidx. Although vectorp has high temporal reuse in the matrix-vector multiplication code,

depending on its size, its elements may get constantly evicted from cache before their reuses due to the streaming accesses on

arraysa andcolidx. As the result of this thrashing effect from accessing arraysa andcolidx, CG reveals a streaming cache

access pattern in cache. Without special code/data treatment based on domain knowledge, general compiler optimizations,

such as tiling, cannot be applied in this case because of the irregular nature of this program — there is indirection in most

array accesses.

for (i = 0; i < niters; i++) {

... ... // other code, with accesses to arrays not shown

for (j = 1; j <= lastrow-firstrow+1; j++) {

sum = 0.0;

for (k = rowstr[j]; k < rowstr[j+1]; k++) {

sum = sum + a[k]*p[colidx[k]];

}

w[j] = sum;

}

... ... // other code, with accesses to arrays not shown

}

Figure 1. An outline of NAS-CG code.

If we allow the cache space to be partitioned between objects, there are different ways to reduce and even completely

eliminate capacity misses on arrayp without increasing the misses on other objects. One approach is that we can protectp in

an exclusive cache space and leave the remaining cache capacity to the rest of the objects. Alternatively, we can divide the

cache such that the minimum cache quota is given to arrayscolidx anda. This optimization is not limited to single-thread

performance. When the code is augmented with OpenMP directives, with a shared cache the above partition decisions can

also reduce capacity misses. If we take the approach to keeping the minimum cache quota for arrayscolidx anda and

co-schedule CG with other programs, since it does not reveala streaming access pattern that significantly interferes with

its co-runners, high throughput can be achieved with judicious inter-thread cache partitioning. In this paper, we focus on

object-level cache partitioning and leave the combinationof inter-object and inter-thread cache partitioning to ourfuture

work.

To quantify the improvement from object-level cache partitioning, let us assume that CG runs on processors with 64-byte

L2 cache lines and 2MB L2 cache capacity. For simplicity of our discussion, we also assume non-zero elements ina and

colidx are distributed in such a way that exactly one of every two consecutive elements inp is used in the innermost loop in

Fig. 1. Assumingp has 160000 elements (1250KB) and there are4 × 106 total accesses on arrayp in CG, there are4 × 106

accesses on arraysa andcolidx respectively. As floating-point elements ina andp are 8 bytes and elements incolidx are

4 bytes, while accesses onp touch 20000 cache lines in the innermost loop of Fig. 1, accesses onp andcolidx only read

10000 and 5000 cache lines respectively. With uncontrolledcache sharing, because 35000 distinct cache lines are referenced

between a data reuse onp while the L2 cache only has 32768 cache lines, CG’s cache missrate is 100%. If we can apply

either one of the discussed object-level cache partitioning schemes, we can eliminate all the misses onp, which reduces the

miss rate to 42.9%. We keep using the assumed cache parameters and program inputs here in the next several sections to

Training

Input 1

Training

Input 2

Training

Input N

�

Profiler

Training

Profile 1

Training

Profile 2

Training

Profile N

�

Pattern

Recognizer

Locality

Patterns

Actual

Input
Profile

Predictor

Predicted

Profile
Partition

Decision Maker

Memory

Allocator

Partition

Decision

OS with object page coloring support

Profile

Generation

Profile

Analysis

Partition Decision

Making and Enforcement

Figure 2. Overall structure of the object-level cache parti tioning framework.

illustrate our cache partitioning framework.

3 Overview of the Approach

The CG example in Fig. 1 demonstrates the benefits of partitioning cache space at the object level. In order to do so, we

need to solve the following important problems: (1) How can we identify important objects as partitioning candidates and

capture the interference among the objects that share and compete for cache space? (2) In which way can we capture data

reuse patterns at the object level, across cache configurations and program inputs? (3) How can we make quick inter-object

partition decisions with a new program input? (4) What is the minimum hardware support we need to enforce cache partition

decisions? Without such a mechanism available, can we stillevaluate our approach in an efficient way and even still make

our approach useful in practice?

To solve the above problems, we propose a framework to detectprograms’ data reuse patterns at the object level through

memory trace profiling and pattern recognition and enforce partition decisions at run time with operating system support.

This proposed framework consists of the following steps andis summarized in Fig. 2.

1. Profile Generation.For a given program and its training inputs, we capture memory traces in an object-relative form

through binary instrumentation. Instead of keeping raw traces, we obtain object-relative stack distance histograms and

inter-object interference histograms for large or frequently accessed objects. These histograms are program profiles

that represent the program’s data locality patterns.

2. Profile Analysis.Based on program profiles from training runs, we detect the program’s object-relative data locality

patterns, using a modified version of the data locality pattern recognition algorithm by Zhong et al. [29].

3. Cache Partition Decision Making and Enforcement.When the program is scheduled to run with an actual input,

we predict its object-relative stack histograms. with the detected access patterns. In combination with inter-object

interference information, we obtain the the locality profile for the input. Then using this locality profile and the cache

configuration information of the underlying system, we makean object-level partition decision. Our partition decisions

are finally enforced on commodity CMPs based on an operating system technique calledpage coloring[14].

In this paper, we focus on global and heap objects larger thana thresholdTobj . If an object’s size is less thanTobj , it is

merged into a special object groupobj0. There are two reasons for this decision: First, we focus on reduction of L2 cache

misses for scientific programs. In these programs, data localities on small objects are often exploited in L1 instead of L2

cache. Second, it is simply not feasible to include all objects due to the complexity and large memory requirement.

4 Profile Generation

In order to make cache partition decisions, we need to understand locality patterns of a program at the object level. We

make several important decisions with respect to referencelocality modeling.

• The classical reference locality model categories data localities into temporal and spatial localities. In this work,we

only focus on temporal locality at the cache line granularity because spatial locality is taken care of by viewing a

complete cache as the basic unit. While this approach may appear to affect the proposed framework’s generality, it is

not a problem because our framework aims at detecting the data locality patterns of a given program binary that works

on processors in the same processor family. While cache capacities and degrees of associativity often vary, processors

in a modern processor family are unlikely to use different line sizes at the same cache level. For example, Intel X86

processors with NetBurst and Core microarchitectures all use 64-byte L2 cache lines.

• An important design choice is to model reference locality statically or dynamically. While there has been prior work

such as [7, 4] that models programs’ cache behaviors statically and symbolically, these approaches can hardly be used

in practice. They are limited to regular loop code and do not work across compilers that apply different compiler

optimizations to the same program. We choose to follow a dynamic approach through binary instrumentation.

4.1 Modeling Object-Relative Temporal Locality

We model temporal locality usingstack distance(i.e. reuse distance) [29, 4], defined as the number of distinct data refer-

ences between two references to the same data. Since we decide to model data locality at the cache line granularity, stackdis-

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

4K 8K 12K 16K 20K 24K 28K 32K >32K

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

4K 8K 12K 16K 20K 24K 28K 32K >32K

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

4K 8K 12K 16K 20K 24K 28K 32K >32K

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

4K 8K 12K 16K 20K 24K 28K 32K >32K

(a)
(b)

(c)
(d)

Figure 3. Object-relative stack distance histograms for fr equently accessed objects in CG and the

whole-program stack distance histogram for CG. (a) Object- relative stack distance histogram for p.

(b) Object-relative stack distance histogram for colidx. (c) Object-relative stack distance histogram

for a. (d) Whole-program stack distance histogram for CG.

tance refers to the number of distinct cache lines accessed between two accesses to the same cache line. As it is not feasible to

record the stack distance between each data reuse, a histogram is used to summarize the temporal locality. In a stack distance

histogram, the distance space is divided intoN consecutive data ranges(0, R1], (R1, R2],...,(RN−2, Rmax],(Rmax,+∞)

and the value of each range represents the percentage or the absolute number of temporal reuses whose stack distances falling

in to this range.Rmax is the largest cache capacity we consider in terms of cache lines. Our approach differs from prior work

on reference locality modeling in several aspects: (1) Stack distances in prior work are at the whole program level but inthis

paper we model temporal locality by keeping a stack distancehistogramdA for accesses within each objectA. In such a

way we are able to identify individual objects’ locality patterns and treat objects differently in later stages of the framework.

(2) For each object-relative stack distance histogram, instead of using a relative metric, we keep absolute reuse counts. This

is because with different inputs an object’s accesses may have a varying weight the whole-program accesses. (3) We ignore

reuses with zero stack distances because such reuses are mostly handled by L1 cache while we optimize L2 cache accesses

in this paper.

Assuming we run CG with the cache configurations and the program input in Sec. 2, we have object-relative stack distance

histograms for objectsp , colidx anda as shown in Fig. 3(a), Fig. 3(b) and Fig. 3(c) respectively. In comparison, a whole-

program stack distance histogram for CG is shown in Fig. 3(d), where all accesses have stack distances larger than the cache

capacity.

4.2 Modeling Inter-Object Interference

With object-relative temporal reuse information alone we cannot decide if a partition decision is better than another.We

need to predict the overall cache miss rate by composing the data locality profiles of individual objects. In order to do so,

we model reference interference between different objects. Inter-object interferenceIA,B is defined as the average number

of distinct data references to objectB per distinct reference to objectA. In our framework, similar to temporal locality

modeling, we extend the above definition and model inter-object interference at the cache line level. Note that inter-object

interferenceI is not symmetric, that is,IA,B andIB,A may not be identical. For a simple regular program,IA,B can be a

constant. However, for complex programs with multiple phases,IA,B may vary with phase changes, often with changes on

stack distances of objectsA andB. Therefore we use a histogram to summarize inter-object interferenceIA,B whose ranges

correspond to those in stack distance histograms fordA anddB and heights represent inter-object interference values.

As an example, Fig. 4 shows the interference histograms forIa,p andIp,a in CG. Fig. 4(a) shows that interference from

objectp to objecta’s locality is almost 0 since vectorp is accessed repeatedly between any temporal reuse ofa. In contrast,

Fig. 4(b) shows thatIa,p = 2 because there are two distinct cache lines ofp accessed between a temporal reuse on a cache

line of a. We can see objecta significantly interferes with objectp’s temporal reuses.

0

0.5

1

1.5

2

4K 8K 12K 16K 20K 24K 28K 32K >32K

0

0.5

1

1.5

2

2.5

4K 8K 12K 16K 20K 24K 28K 32K >32K

(a) (b)

Figure 4. Examples of inter-object interference histogram s for CG. (a)Inter-object interference Ip,a.

(b)Inter-object interference Ia,p.

4.3 Profile Generator

Fig. 5 illustrates how a program profile, which consists of object-relative stack distance histograms and inter-objectin-

terference histograms, is generated with a training input.There are three important components used in profile generation:

object table, custom memory allocatorandmemory profiler.

The object table maintains the basic information of every profiled object. As the hub of the profiling process, it is updated

and queried by both the custom memory allocator and the memory profiler. Object information stored in the object table

Training Input

Memory Profiler

 Executable

load/store

address

Custom Memory Allocator

(profiling version)
Symbol Table malloc/free

global object info

heap object info

ID name startAddr size type thread
1 A 00A00EFD 00B00EFD global 0

3 N / A 000B0EFD 000F0EFD heap 0

� �

Object-Relative Stack Distance Histograms Inter-object Interference Histograms

obj i
obj j

obj k

i and j
j and k

i and k

Object Table

Binary Instrumentation

Figure 5. Program profile generation with a training input.

includes object identifier, name, starting address, size, type, and thread number. In this paper we focus on global and heap

objects therefore an object’s type is eitherheapor global. An object’s identifier is used to facilitate fast query and retrieval.

A global object’s identifier is decided by its order in the symbol table of the binary executable. A heap object’s identifier

is calculated by a hash function that takes its allocation site, allocation order and the total number of global objects as

parameters. Identifier 0 is reserved for the special object groupobj0. Similar to identifiers, object names are retrieved from

the symbol table for global objects and decided by a functionmangling allocation sites and allocation order for heap objects.

The thread number field is used to record the allocator of a heap object in order to identify thread-private data. However,

in this paper we focus on shared objects and in our experiments all heap objects are allocated by thread 0. Therefore we

ignore this aspect in the following discussion. Because heap objects may have overlapping address ranges due to their non-

overlapping life cycles, a raw address can be found within multiple objects. To avoid this problem, when a heap object’s

memory space is released, we move its information to an area dedicated to freed objects in the object table.

The custom memory allocator is used to capture each heap object’s creation and deletion. We replace standard memory

management functions such as malloc(), calloc(), free(), and realloc() with our implementations. In this way during profiling

runs these memory management requests are redirected and recorded.

The memory profiler controls the profiling process and startsa profiling run by updating the object table with global

object information read from the program’s symbol table. Itrelies on binary instrumentation to obtain the raw address

stream of a given program. Our current profiler implementation is written as a tool based on PIN [16] that inserts instruction

and object probes before every instruction accessing the memory. The core components in the profiler are a set ofstack

distance profilersand aninter-object interference counter table. A stack distance profiler is used to track the stack distances

of one object and implemented with a hash table and a Splay tree following Sugumar and Abraham [24]. The inter-object

interference counter table is two-dimensional and used to sample inter-object interference between temporal reuses.The

memory profiling algorithm used is summarized in Algorithm 1. By sampling 10% of memory references and employing

several optimizations, our current implementation of the memory profiler has a reasonable slowdown of 50 to 80 times while

also maintaining a high accuracy.

Algorithm 1 The memory profiling algorithm.
tracedAddr[0..objNum− 1]← 0

for each memory reference with raw addressaddr do
Search the object table for such a live objectobj thatobj.startAddr ≤ addr andobj.startAddr + obj.size ≥ addr

addr ← addr/CacheLineSize

if obj existsthen
(objID, offset)← (obj.ID, addr − obj.startAddr)

else
(objID, offset)← (0, addr)

end if
stackDist← stackDistProfiler[objID].trace(offset)

objStackDistHistogram[objID].sample(stackDist, 1)

if tracedAddr[objID] = 0 then
tracedAddr[objID]← addr

continue to process next memory access
end if
if tracedAddr[objID] = addr andstackDist 6= 0 then

tracedAddr[objID]← 0

for eachi wherei 6= objID do
if interferenceCounter[objID][i] 6= 0 then

interferenceCountHistogram[obj][i].sample(stackDist, interferenceCounter[objID][i]/stackDist)

sampleCounterHistgram[obj][i].sample(stackDist, 1)

interferenceCounter[objID][i]← 0

end if
end for

end if
for eachj wherej 6= objID do

if stackDist > interferenceCounter[j][objID] then
interferenceCounter[j][objID]← interferenceCounter[j][objID] + 1

end if
end for
for each obji do

for each obj wherei 6= j do
for each rangek do

inteferenceHistogram[i][j][k]← interferenceCountHistogram[i][j][k]
sampleCounterHistgram[i][j][k]

end for
end for

end for
end for

5 Profile Analysis

After at least two program profiles with different training inputs are obtained from the profiling process, we analyze

these profiles with the three goals: (1) categorizing objects based on their locality types, (2) searching object cliques and

(3) detecting the patterns of object-relative locality, object sizes and data access volumes.

Object Categorization. With program profiles, we categorize objects into four typesbased on their data locality patterns:

1. Cold objectsrefer to the objects that have few memory accesses while still traced in the profiling process because of

their large sizes. We set a thresholdTcold to detect cold objects. For an objectobj, if #accesses obj
#totalAccesses

< Tcold, it is

categorized as an cold object.#accesses obj is the number of accesses to the objectobj, and#totalAccesses is the

total number of accesses to all the objects. As an exception,we never try to identityobj0 as a cold object.

2. Hog objectsrefer to the objects that have high memory demands but reveallittle or no temporal locality. With a

thresholdThog, If an objectobj is not a cold object and#accessesobj(stackDist≤Rmax)
#accessesobj

< Thog, then it is a hog object.

#accessesobj(stackDist ≤ Rmax) refers to the number of references to objectobj with reuse distances less than

Rmax.

3. Hot objectsare the objects with high temporal locality. For an objectobj, if we have#accessesobj(stackDist≤Rmax)
#accessesobj

>

T hot and ifobj is not a cold object, then it is a hot object.

4. Other objectsare the objects that do not belong in any above category.

For example, after object categorization, profiled objectsin CG are categorized into groups, as shown in Table 5. Because

the majority of the objects are categorized as cold objects,it significantly simplifies further analysis and partition decision

making procedure.

Cold Objects Hog Objects Hot Objects Other Objects

iv,v,acol,arow,rowstr,x,w,r,q,z,aelt a, colidx p obj0

Table 1. Categorizing objects in CG’s profiles.

Object Clique Search. We view a set of objects and their interference relationships as a graph with vertices representing

objects and unweighted edges representing interferences between objects. Based on the graph representation, we enumerate

the cliques inside hog objects. As we will show in the next section, the cumulative object size of the maximum clique decides

the memory requirement of all hog objects and thus decides their cache allocation. While the clique enumeration problem

has exponential space and time complexities, it does not bring much overhead in our particular problem because the number

of hog object cliques is always fairly small in real programs. For example, CG has only one hog object clique that includesp

andcolidx.

Pattern Recognition We detect object-relative data locality patterns following the approach by Zhong et al. [29]. Each

object-relative stack distance histogram is divided inton small groups. With two profilesp1 andp2 having different input

sizes, we find a functionfk to fit each group formed for the two profiles,g1,k andg2,k for k from 1 ton. fk matches stack

distancesd1,k, d2,k such thatfk(inputSize1) = d1,k andfk(inputSize2) = d2,k. What differs ours from the approach by

Zhong et al. is thatfk in our approach is a polynomial function instead of functions such as square root. This is because we

use one program argument as the input parameter instead of object sizes. As we keep absolute numbers instead of percentages

in histograms, we detect the data access volume and data sizepatterns of each object as well. The approach to detecting these

patterns is similar to temporal locality pattern recognition presented above. As an example, after pattern recognition, we find

that in CGp’s object-relative stack distances grow linearly with program parameterna. In contrast,colidx andp’s stack

distances are simply predicted as larger than the cache sizeacross input sizes.

6 Cache Partition Decision Making and Enforcement

Fig. 6 illustrates how our framework makes a partition decision with an actual input and how the partition decision is

enforced on a commodity CMP through software. When the program with training profiles is scheduled to run with a large

input, we first predict the object-relative stack distances, object sizes and data access volumes with patterns recognized during

profile analysis. The partition decision maker then selectsobjects to be isolated from the rest of the data space and decide

their cache quotas. Finally this decision is enforced by OS via virtual-physical address mapping. This phase of the framework

shares several components with the profile generation process such as the object table and the custom memory allocator but

with a few changes. For example, in the object table fieldcolors is added to denote the cache space allocated to an object as

the total cache capacity is divided into a set ofcolors(regions). Unlike the custom memory allocator of the profiling process,

the memory allocator used in this stage reads the object table to check and enforce cache partition decisions but never updates

the table. The rest of this section discusses in detail the partitioning mechanism and the partition decision making algorithm.

6.1 Partition Enforcement

The most straightforward way to enforce cache partition decisions is through hardware support. Cache partitioning can

be at different granularity levels such as cache lines, cache ways or pages. Because hardware-based partitioning support is

not readily available, here we provide a software mechanismthat essentially emulates page-level hardware cache partitioning

Program Input

 Executable Custom Memory Allocator

(execution version)
Symbol Table

malloc/free

global object info

ID name startAddr size type colors
1 A 00A00EFD 00B00EFD global {0,1,2}

3 N / A N/A 000F0EFD heap {3,4}

� �

Partition Decision Table

Predicted Data

Access Patterns

Stack Distance Predictor

Predicted Object-Relative Stack Distance Histograms

obj j
obj k

obj i
Profiled Inter-object Interference Histograms

j and k
i and k

i and j

Cache Partition

Decision Maker

Modified OS Kernel

 with Page Coloring

Page Color Table

decisions for

global objects

decisions for

heap objects

Figure 6. Cache partitioning decision making and enforceme nt with an actual input.

based on a well accepted OS technique calledpage coloring[26]. It works as follows. A physical address contains several

common bits between the cache index and the physical page number. These bits are referred to aspage color. A physically

addressed cache is therefore divided into non-overlappingregions by page color, and pages in the same color are mapped to

the same cache region. We assign different page colors to different objects and/or threads, thus, cache space is partitioned

among objects. By limiting the physical memory pages of an object within a subset of colors, the OS can limit the cache

used by the object to the corresponding cache regions. In ourexperiments, the Intel Xeon processor used has 4MB, 16-way

set associative L2 caches, each shared by two cores. The pagesize is set to 4KB. Therefore, We can break the L2 cache to 64

colors (cache size / page size / cache associativity).

Our implementation is based on the Linux kernel. We maintaina page color tablefor threads sharing the same virtual

memory space to guide the mapping between virtual and physical pages. Each entry in the table specifies a set of colors that

the virtual page can be mapped to. Each thread has a pointer inits task structure pointing to the page color table. We also

modify the buddy system in the memory management module of the Linux kernel, which is in charge of mapping virtual

pages to physical pages, to follow the guidance specified in the page color table. We add a set of system calls to update

the page color table at user level. These system calls are used by the partition decision maker and the memory allocator to

enforce cache partition decisions for global and heap objects.

Because all the threads in a thread family share the same virtual memory space, they share the same page color table. In

our implementation, each table entry occupies one byte and therefore the page color table incurs no more than 1MB space

overhead for each process family in 32-bit systems. Thus ourimplementation has a small space overhead. Because all the

decisions are made at user level, there is no run-time overhead in the kernel.

6.2 Partition Decision Making

The partition decision making algorithm consists of three major steps. (1) To simplify late parts of the algorithm, we first

merge cold objects’ stack distance histograms and inter-object interference histograms with those of the special object group

obj0. (2) Although in theory hog objects do not need any cache space, we still need to allocate enough cache capacity to them

because the L2 cache and physical memory are co-partitionedby the page color-based partition enforcement mechanism.

(3) Finding the optimal cache partition is NP-hard because the decision problem of integer linear programming can be reduced

to this problem. Since it is not feasible to search the best partition decision in a brute-force way, we employ a heuristicto

maximize the benefit-cost ratio at every cache allocation step until there is no further benefit of cache partitioning. The

complete partition decision making algorithm is summarized in Algorithm 2.

The key operation in the partition decision making algorithm is estimation of shared cache misses on a set of objects witha

given cache size. This essentially relies on mergence of object-relative stack distance histograms and inter-object interference

histograms of a set of objects. Once we have the combined stack distance histogram, all the accesses with stack distances

larger than the given cache capacity are concluded as misses. The combination process is as follows.

• For an reference on objecti, its stack distance in the combination object setS is computed as:

distS = disti +
∑

j∈S−{i}

interference((i, j), disti)

• For an object setS, its combined inter-object interference with an objectk not in this group is computed as:

interference((k, S), distk) =
∑

j∈S

interference((k, j), distk)

7 Experimental Results

In this section we present the experimental results using the object-level cache partitioning framework.

Experimental Environment We conducted experiments on a Dell PowerEdge 1900 workstation that has two quad-core

2.66GHz Xeon X5355 Processors and 16GB physical memory witheight 2GB dual-ranked Fully Buffered DIMMs (FB-

DIMM). Each X5355 processor has two pairs of cores and cores in each pair share a 4MB, 16-way set associative L2 cache.

Algorithm 2 The partition decision making algorithm.
Require: Predicted object-relative stack distance histograms and inter-object interference histograms

STEP 1. (Merge cold objects)
All cold objects are merged intoobj0
STEP 2. (Find the minimum cache space for hog objects)
Find the clique in hog objects with the largest memory requirementmemhogs

hogCacheColors← ⌈memhogs/(totalMemory/#pageColors)⌉

cacheColors← totalCacheColors− hogCacheColors

STEP 3. (Heuristic-based cache partitioning for hot objects)
partitionedObjs← φ, objsLeft← hotObjs

while objsLeft 6= φ do
bestBenefitCost← 0

for each objectobj in objsLeft do
for colors = 0 to cacheColors do

Try to find non-conflicting colors in assigned colors topartitionedObjs

cost← (colors− nonConflictingColors)

benefit← misses(cacheColors, objsLeft)− (misses(cacheColors− cost, objsLeft) + misses(colors, obj))

if benefit/cost > bestBenefitCost then
bestBenefitCost← benefit/cost

(objbest, colorsbest)← (obj, colors)

end if
end for

end for
if (objbest, colorsbest) is not emptythen

partitionedObjs← partitionedObj ∪ {objbest}

objsLeft← objsLeft− {objbest}

cacheColors← cacheColors− colorsbest

else
Break from the while loop

end if
end while

Each core has a private 32KB instruction cache and a private 32KB data cache. Both adjacent line prefetch and stride prefetch

are enabled on this machine. Because we target shared cache performance, in our experiments we used at most a pair of cores

via functionschedsetaffinitythat sets process/core affinity. Our cache partitioning mechanism was implemented in Linux

kernel 2.6.20.3. While there are 64 page colors in the shared L2 cache, we only used 5 least significant color bits in a physical

address. Therefore we have 32 colors and each color corresponds to 128KB cache space. Without incurring page swapping,

the maximum physical memory mapped to a page color is 512MB onthis machine.

Benchmark Selection We selected a set of memory-intensive programs from NAS benchmarks [1] and Spec CPU2000

benchmark set [23]. These benchmarks and their characteristics are summarized in Table 7. In some cases, to fully test our

framework, we had to make source code changes in the selectedbenchmarks due to two limiting factors. First, some Fortran

programs use common blocks which makes global objects in a common block indistinguishable in the symbol table. Due to

this we modifiedswim’s source code such that every global object was only in one common block. We also chose to use a

C implementation of NAS benchmarks instead of the original Fortran programs to avoid this complexity. Second, some C

programs use a programming idiom that creates a multi-dimensional heap array from many dynamically allocated sub-arrays.

We can modify such code by allocating memory to the array at once. Such a change is needed forart from Spec CPU2000.

Note that there is no difference in performance or memory requirement before and after such simple changes.

Table 7 also shows the training inputs and actual inputs we used for each benchmark. For each benchmark, we first had

two training runs to obtain training profiles through binaryinstrumentation. We then analyzed the profiles by categorizing

objects and different program patterns. Finally for each (actual input, thread number) combination in Table 7 a cache partition

decision was made and then enforced during an actual run, to examine if there was an observable performance improvement

(i.e. over 2% running time reduction) over unconstrained cache sharing.

Table 7 shows that using object-level cache partitioning weachieved observable performance improvements on NAS-CG,

NAS-LU and Spec-art with at least one (actual input, thread number) combination. For these three benchmarks, speedups

observed are up to 1.29 (Spec-art withobjects = 40) and cache miss reduction is up to 34%(NAS-LU with 4M cache

problem size = 30). For NAS-BT and Spec-swim, there was no observable performance improvement with any given input

sizes and thread numbers and there is also no observable performance degradation (i.e. over 2% running time increase).

Further investigation showed that for NAS-BT the partitiondecision maker did not choose to segregate any object with actual

inputs under a 4MB cache. For Spec-swim, there were 6 hog objects identified and segregated. However, the resulted cache

miss reduction is negligible because accesses on these hog objects only account for a very small part of the total accesses.

To further understand the effect of object-level cache partitioning, we focused on the three benchmarks with observable

performance improvements. For each benchmark, extensive experiments were conducted by varying thread number (1 or 2),

input size and the effective cache capacity (2M or 4M throughpage coloring).

Benchmark Language Code modified? Num. of objects profiled Input parameter

NAS-CG C No 15 na

NAS-LU C No 9 problem size

NAS-BT C No 13 problem size

Spec-art C Yes 7 objects

Spec-swim Fortran Yes 15 N = N1 = N2

Benchmark Training input Actual input Num. of Threads Improvement observed?

NAS-CG 7000 (Class W), 14000 (Class A) 75000 (Class B), 150000 (Class C) 1,2 Yes

NAS-LU 12 (Class S), 33 (Class W) 64 (Class A), 102 (Class B) 1,2 Yes

NAS-BT 12 (Class S), 24 (Class W) 64 (Class A), 102 (Class B) 1,2 No

Spec-art 10, 20 30,40 1 Yes

Spec-swim 257,513 1061, 1335 1 No.

Table 2. Characteristics of selected benchmarks and experi mental designs.

0.910

0.960

1.010

1.060

1.110

1.160

75000 90000 105000 120000 135000 150000 165000 180000 195000 210000

2M L2$ / 1thread 2M L2$ / 2 threads 4M L2$ / 1 threads 4M L2$ / 2 threads

(a)

0.000%

5.000%

10.000%

15.000%

20.000%

25.000%

30.000%

35.000%

40.000%

75000 90000 105000 120000 135000 150000 165000 180000 195000 210000

2M L2$ / 1thread 2M L2$ / 2 threads 4M L2$ / 1 threads 4M L2$ / 2 threads

(b)

Figure 7. NAS-CG with object-level cache partitioning. (a) Speedups and (b) Cache miss reductions

in comparison to uncontrolled LRU caching.

Fig. 7 shows the speedups and cache miss reduction numbers onNAS-CG in comparison to an uncontrolled shared cache.

For NAS-CG, with different thread numbers, input sizes and cache sizes, the partition decision is unchanged. It always

segregates hog objectscolidx anda and lets the rest of the objects share the remaining cache capacity. There is performance

improvement and miss rate reduction across cache configurations and input sizes. When cache size is small (2MB), the effect

of cache partitioning is more obvious than with a larger cache (4MB). This is as expected sincep’s capacity misses increase

when the cache capacity is reduced whilea andcolidx’s number of misses being close to a constant. When the thread number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

60 64 70 75 80 85 90 95 102

2M L2$ / 1thread 2M L2$ / 2 threads 4M L2$ / 1 threads 4M L2$ / 2 threads

(a)

-10.000%

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

60 64 70 75 80 85 90 95 102

2M L2$ / 1thread 2M L2$ / 2 threads 4M L2$ / 1 threads 4M L2$ / 2 threads

(b)

Figure 8. NAS-LU with object-level cache partitioning. (a) Speedups and (b) Cache miss reductions

in comparison to uncontrolled LRU caching.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 15 20 25 30 35 40 45 50

2M L2$ 4M L2$

(a)

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

10 15 20 25 30 35 40 45 50

2M L2$ 4M L2$

(b)

Figure 9. Spec-art with object-level cache partitioning. (a) Speedups and (b) Cache miss reductions

in comparison to uncontrolled LRU caching.

is increased from one to two, with NAS-CG the benefit of segregating hog objects is reduced. For example, when two threads

are used, with 2MB cache size the average performance improvement with object-level cache partitioning is reduced from

12.7% to 9.6%. Experimental data show that NAS-CG’s total L2misses increase from one thread to two threads whilea and

colidx’s cache miss rates do not change. The reduction of performance improvement is likely due to increasing intra-object

cache contention onp between two threads.

Figs. 8 and 9 show the speedups and cache miss reduction numbers on NAS-LU and Spec-art, which are different from

those on NAS-CG. Object-level cache partitioning offers very high performance improvements to NAS-LU and Spec-art

with certain input sizes. For instance, when the input size is 70, NAS-LU achieves an improvement of 31.7% relative to

uncontrolled cache sharing. However, unlike NAS-CG, with arange of different input sizes object-level cache partitioning

are not always useful. For example, when the cache size is 2MB, with the range of our input sizes, cache partitioning is not

found profitable for NAS-LU and thus the default shared cacheis used by the partition decision maker. The above differences

are because the majority of NAS-LU and Spec-art’s data references are to hot objects, not to any hog object as with NAS-CG.

With a given configuration, the thrashing effect from accessing multiple hot objects is significant with a certain range of input

sizes but does not persist across inputs. As the result, in NAS-LU partition decisions vary with given input sizes and cache

sizes but always only involve hot objects from arraysu, rsd, a, b, c andd. Similarly, partition decisions with Spec-art also

only use three hot heap objects in our experiments.

Results in Figs. 8 and 9 also show that in some cases we may conduct object-level cache partitioning that actually increases

the cache miss rate by up to 6%. However, performance degradation observed is never over 2%. We believe this comes from

inaccuracies in modeling shared cache misses. In our framework, we implicitly assume an in-order processor model and

do not model the hardware prefetching effect. While this issue deserves further investigation, as a practical solution,we

can modify the cache partitioning algorithm such that unconstrained cache sharing is chosen when the predicted L2 miss

reduction is below a threshold (e.g. 10%).

8 Related Work

Many approaches have been proposed to overcome the cache contention problem by partitioning the shared cache at the

thread or process level. Most proposed approaches added cache partitioning support at the micro-architecture level [15, 25,

18]. Several studies highlighted the issues of QoS and fairness [12, 17, 13, 11, 6]. There have been several studies on OS-

based cache partitioning policies and their interaction with the micro-architecture support [19, 8]. Our work differsfrom

these studies in that we focus on object-level cache partitioning and do not require any new architectural support. There

has been prior work using OS scheduling to reduce the effect of inter-thread contention. Fedorova et al. [9, 10] improved

CMPs’ throughput by judiciously selecting co-runners and time-schedules in the operating system. In comparison, in this

paper we focus on improving the performance of sequential and parallel collaborative workloads that may not have candidate

co-runners to choose. Because our proposed object-level cache partitioning framework works orthogonally to the above

thread-level techniques including inter-thread cache partitioning and job pairing, our framework is complementary to these

techniques when there are a large number of cores sharing thecache.

Understanding data locality is critical to performance optimization and is mostly through offline analysis of memory traces.

Wu et al. [28] proposed a data trace representation in a object-relative form and demonstrated its application in computing

memory dependence frequencies and stride patterns. Our work is related to this work though we use object-relative traces in

a different way and do not attempt to store or compress data traces. Zhong et al. [29] studied whole-program data locality

pattern recognition. We adapt their technique in our framework to detect locality patterns at the object level.

There have been several studies that improve data locality through using compiler and OS interaction [2, 22, 21, 5]. These

studies focus more on avoidance of conflict misses which is not a significant problem to L2/L3 caches nowadays due to their

high degrees of associativity. In comparison, we work on reduction of capacity misses of the shared cache. The problem is

irrelevant to cache’s degree of associativity.

In the field of embedded systems, cache partitioning has beenstudied to reduce cache misses and power consumption.

In particular, a recent study by Ravindran et al. [20] share many similarities with our work. Our work differs from their

study and other related work in embedded systems in several aspects. First, our work is at the object level requiring no

hardware support while their work is at the instruction level based on way partitioning. Second, we aim at reducing L2 cache

capacity misses instead of L1 conflict misses, therefore complex techniques are used to detect locality patterns. Third, our

framework does not employ static analysis, therefore no source level information is needed. Fourth, our goal is performance

improvement instead of power reduction.

9 Conclusion and Future Work

We have designed and implemented a framework that partitions the cache at the object level, in order to improve program

performance for both single-thread and parallel data-sharing programs. The framework consists of several major stepsin-

cluding profile generation, profile analysis, cache partitioning decision making and enforcement. Experimental results with a

benchmark set from SPEC CPU2000 and OpenMP NAS benchmarks demonstrate the effectiveness of our system framework.

Ongoing and future work is planned along the following two directions. First, we will include small objects into consider-

ation since small objects may reveal a collective locality behavior in many programs. A custom memory allocator supporting

co-allocation is necessary for this purpose. Second, we plan to carefully study the potential of combining inter-object cache

partitioning and inter-thread techniques such as job pairing.

References

[1] NAS Parallel Benchmarks in OpenMP. http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html.

[2] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S. Lam. Compiler-directed page coloring for multiprocessors. In ASPLOS ’96:
Proceedings of the seventh International Conference on Architectural Support for Programming Languages and Operating Systems, pages 244–255,
1996.

[3] D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth limitations of future microprocessors.In ISCA ’96: Proceedings of the 23rd annual
international symposium on Computer architecture, pages 78–89, 1996.

[4] C. Caβcaval and D. A. Padua. Estimating cache misses and locality using stack distances. InICS ’03: Proceedings of the 17th annual international
conference on Supercomputing, pages 150–159, 2003.

[5] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data placement. InASPLOS-VIII: Proceedings of the eighth international conference
on Architectural support for programming languages and operating systems, pages 139–149, 1998.

[6] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip multiprocessors. InICS ’07: Proceedings of the 21st annual international conference
on Supercomputing, pages 242–252, 2007.

[7] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of the cache behavior of nested loops.SIGPLAN Not., 36(5):286–297, 2001.

[8] S. Cho and L. Jin. Managing distributed, shared L2 cachesthrough os-level page allocation. InMICRO ’06: Proceedings of the 39th International
Symposium on Microarchitecture, pages 455–468, 2006.

[9] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance of multithreaded chip multiprocessors and implications for operating system
design. InATEC ’05: Proceedings of the annual conference on USENIX Annual Technical Conference, pages 26–26, 2005.

[10] A. Fedorova, M. Seltzer, and M. D. Smith. Improving performance isolation on chip multiprocessors via an operating system scheduler. InPACT ’07:
Proceedings of the 16th International Conference on Parallel Architecture and Compilation Techniques, pages 25–38, 2007.

[11] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist, utilitarian, and capitalist cache policies on cmps: caches as a shared resource. In
PACT ’06: Proceedings of the 15th International Conferenceon Parallel Architectures and Compilation Techniques, pages 13–22, 2006.

[12] R. Iyer. CQoS: a framework for enabling qos in shared caches of cmp platforms. InICS ’04: Proceedings of the 18th annual International Conference
on Supercomputing, pages 257–266, 2004.

[13] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing andpartitioning in a chip multiprocessor architecture. InPACT ’04: Proceedings of the 13th
International Conference on Parallel Architectures and Compilation Techniques, pages 111–122, 2004.

[14] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining insights into multi-core cache partitioning: Bridging the gap between
simulation and real systems. InHPCA ’08: Proceedings of the 14th International Symposium on High-Performance Computer Architecture, 2008.

[15] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the last line of defense before hitting the memory wall for cmps. InHPCA ’04: Proceedings
of the 10th International Symposium on High Performance Computer Architecture, page 176, 2004.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. InPLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation, pages 190–200, 2005.

[17] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. volume 35, pages 57–68, 2007.

[18] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead, high-performance, runtime mechanismto partition shared caches. In
MICRO ’06: Proceedings of the 39th International Symposiumon Microarchitecture, pages 423–432, 2006.

[19] N. Rafique, W.-T. Lim, and M. Thottethodi. Architecturalsupport for operating system-driven cmp cache management. InPACT ’06: Proceedings of
the 15th International Conference on Parallel Architectures and Compilation Techniques, pages 2–12, 2006.

[20] R. Ravindran, M. Chu, and S. Mahlke. Compiler-managed partitioned data caches for low power. InLCTES ’07: Proceedings of the 2007 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and tools, pages 237–247, 2007.

[21] G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict misses. InPLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implementation, pages 38–49, 1998.

[22] T. Sherwood, B. Calder, and J. Emer. Reducing cache missesusing hardware and software page placement. InICS ’99: Proceedings of the 13th
International Conference on Supercomputing, pages 155–164, 1999.

[23] Standard Performance Evaluation Corporation.SPEC CPU2000. http://www.spec.org.

[24] R. Sugumar and S. Abraham. Efficient simulation of multiple cache configurations using binomial trees. Technical report.

[25] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache memory.The Journal of Supercomputing, 28(1):7–26, 2004.

[26] G. Taylor, P. Davies, and M. Farmwald. The TLB slice–a low-cost high-speed address translation mechanism. InProc. ISCA’90, pages 355–363,
1990.

[27] Z. Wang, K. S. McKinley, A. L. Rosenberg, and C. C. Weems. Using the compiler to improve cache replacement decisions. InPACT ’02: Proceedings
of the 2002 International Conference on Parallel Architectures and Compilation Techniques, page 199, 2002.

[28] Q. Wu, A. Pyatakov, A. Spiridonov, E. Raman, D. W. Clark, and D. I. August. Exposing memory access regularities using object-relative memory
profiling. In CGO ’04: Proceedings of the international symposium on Codegeneration and optimization, page 315, 2004.

[29] Y. Zhong, S. G. Dropsho, X. Shen, A. Studer, and C. Ding. Miss rate prediction across program inputs and cache configurations. IEEE Trans.
Computers, 56(3):328–343, 2007.

