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A Compile-Time Data Locality Optimization Framework
for NUCA Chip Multiprocessors

Abstract
With increasing numbers of cores, future CMPs (Chip Multi-
Processors) are likely to have a tiled architecture with a portion
of shared L2 cache on each tile and a bank-interleaved distribu-
tion of the address space. For data-parallel programming mod-
els, there is a mismatch between such a non-uniform cache or-
ganization and the canonical row-major or column-major lay-
outs of multi-dimensional arrays – causing a significant num-
ber of non-local L2 accesses for many commonly occurring
data access patterns. In this paper we develop a compile-time
framework for data locality optimization via data layout trans-
formation. Using a polyhedral model for dependences, the pro-
gram’s localizability is determined by analysis of intra- and
inter-statement dependences, followed by non-canonical data
layout transformation to reduce non-local accesses for local-
izable computations. Simulation-based results on a 16-core 2D
tiled CMP demonstrate the effectiveness of the approach.

1. Introduction
Most proposed chip multiprocessor (CMP) designs [39, 17, 22]
feature shared on-chip cache(s) to reduce the number of off-
chip accesses and simplify coherence protocols. With diminu-
tive feature sizes making wire delay a critical bottleneck in
achieving high performance, proposed shared caches employa
Non-Uniform Cache Architecture (NUCA) design that spreads
data across cache banks that are connected through an on-chip
network [21, 15, 3]. Fig. 1 shows a tiled architecture for a CMP.
Each tile contains a processor core with private L1 cache, and
one bank of the shared L2 cache. Such an architecture is highly
scalable and is embraced by Intel’s Tera-project [16] that has
demonstrated the capability of integrating 80 processors on a
single die. Future CMPs are likely to be based on a similar
design to enable large numbers of processors and large on-
chip caches through emerging technologies such as 3D stack-
ing. Fig. 2 shows the mapping of a physical memory address
to banks in the L2 cache. The address space is block-cyclically
mapped across the banks with a block size L. So the lowest
log2L bits represent the displacement within a block mapped to
a bank, and the next set oflog2P bits specify the bank number.
The value of L depends on the granularity of interleaving across
the banks, which can range from one cache line to an OS page.
The evaluations in this paper assume cache-line interleaving,
but the developed approach is also applicable to coarser inter-
leaving across banks.

In this paper, we develop a compile-time framework for data
locality optimization for bank-interleaved shared cache sys-
tems. We first use a simple example to illustrate the optimiza-
tion issue and the approach we develop.

Let us consider the code in Fig. 3, for 1-D Jacobi iteration. In
statement S1 of the code, iterationi accessesA[i −1], A[i], and
A[i + 1]. Completely localized bank access is impossible with
this code for any load-balanced mapping of iterations to proces-
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Figure 1. Tiled CMP architecture
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Figure 2. Mapping a physical address to a cache bank

while (condition) {
for (i = 1; i < N-1; i++)

B[i] = A[i-1] + A[i] + A[i+1]; //stmt S1
for (i = 1; i < N-1; i++)

A[i] = B[i]; //stmt S2 }

Figure 3. 1D Jacobi code.
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Figure 4. Parallelizing a 1D Jacobi program on a 4-tile CMP.

sors. For ease of explanation, we assume that the array sizeN is
a large power of two. Assuming there are four processors on a
tiled CMP andL = 2 is the cache line size in elements, there are
many ways of partitioning the iteration space to parallelize this
program. We consider the following mapping schemes with one
thread on each processor: (i) based on theowner-computesrule,



each thread is responsible for computing the data mapped to its
local bank – this corresponds to OpenMP’s static scheduling
with a chunk size ofL; (and) (ii) the iteration space is divided
evenly into four contiguous partitions and they are assigned to
the processors in order – this corresponds to OpenMP’s default
static scheduling. We observe that aligning the base addresses
of A and B is important since A[i] and B[i] are always ref-
erenced together. Let us assume that the origins of A and B
are both aligned to bank 0’s boundary. Fig. 4(a) illustratesdata
communication needed between different processors when the
computation is partitioned using mapping (1). In order to com-
pute B’s elements in a cache line, the corresponding cache line
of A, as well as the previous and next cache line are required.
(for the A[i-1] reference for the lowest iteration in the block
and A[i+1] reference for the highest iteration in the block).
With two cache lines of A being remote, the total inter-bank
communication volume in every outer iteration is roughly 2N.
For mapping (2), if we keep the original layout of each array,
most data accesses by each processor are remote. Furthermore,
such remote communications can be across the entire chip in-
stead of only among neighboring tiles. However, it is possible
to rearrange the data layout in order to significantly enhance lo-
cality of access, to keep the affinity between computation and
data. This is shown in Fig. 4(b). As illustrated, there are only
six remote accesses in every outer iteration.

The above example illustrates the importance of an inte-
grated computation/data mapping scheme for achieving low ac-
cess latencies on future tiled CMPs. With canonical row-major
or column-major layouts, the block-cyclic mapping imposed
by bank address interpretation often results in significanton-
chip communication due to remote bank L2 cache access. To
overcome the mismatch between a flat memory model and the
banked L2 cache organization on a tiled CMP, non-canonical
data layouts such as the one in Fig. 4(b) may need to be uti-
lized. In this paper, we develop a compile-time framework for
determining such data layout transformations. We show how
the feasibility of bank localization can be formulated in a poly-
hedral model for program transformations [23] and how code
can be generated using optimized non-canonical layouts.

Although several papers from the architecture community
have investigated NUCA issues with CMPs [21, 15, 3, 11], to
the best of our knowledge, this paper represents the first attempt
at a systematic formalization of compiler analysis for datalo-
cality optimization in the context of NUCA CMP’s. The rest of
the paper is organized as follows. We first provide some moti-
vation and background for our work. We then present the anal-
ysis framework that determines the feasibility of data localiza-
tion and computation / data mappings in Sec. 3. In Sec. 4, we
describe the code generation framework for creation of trans-
formed programs with non-canonical layout. We evaluate the
effectiveness of our approach in Sec. 5 with an architecture
simulator using several benchmarks. We discuss related work
in Sec. 6 and present our conclusions in Sec. 7.

2. Background and Overview of Approach
Most commercial designs [39, 17, 22] and research projects
have employed a shared L2 cache on a CMP to emphasize
minimizing the number of off-chip accesses and simplify co-

herence protocols. With diminutive feature sizes making wire
delay a critical bottleneck in achieving high performance,pro-
posed shared caches employ a Non-Uniform Cache Architec-
ture (NUCA) design that spreads data across cache banks and
connects these banks through an on-chip network [21, 15, 3].
Prior NUCA work has proposed approaches to distributing data
across L2 cache banks. Static NUCA (S-NUCA) schemes de-
rive the bank index from several contiguous bits of a physi-
cal address as demonstrated in Fig. 2. With different address
interpretations, S-NUCA’s interleaving granularity varies from
cache line to page frame. Cache line interleaving has a num-
ber of benefits, including uniform distribution of arrays across
the banks, enabling high collective bandwidth in accessingits
elements and minimization of hot-spots. The Sun UltraSPARC
T1 [22] uses a cache-line interleaved mapping scheme in its
banked L2 cache.

A data-parallel programming model provides aggregate data
types such as arrays and operations on them. Examples of
existing data-parallel languages include Fortran 90/95, HPF,
and ZPL. Because of its high abstraction level, a data-parallel
programming model hides implementation details and provides
ease of programming and portability. Parallelism is specified
implicitly with a data-parallel model and exploited by having
tasks operating on an object collectively. Tarditi et al. [38]
summarize commonly used operations of typeArray. Note that
these operations are not limited to element-wise operations as
reduction and data transformation operations are also included.

While the data-parallel programming model has been stud-
ied for a long time, with the advent of CMPs and general-
purpose GPU computing, great interest has been rekindled
because of the expressiveness and effectiveness of the data-
parallel programming model. Proposed HPCS (High-Productivity
Computing System) languages all provide data-parallel opera-
tions. Several recent research and commercial projects [38, 33,
32] have also proposed data-parallel languages or libraries and
studied how to map data-parallel programs to CMPs or GPUs.
In this paper we address the issue of efficiently mapping data-
parallel programs to tiled CMPs.

2.1 Overview of Our Approach

Although CMPs provide a shared memory model, exploitation
of data locality is crucial for NUCA-CMPs. In order to reduce
inter-processor data movement costs in accessing the shared
cache, rearrangement of array data layout may be essential to
ensure that most L2 accesses are on local or neighboring cache
banks.

The key data type in data-parallel programs is the multi-
dimensional array. With such a programming model, paral-
lelism is specified implicitly and functional semantics is used.
Memory management and array accesses are transparent to the
programmer by having a managed vector memory space. There-
fore the compiler has complete freedom in deciding how to map
the computation to processor cores and in choosing the data lay-
out for each array.

The example in Fig. 3 illustrates the benefit of data layout
transformation. The key idea behind the transformation is data
localization onto cache banks, to match iteration distribution
among processors. We seek to answer the following questions:



When is such a transformation beneficial? How can the trans-
formation be automated?

Using the polyhedral framework for program transforma-
tion, we develop an approach to characterizing the feasibil-
ity of data localization on cache line interleaved NUCA sys-
tems, and determination of the needed transformation. The de-
veloped compile-time optimization framework consists of two
phases: localization analysis and code generation. In the local-
ization analysis phase we use a polyhedral loop transforma-
tion framework to determine whether a program can be local-
ized. The localization analysis phase performs a global analy-
sis of the program, to identify: (1) arrays that can be localized
for communication-free accesses (e.g. summation between vec-
tors), and (2) arrays that can be localized via layout transfor-
mation for communication-optimized access (similar to those
in Fig. 3). This is done by formulating the problem as that of
finding suitable affine partitioning hyperplanes in a polyhedral
representation of the iteration space(s) of the program. The lo-
calization phase is followed by the code generation phase that
employs the data and computation mappings to engender local-
ization and transform the code to support non-canonical data
accesses.

3. Localization Analysis
In this section, we describe the procedure to determine the
localizability of a given program. Our analysis is based on the
polyhedral framework since most data-parallel programs are
regular and satisfy its affine conditions. The code generation
aspects are discussed in Sec. 4.

3.1 Polyhedral Framework for Program Transformation

We begin with background information on the polyhedral
model for loop transformation, which is the basis of our lo-
calization analysis framework. The notation used is similar to
that used by Griebl [14].

A d-dimensional functionf of n variablesx1,x2, ...,xn is
affineif and only if f (~x)= M f~x+c, where~x=

[

x1 ... xn
]T

,

M f ∈Rd×n andc∈Rd×1. An affine functionf can be expressed
in a linear form by introducing a special constant parame-
ter “1”: f (~x′) = M′

f
~x′, where~x′ =

[

x1 ... xn 1
]T

and
M′

f = [M f c].
A hyperplaneis a (d− 1)-dimensional affine subspace of

a d-dimensional space and can be represented by an affine
equalitymx+ c = 0. A halfspaceconsists of all points of the
d-dimensional space which are on one side of a hyperplane,
including the hyperplane. A halfspace can be represented byan
affine inequalityMx+ c ≥ 0. A polyhedronis the intersection
of a finite number of halfspaces. Apolytope is a bounded
polyhedron.

The bounds of the loops surrounding a statementS are ex-
pressed as a system of linear inequalities that form a polytope,
represented asDS(~i) ≥ 0, where~i includes the iteration vector
and all structure parameters. An array access in statementS to
arrayA is denotedAS,A(~i). A dynamic (or run-time) instance of
a statementSat the iteration vector~i is represented as< S,~i >.
Data dependences are described usingh-transformations. An
h-transformation is an affine function that takes a destination
statement instance and gives the source statement instance[13].

Note that we are using value-based dependences. The domain
of the function is denoted explicitly as a polytopePe(~i) ≥ 0.

We are interested in acomputation allocationπS that is an
affine function mapping every dynamic instance of a statement
Sto an integer vector that represents a virtual processor.πS must
satisfy the constraints imposed by loop bounds and data depen-
dences. Similar to computation allocation, adata mappingψA
maps every array element to a virtual processor.

The problems of findingπS andψA are often formalized as
optimization problems. However, such optimization problems
are not affine because coefficients inπS or ψA and the iteration
vector are all unknowns.Farkas Lemma[13] is used in such
cases for quantifier elimination. This lemma states how sucha
system of affine inequalities with quantifiers can be transformed
to a system of affine equalities by adding non-negative vari-
ables. After such transformationsπS andψA can be determined
by using a linear programming solver.

LEMMA 1 (Farkas Lemma).LetD be a non-empty polyhedron
defined by p affine inequalities

a jx+b j ≥ 0, 1≤ j ≤ p.

Then, an affine form f is non-negative everywhere inD if and
only if it is a positive affine combination:

f ≡ λ0 +
p

∑
j=1

λ j(a jx+b j), λ j ≥ 0 ∧ 0≤ j ≤ p. (1)

The non-negative constantsλ j are referred to as Farkas multi-
pliers.

3.2 Localization Constraints

We define a program aslocalizableif there exists a computa-
tion allocation and a data mapping to a processor grid such that
the data required by any processor is available in the neigh-
borhood of that processor in the grid. Such a mapping reduces
global communication, potentially reducing the total non-local
data accesses. The dimensionality of the processor grid canbe
independent of the physical organization of a tiled CMP without
impacting the benefits of localization. In this paper, we consider
one-dimensional virtual processor grids. The localizability con-
straints for computation allocation are formalized as follows.

DEFINITION 1 (Localized computation allocation).For a given
program P, let h-transformation hSS′ represent a data depen-
dence between statements S and S’ on array referencesAS,A
and AS′,A and Pe denote the domain of hSS′ . An affine com-
putation allocationπ for P is localized if and only if for any
statements S and S′ with data dependences e,

∀~i′, Pe(~i′) ≥ 0∧~i = hSS′(~i′) =⇒ |πS(~i)−πS′(~i′)| ≤ k, (2)

where k is a constant.

With a localized computation allocation, Def. 2 provides con-
straints of localized data mappings.

DEFINITION 2 (Localized data mapping).For a program P,
let D be its index set andπ be a localized computation allo-
cation. An affine data mappingψ for P is localized if and only



if for any array A, and any referenceAS,A,

∀~i, DS(~i) ≥ 0 =⇒ |πS(~i)−ψA(AS,A(~i))| ≤ q, (3)

where q is a constant.

As a special case case,communication-free localizationcan be
achieved if the constraints in Lemmas 2 and 3 can be satisfied.

LEMMA 2 (Communication-free computation allocation).For
a given program P, let h-transformation hSS′ represent a data
dependence between statements S and S’ on array references
AS,A andAS′,A and Pe denote the domain of hSS′ . An affine com-
putation allocationπ for P is communication-free if and only if
for any statements S and S′ with data dependences,

∀~i′, Pe(~i′) ≥ 0∧~i = hSS′(~i′) =⇒ πS(~i)−πS′(~i′) = 0, (4)

LEMMA 3 (Communication-free data mapping).A program
with communication-free computation allocationπ is communi-
cation-free if and only if for any array A and any array refer-
enceAS,A in a statement S, data mappingψ satisfies

ψA(AS,A(~i)) = πS(~i) (5)

3.3 Localization Analysis Algorithm

Our localization analysis algorithm based on the above discus-
sion consists of the following steps.

Step 1: Grouping Interrelated Statements/Arrays We deter-
mine connected sets of data-parallel statements in an inputpro-
gram. Given a data-parallel program, we form a bipartite graph
where each vertex corresponds to a data-parallel statementor
an array, and edges connect each statement vertex to all arrays
referenced in that statement. We then find the connected com-
ponents in the bipartite graph. The statements in each connected
component form an equivalence class.

Step 2: Rewriting Array Indices We rewrite the program
such that all array references are to byte arrays. For exam-
ple, a referenceA[i][ j + 1] to a double array A is rewritten as
Abyte[i][8 j +8]. This allows us to account for different data sizes
since the default layout maps data based on their byte addresses.
This is explained in detail in Sec. 4.

Step 3: Finding Localized Computation Mapping Following
Def. 1, we formulate the problem as finding an affine compu-
tation allocationπ that satisfies|π(~i)−π(~i′)| ≤ k for every pair
of iterationsi and i′ that access a common data element. The
π function identifies a parallel space dimension in the iteration
space of each data parallel statement. Therefore a system of
such equalities are collected as constraints for all data depen-
dences including input dependences.

Note that the equation in Def. 1 with quantifieri′ is not
affine. We need to first rewrite each constraint as

∀~i′, Pe(~i′) ≥ 0 =⇒ f (~i′)+k≥ 0 (6)

∀~i′, Pe(~i′) ≥ 0 =⇒ − f (~i′)+k≥ 0 (7)

where∀~i′, f (~i′) = πS(hSS′(~i′))−πS′(~i′). For simplicity of pre-
sentation, we refer tof (~i′)+k and− f (~i′)+k as f1(i′) and f2(i′)
respectively.

We apply Farkas Lemma to transform the above constraints
to affine equalities by introducing Farkas multipliers. Take Eq. 6
as an example. With Farkas Lemma, we have∀~i′, Pe(~i′) ≥

0 =⇒ f1(~i′) ≥ 0 if and only if f1(~i′) ≡ λ0 + ∑k λk(ak
~i′ + bk)

with λ ≥ 0, where affine inequalitiesak
~i′ + bk ≥ 0 definePe.

Therefore we have the following:

M′
f1

[

~i′

1

]

=
[

λ1 ... λm, λ0
]

[

M′
Pe

0...01

][

~i′

1

]

(8)

wheref1(~i′)= M′
f1

[

~i′

1

]

andPe(~i′)= M′
Pe

[

~i′

1

]

. Since Eq.( 8)

holds for all~i′, we have

M′
f1 =

[

λ1 ... λm, λ0
]

[

M′
Pe

0 ... 0 1

]

(9)

We apply Fourier-Motzkin elimination to Eq. (9) to remove all
the Farkas multipliers. The new set of constraints are in theform
of M′

f1
G1 ≥ 0. The whole procedure is also applied to Eq. (7)

and we obtainM′
f2

G2 ≥ 0. These two together form the set of
inequalities that constrain the coefficients ofπ.

In order to minimize potential communication, we solve the
system of inequalities generated as an integer programming
problem.min(k) is used as the objective function to minimize
the communication overhead. If such ak is identified, we find a
localizable computation allocation.

As a special case, ifk is determined to be 0 the computation
is identified to have communication-free computation localiza-
tion. If a non-zerok is determined as the minimal solution, the
program is not communication-free but is localizable.

If a communication-freeπ is found, we decide each array’s
data mapping based on Eq. (5). For an array A, for each of its
referenceAS,A, we collect linear equalities:

M′
ψA

[

M′
AS,A

0 ... 0 1

]

= M′
πS

(10)

We can decide data mapping forA by solving this system of
equalities collected from every reference ofA.

If a localized but not communication-free computation allo-
cation π is found, we find a localized data mappingψ based
on Def. 2. For each array reference in statementS, we collect
constraints in Eq. (3) underS’s index set. Similar to finding a lo-
calized computation allocation, we transform these constraints
to linear inequalities using Farkas Lemma and Fourier-Motzkin
elimination. With objective functionmin(q), we have a linear
programming problem to solve.

If a solution is not obtained by the above steps, the program
is identified as non-localizable. Traditional iteration-reordering
transformations are then performed to optimize for temporal
locality without changing the data layout.

Summary The algorithm is summarized in Algorithm 1.

Partial Localization We also consider partial localization.
That is, we allow a processor to have a small number of data
accesses outside its neighborhood. If a localizedπ cannot be
found, we attempt to find partial localization by removing



Algorithm 1 Localization analysis algorithm
Require: Generalized dependence graph (including h-

transformations, dependence polyhedra, and access functions)
after indices are rewritten to access byte arrays

1: C = φ
2: for each dependencee (including input dependence)do
3: Obtain new constraints:π(~i)− π(h(~i)) + k ≥ 0 andπ(h(~i))−

π(~i)+k≥ 0 under~i ∈ Pe.
4: Apply Farkas Lemma to new constraints to obtain linear con-

straints and eliminate all Farkas multipliers
5: Add linear inequalities from the previous step intoC
6: end for
7: Add objective function(mink)
8: Solve the result linear programming problem with constraints in C
9: if solutionπ is foundthen

10: if k=0 then
11: for each arrayA do
12: C = φ
13: for each referenceAS,A do
14: Add linear constraints from Eq. (10) to C (based on

Lemma 3)
15: end for
16: Solve the system of equalities in C to findψA
17: end for
18: if ψ is found for each arraythen
19: returnπ andψ
20: end if
21: end if
22: C = φ
23: for each array refrenceAS,A do
24: Obtain new constraints:πS(~i) − ψA(AS,A(~i)) + q ≥ 0 and

ψA(AS,A(~i))−πS(~i)+q≥ 0 under~i ∈ DS.
25: Apply Farkas Lemma to new constraints to obtain linear

constraints and eliminate all Farkas multipliers
26: Add linear inequalities from the previous step intoC
27: end for
28: Add objective function(minq)
29: Solve the result linear programming problem with constraints

in C
30: if ψ is foundthen
31: returnπ andψ
32: end if
33: end if
34: return “not localizable”

constraints from input dependences on small arrays with high
reuse. Then we recomputeπ, seeking localization with the re-
duced constraints – localization of small arrays being ignored
in the expectation that temporal locality may be exploited by
the private L1 cache.

As an example of partial Localization, code to compute
matrix-vector multiplication is shown in Fig. 5. There are two
sets of data dependences between instances(i, j) and(i′, j ′) of
statement 2:

• output dependence on array C:i − i′ = 0, j − j ′ ≥ 1

• input dependence on array B:i − i′ ≥ 1, j − j ′ = 0

We are not able to find a localized computation allocation
considering both dependences. To overcome this problem we
remove the input dependences on array B becauseB’s reuse

for (i = 0; i < N; i++) {
C[i] = 0; //stmt 1
for (j = 0; j < N; j++)

C[i] = C[i]+A[i][j]*B[j] //stmt 2 }

Figure 5. Matrix-vector multiplication code.

is asymptotically higher thanA’s and its size is asymptoti-
cally smaller. We are then able to obtainπ(i, j) = i that is
communication-free regarding arraysA andB.

Using the Linear Programming Solver The linear program-
ming solver (Parametric Integer Programming [12]) that we use
works in the integer space and uses lexicographic ordering in-
stead of an objective function as its ranking principle. It has
been used by us to implement Step 3 of the localization algo-
rithm with the following consideration.
• In order to reduce the space overhead introduced by padding

(discussed in Sec. 4), we attempt to find a parallel loop ac-
cessing slow-varying array dimensions. We orderπ’s un-
known coefficients increasingly based on their ranks, which
is the slowest-varying dimension a given loop index appears
at. For example, if a loop indexi appears inA[i], B[i][ j] and
C[i][ j][k], its unknown coefficient is ranked 3 fromC[i][ j][k].
Furthermore, for unknowns with the same rank, they are or-
dered based on their occurrences.

• To find a localized computation allocation, instead of sup-
plying min(k) as an objective function, we havek as the first
unknown. The same approach is used to find a localized data
mapping.

• While using a solver in the integer space, we do expect to
obtain rational coefficients such as 1/2 for a localized data
mappingψ. In order to do so with a localized computation
allocationπ, we rewrite Eq. 3 in Def. 2 as

∀~i, DS(~i)≥0 =⇒ |µ·πS(~i)−ψA(AS,A(~i))| ≤q, where µ≥1
(11)

Now we introduce a new positive unknownµ which essen-
tially stretches the image of functionπ. We can findµ and a
localizedψ′ using the linear programming solver. The data
mapping with the original system isψ = 1

µψ′.

4. Code Generation
In this section, we introduce the framework that generates code
after the localization analysis framework determines computa-
tion allocation and data mapping.

4.1 Virtual-Physical Processor Mapping

Based on the localization analysis results from the previous sec-
tion, here we discuss the mappingτ between virtual processors
andP physical processor cores on a NUCA-CMP.

As discussed in the previous section, in our implementa-
tion the linear programming solver finds a lexicographically
minimum solution. We consider data mappings of the form
ψA(~d) = dk/sA + o f fA, wheresA ando f fA are small integers,
specifying A’s distribution stride and offset along itskth dimen-
sion. While our localization analysis framework is general and
our code generation framework can be extended to handle more
complicated programs such as those having skewed data map-
ping ψ(d1,d2) = d1 + d2, in the rest of the paper we focus on



the above common cases. For these programs, each array not
removed by partial localization has exactly one data dimension
that corresponds to a surrounding parallel loop in the gener-
ated code. We determine the mapping between virtual proces-
sors and physical processor cores based on data mappings as
follows.

If we find communication-free localization, where all arrays
share the same stride along their fastest varying dimensions,
we map virtual processors to physical processors in a block-
cyclic fashion. Because all array references have been rewritten
to access byte arrays, the block size isL/s, whereL is the
cache line size in bytes ands is the stride; we haveτ(x) =
⌊ x

L/s⌋ modP. In this fashion, we match data and computation
on each processor while keeping the canonical data layout.
Otherwise virtual processors are grouped intoP blocks if the
computation is localizable. Assuming the image of functionf
is the range of[minf ,maxf ], we haveτ(x) = ⌊ x−α

(β−α)/P⌋, where
α = min(minπ,minψ) andβ = max(maxπ,maxψ).

For the 1D Jacobi example in Fig. 3, the localization analysis
determines the program to be localizable but not communication-
free and obtainsπ(i) = i and ψ(i) = i. From the above pro-
cedure, we have the virtual-physical processor mapping as
τ(x) = ⌊ x

N/P⌋.

4.2 Data Mapping Enforcement

For any arrayA in a localizable data-parallel program, we can
obtain data mappingτ(ψ(~d)) that maps array elements to phys-
ical processors. However, on a tiled CMP with a shared mem-
ory, data mappings cannot be through explicit data distribu-
tion. Here we apply data layout transformations includingstrip-
mining, permutationandpaddingto enforce data mappings on
tiled CMPs. These techniques have been used by previous stud-
ies [1, 34, 35] to avoid conflict misses or reduce false sharing. In
comparison here we employ them to improve distance locality
on a tiled CMP.

Strip-mining Strip-mining is analogous to loop tiling in the
iteration space. After strip-mining, an array dimensionN is di-
vided into two virtual dimensions(⌈N

d ⌉,d) and an array ref-
erence[...][i][...] becomes[...][ i

d ][i modd][...]. Note that strip-
mining does not change an array’s actual layout but instead
creates a different logical view of the array with increaseddi-
mensionality. As mentioned above, on a tiled CMP, a canonical
view does not provide any information about an array element’s
placement. By strip-mining the fastest varying dimension we
have an additional dimension representing data placement.For
example, assuming that a one-dimensional arrayA(N) with
canonical layout is aligned to the boundary of bank 0, after
strip-mining this array twice, there is a three-dimensional ar-
ray A′(⌈ N

PL⌉,P,L) where L is the L2 cache line size and P is
the number of tiles. With this three-dimensional view, we can
decide an array element’s home tile by examining its second
fastest varying dimension.

Permutation Array permutation is analogous to loop per-
mutation in the iteration space. After permutation, an array
(...,N1, ...,N2, ...) is transformed to(...,N2, ...,N1, ...) and an
array reference[...][i1][...][i2][...] becomes[...][i2][...][i1][...].
Combined with strip-mining, permutation changes an array’s
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Figure 6. A one-dimensional example of data transformations.
(a) Canonical layout after strip-mining. (b) Non-canonical lay-
out after strip-mining and permutation.

actual layout in the memory space. Fig. 6 shows how one-
dimensional arrayA in the 1D Jacobi example in Fig. 3 is
transformed with strip-mining and permutation to realize its
block-distributed data mapping. Fig. 6(a) shows the default
data layout through strip-mining, where an elementA[i] is
mapped to tileip = ⌊i/L⌋ modP. In order to realize the block-
distributed data mapping, we can first strip-mine array A(N)so
we haveA′(⌈ N

PL⌉,P,L) and then we have array referenceA[i] as
A′[ip][ic][iL]. As shown in Fig. 6(b), by permuting the first two
dimensions ofA′, we obtain a new arrayA′′ and we are able
to mapA′[ip][ic][iL](i.e., A′′[ic][ip][iL]) to tile ip such that block
distribution ofA is achieved.

Padding To enforce data mapping, array padding is employed
in two different ways. First, keeping the base addresses of ar-
rays aligned to a tile specified by the data mapping function can
be viewed asinter-array padding. Second,intra-array padding
aligns elements inside an array with “holes” in order to make
a strip-mined dimension divisible by its sub-dimensions. In the
1D Jacobi example, ifN is not a multiple ofPL in Fig. 6, we pad
N to N′ = ⌈ N

PL⌉ ·P ·L and the lastN′−N elements are ignored
in the computation.

All data layout transformations discussed so far are not lim-
ited to one-dimensional arrays or the fastest varying dimension.
For example, if we follow localization analysis results to create
a blocked view of arrayA(N1,N2) along its first dimension, both
dimensions are strip-mined to getA′(P,⌈N1

P ⌉,⌈N2
L ⌉,L). Padding

is needed ifP ∤ N1 or L ∤ N2. Finally after a permutation involv-
ing the first three dimensions, we obtainA′′(⌈N1

P ⌉,⌈N2
L ⌉,P,L)

that maps contiguous rows to a tile.
At the beginning and the end of the generated code, explicit

data transformations may be needed to enforce data mappings
of input and output arrays. Such transformation code can be
found in Fig. 7, which outlines the generated code for the 1D
Jacobi example. Such transformation code can often be fused
with the first use of an input array and the last write of an output
array. Also as shown in the code, we choose to linearize array
indices instead of using multidimensional views. It is because
we want generated code to work with different architectural



// threaded SPMD code
compute(int tid) {

processor_bind(tid);
B = ceiling(N/(P*L))*L;
// transform input array A
for (i = tid*B; i < min(N, (tid+1)*B); i++) {

A’[index(i)] = A[i]; }
while (condition) {

for (i = tid*B; i < min(N, (tid+1)*B); i++) {
B’[index(i)] = A’[index(i-1)] + A’[index(i)]

+ A’[index(i+1)]; }
synchronize(tid);
for (i = tid*B; i < min(N, (tid+1)*B); i++) {

A’[index(i)] = B’[index(i)]; }}
// transform output array B
for (i = tid*B; i < min(N, (tid+1)*B); i++) {

B[i] = B’[index(i)]; }}
// index calculation for A, B and C
int index(int i) {

N’ = ceiling(N/(P*L))*P*L;
//linearize ((i mod (N’/P))/L, i/(N’/P), i mod L);
index = (i mod (N’/P))/L*P*L + i/(N’/P)*L + i mod L;
return index; }

Figure 7. Outline of the generated code for 1D Jacobi.

configurations while most C compilers do not provide variable-
length array support as in the C99 standard.

4.3 Computation Allocation Enforcement

We generate SPMD-style parallel code withP threads to en-
force computation allocation decisions. Each thread is bound
to its assigned processor through a system call and is respon-
sible for computing the iterations mapped to this processorby
physical computation allocationτ(π(~i)). Fig. 7 outlines such
generated code to compute the 1D Jacobi example.

4.4 Other Optimizations

Index Calculation The most severe problem with the code in
Fig. 7 is its high indexing cost. It is not feasible to compute
the index of every array reference with modulo and division.
With regular access functions in the original program, we apply
a set of optimizations similar to those in [1] to reduce the in-
dexing overhead, which can be viewed as one form of strength
reduction. One key observation is that within a certain range,
a transformed indexing function is still an affine expression.
For example in Fig. 7,for a givenk, elements within the range
kL≤ i ≤ kL+L−1 can be accessed sequentially. Once crossing
the boundary of strip-mined dimensions, we can also avoid the
complex index computation by finding a large constant stride.
One example with the code in Fig. 7 is that the index is in-
cremented byPL− (L − 1) when i is increased fromkL− 1
to kL. Another optimization is if a statement has array refer-
ences across boundaries of strip-mined dimensions in some it-
erations, it is possible to separate these iterations with the rest
using loop peeling. Beside above optimizations used in [1],two
additional optimizations are applied: (1) BecauseP andL are in
most cases powers of two, bitwise operations such as SHIFT
and AND are used to replace expensive multiplication, modulo
and division operations whenever possible. (2) If array elements
are accessed sequentially, loops are strip-mined in accordance
to data strip-mining to reduce overhead from boundary checks.
The code in Fig. 8 shows how the last loop in Fig. 7 is trans-
formed to reduce the indexing cost.

L1 Cache Buffering If communication-free localization is
achieved, every processor only accesses data mapped to its

ii_bound = min(N, (tid+1)*B);
index = (tid*B) / (N’>>logP)) << logL;
for (ii = tid*B; ii < ii_bound; ii=ii+L) {

for (i = ii; i < min(ii+L, ii_bound); i++,index++) {
C[i] = C’[index]; }

index = index + P*L - L; }

Figure 8. Optimizing index calculation.

local L2 cache bank. While distance locality is exploited for
the L2 cache, two problems arise with L1 cache accesses. First,
a private L1 cache is co-divided with the shared L2 cache into
P partitions, therefore only 1/P of the L1 cache capacity can be
exploited for data reuse. Second, because data mapped to the
same L2 cache bank share low-order index bits, the possibility
of conflict misses significantly increases. While this problem is
with both L1 and L2 accesses, it is more severe with L1 cache
due to its lower degree of associativity. Note that this problem
also arises with general localization and does not depend on
whether a cache is virtually- or physically-addressed because
bank interleaving is within a page frame.

To overcome the problems with L1 accesses, we copy por-
tions of arrays into pre-allocated buffers (referred to asL1
buffers) before they are actually used, if there is high data
reuse. Because L1 buffers are contiguous in memory, the L1
cache’s full capacity is exploited as long as the L1 buffers fit in
L1 cache. Conflict misses are also avoided with these address-
contiguous buffers with padding. Moreover, the utilization of
L1 buffers benefits index calculation. When accesses are across
boundaries of strip-mined array dimensions, division and mod-
ulo are often not avoidable in computing the indices. However,
with L1 cache buffering, the expensive operations are elimi-
nated in the copying step and indexing L1 buffers introduces
little overhead due to their canonical layouts.

It is challenging to bound array sections accessed by arbi-
trary references within a data tile. We therefore limit L1 cache
buffering to read-only arrays with group reuse. In practice, most
of the index functions are single index variables (SIV), which
further simplifies the task. For example, in a 2D Jacobi pro-
gram, the source arrayA(N,N) is accessed with references
A(i, j − 1), A(i, j + 1), A(i − 1, j), A(i + 1, j). Assuming we
block-distributeA along dimensioni and tile loopi with a tile
sizeTS, we copy array section from rowi−1 to rowi +TSinto
L1 buffer bu f A(TS+2,N) before the intra-tile loop consumes
buffered data.

5. Evaluation
5.1 Simulation Environment

We simulated a 16-core tiled CMP with the Virtutech Simics
full-system simulator [40] extended with timing infrastructure
GEMS [28]. Each tile was a 4GHz 4-way in-order SPARC pro-
cessor core, with 64KB split L1 instruction and data caches,a
512KB L2 bank and a router. An on-die 4×4 mesh connected
the tiles, with 16GB one-way bandwidth per link. Cut-through
routing was used in this packet-switched network. The latency
on each link was modeled as 5 cycles. We had 4GB physical
memory in our simulation configuration, which is larger than
the memory requirement of any benchmark we used. DRAM
access latency was modeled as 80ns and eight DRAM con-



trollers were placed on the edge of the chip. The simulated hard-
ware configuration is summarized in Table 5.1.

Processor 16 4-way, 4GHz in-order SPARC cores
L1 cache private, 64KB I/D cache, 4-way, 64-byte line,

2-cycle access latency
L2 cache shared, 8MB unified cache, 8-way, 64-byte

line, 8-cycle access latency
Memory 4GB, 320-cycle (80ns) latency, 8 controllers

On-chip network 4x4 mesh, 5-cycle per-link latency,
16GB bandwidth per link

Table 1. Simulation Configuration

The coherence protocol we simulated is very close to the
STATIC-BANK-DIRprotocol in [29]. We adopted a similar im-
plementation from GEMS 1.4 and made a few changes for our
experiments. With this protocol, a directory is distributed across
all the tiles as shown in Fig. 2 such that each physical address
has an implicit home tile. While our approach is not limited to
this bank mapping scheme, the simulated coherence protocol
interleaves cache lines.

5.2 Benchmark Suite

We evaluated our approach with a set of data-parallel bench-
marks, described in Table 5.2. Several of the benchmarks are
taken from [38]. Iterative benchmarks, such as Skeleton, were
set to execute 15 iterations. With non-iterative benchmarks, we
assume that data layouts can be freely chosen, while iterative
benchmarks are assumed to have the input and output arrays in
canonical layout.

Benchmark Description

Sum Compute the sum of two 1000x1000 32-bit
floating-point matrices.

Mv Compute matrix-vector product between a
1000x1000 matrix and a vector.

Demosaic Compute an RGB image from a 1000x1000 pixel Bayer
pattern, more details in [38].

Convolve Convolve a 1000x1000 monochromatic image with
a 5x5 Gaussian filter.

Life Compute Conway’s “Game of Life” on a 1000x1000 grid,
more details in [38].

2D Jacobi 2D Jacobi computation with an iterative loop.
Skeleton Compute the shape skeleton of a 2D object that is

represented as non-zero pixels, used as an example in [4].

Table 2. A data-parallel benchmark suite used in evaluation.

5.3 Experimental Results

We implemented the localization analysis framework by tak-
ing dependence information (dependence polyhedra and h-
transformations) from LooPo’s [26] dependence tester and gen-
erating statement-wise affine transformations. Currently, after
localization analysis, the parallel code is generated by hand
using the optimizations presented in Sec. 4. We compiled gen-
erated C programs with gcc 3.4 using the “-O3” optimizing flag
on an UltraSPARC III server. In order to verify the correctness
of applied transformations, we wrote a validation procedure
for every generated program, to compare with the result of a
sequential implementation with canonical array layout. Inour
current implementation, we padded array elements to powers
of two in bytes. For example, in Demosaic we used the RGBA
format instead of the RGB format. An alternative solution to

Benchmark Comm. Fully Partially
free? Localizable? Localizable? k q

Sum Yes N/A N/A 0 0
Mv No No Yes 0 0

Demosaic No Yes N/A 0 2
Convolve No No Yes 0 2

Life No Yes N/A 1 1
2D Jacobi No Yes N/A 1 1
Skeleton No Yes N/A 1 1

Table 3. Localization analysis results of the benchmarks

this problem is to have structures of arrays (SOA) instead of
arrays of structures (AOS).

Table 5.3 summarizes the localization analysis results for
the benchmarks. For all benchmarks examined, there at least
exists a computation allocation and data mapping that partially
localizes data accesses.

In order to assess the impact of computation mapping and
data layout transformation, for each benchmark we generated
four versions of code:

1. Computation allocation based on the “owner-computes” rule
and canonical data layout: referred to ascanon:ownercomputes.

2. Iteration space divided intoP chunks along the outer-
most parallel loop and canonical data layout: referred to
ascanon:staticchunk.

3. Non-canonical data layout with padding and strip-mining,
which corresponds to block-cyclic distribution, and compu-
tation allocation based on the “owner-computes” rule: re-
ferred to asnoncanon:blockcyclic.

4. Non-canonical data layout with padding, strip-mining and
permutation, corresponding to block distribution along one
dimension; computation allocation based on the “owner-
computes” rule: referred to asnoncanon:block.

Fig. 9 shows speedups with the different computation allo-
cation and data mapping schemes. A star is used to indicate
the transformation chosen by our compile-time framework for
each benchmark. As illustrated in Fig. 9, the best transforma-
tion always employs non-canonical data layout and is always
predicted by our framework. Except for Sum, each benchmark
is completely or partially localizable but not communication-
free; thus the generated code takes a block-distributed data view
to reduce communication.

We can observe significant performance improvement with
the optimization. On average, the best transformation outper-
formscanon:ownercomputesby 45.3% andcanon:staticchunk
by 16.3%. For iterative benchmarks including Life, 2D Jacobi
and Skeleton, this improvement is more significant, up to 130%
compared with
canon:ownercomputes. This is because these benchmarks have
most of their working sets staying in the L2 cache across itera-
tions and benefit from greatly reduced L2 miss latencies.

Fig. 10 shows normalized on-chip network link utilization
with different mapping schemes. On average, on-chip network
traffic is reduced by 81.1% fromcanon:ownercomputes. The
most significant link utilization reduction is with Skeleton,
which is 97.6% fromcanon:ownercomputes. The results in
Fig. 10 have implications beyond performance. Power has be-
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Figure 10. Normalized link utilization of on-chip network with
different mapping schemes.

come a first-order issue in chip design. Research has shown
that the on-chip interconnect contributes to up to 50% of total
power consumption of a chip [27]. Several hardware/software
approaches have been proposed to reduce the energy consump-
tion from the on-chip network. [36, 10, 25] Link utilization
reduction illustrated in Fig. 10 essentially translates toreduc-
tion in dynamic power dissipation over the on-chip network.

6. Related Work
There has been a large body of prior work addressing the prob-
lem of avoiding remote memory accesses on NUMA/DSM
systems, such as [30, 5]. Although our work is related in
spirit, it significantly differs from prior work in two aspects.
(i) NUCA architectures pose a very different performance is-
sue than NUMA machines. In NUCA architectures, data with
contiguous addresses are spread across L2 cache banks at a fine
granularity by a static bank mapping function. Dynamic migra-
tion of cache lines between banks is not feasible due to its com-
plexity and power consumption. In contrast, NUMA systems
allocate memory at the page level by following the “first touch”
rule or providing dynamic page allocation through software.
This allows the programmer to control data distribution with
canonical row-major or column-major layouts. (ii) To the best
of our knowledge, none of the works provide a characteriza-
tion as to when it is possible to achieve localizable computation
allocation and data mapping.

There has been prior work attempting to use data layout
optimizations to improve spatial locality in programs. Leung
and Zahorjan [24] were the first to demonstrate cases where
loop transformations fail and data transformations are useful.
O’Boyle and Knijnenburg [31] presented techniques for gen-
erating efficient code for several layout optimizations such as
linear transformations, memory layouts, alignment of arrays to
page boundaries, and page replication. Kandemir et al. [20]pre-
sented a hyperplane representation of memory layouts of multi-
dimensional arrays and show how to use this representation to
derive very general data transformations for a single perfectly-
nested loop. In the absence of dynamic data layouts, the layout
of an array has an impact on the spatial locality characteristic
of all the loop nests in the program which access the array. As
a result, Kandemir et al. [18, 19, 20] and Leung and Zahor-
jan [24] presented a global approach to this problem; of these,
[18] considered dynamic layouts. The motivating context and
our approach to solution are fundamentally different from the
above efforts.

Chatterjee et al. [6] presented a framework to determine
array alignments in data-parallel languages such as HPF. While
seemingly similar, the problem we address arises from the bank
mapping imposed by the architecture and our approach is based
on the polyhedral framework and non-canonical data layouts.

Barua et al. [2] proposed to interleave consecutive array el-
ements in a round-robin manner across the memory banks of
the RAW processor. An optimization called modulo unrolling
is applied to unroll loops in order to increase memory paral-
lelism. Extending the approach by Barua et al. [2], So et al. [37]
proposed to use custom data layouts to improve memory paral-
lelism of FPGA-based platforms. In comparison to the above
work, our study focuses on exploitation of distance locality in-
stead of memory parallelism.

Rivera and Tseng [34, 35] presented data padding techniques
to avoid conflict misses. Within a different context, inter-and
intra-array padding are employed by us to group elements into
the same cache bank.

Chatterjee et al. [8, 7, 9] studied non-canonical data layouts
such as 4D layout and different Morton layouts in matrix com-
putations. The key idea is preserving locality from a 2D data
space in the linear memory space. Although also employing
non-canonical data layouts, our study differs from the above
research in several aspects. First, our objective is to improve
the performance of data-parallel programs on tiled chip multi-
processors, while previous studies were mainly for performance
improvement on uniprocessors. Second, the mismatch between
data and memory space in our study is due to the banked cache
organization so we may separate contiguous data in the mem-
ory space. Finally, our approach considers arrays of different
dimensionality while Chatterjee et al. focused on 2D arrays.

Anderson et al. [1] employed non-canonical data layouts in
compiling programs on shared-memory machines. Our work
is related to theirs in that we also strip-mine array dimensions
and then apply permutations. To avoid conflict misses and false
sharing, the approach by Anderson et al. [1] maps data accessed
by a processor to contiguous memory locations. In comparison,
our approach attempts to spread data such that they are mapped
to the same cache bank. The second phase of our code gener-



ation framework shares some similarities with their approach,
but the first phase that performs localization analysis is very
different.

7. Conclusion and Future Work
Future chip multiprocessors will likely be based on a tiled ar-
chitecture with a large shared L2 cache. The increasing wire
delay makes exploitation of distance locality an importantprob-
lem and it has been addressed by many hardware proposals. In
this paper, we developed a compile-time framework employ-
ing non-canonical layouts to localize L2 cache accesses for
data-parallel programs, using a polyhedral model for program
transformation. Significant improvements were demostrated on
a set of data-parallel benchmarks on a simulated 16-core chip-
multiprocessor.
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