
On Soundness of Verification for Software with
Functional Semantics and Abstract Data Types

Derek Bronish, Jason Kirschenbaum, Bruce Adcock, Bruce W. Weide

The Ohio State University, Columbus, OH 43210, USA
{bronish,kirschen,adcockb,weide}@cse.ohio-state.edu

http://www.cse.ohio-state.edu

Abstract. A threat to the soundness of modular verification systems
arises from the following combination of specification and programming
language features: a semantics in which the denotation of every pro-
gram operation is a mathematical function, the opportunity to write re-
lational specifications for program operations, and support for abstract
data types. There is no apparent practical workaround for this problem
short of changing one of these features. After accounting for software en-
gineering considerations, the recommendation is to relax the first one and
to restrict the second, i.e., (1) to partition program operations into “func-
tion” operations and “procedure” operations; (2) to define the language
semantics so the meaning of each function operation is a mathematical
function, and to permit only a functional specification for a function op-
eration; and (3) to define the language semantics so the meaning of each
procedure operation is a mathematical relation, and to permit either a
functional or a relational specification for a procedure operation.

1 Introduction

If a program is verified as correct relative to its specification, then—assuming
the compiler and run-time system properly implement the language semantics—
it should operate correctly when executed. A method for software verification
that has this property is sound. Of course, a proof system that can never prove
anything is sound; in practice, we are only interested in systems that are both
sound and useful, preferably relatively complete.

The primary contributions of this paper are the identification, explanation,
and analysis of a soundness problem for useful verification systems, which arises
from the confluence of three standard features of modern specification and pro-
gramming languages: denoting every program operation by a mathematical func-
tion, the opportunity to use relational specifications in describing the behavior
to be verified, and support for abstract data types.

Section 2 begins with an overview of a modular verification of a simple pro-
gram. In the interest of presenting real examples, we write the code in pure
Lisp [1], but any (functional or imperative) language with functional semantics
would do. Our choice of Lisp is advantageous because of its clear functional se-
mantics [2] and because its later extension, CLOS [3], supports user-defined data



types. We emphasize that we do not know of a full-strength verification system
that has actually been proposed for CLOS, and note that the language would
have to be augmented with a formal specification language for verification to be
meaningful. Regardless of its somewhat hypothetical nature, though, the verifica-
tion approach described here involves nothing that the reader familiar with other
software verification methods is likely to find surprising. A rigorous but informal
argument for a parameterized program’s correctness is presented; in principle,
it could be fully formalized, even mechanized. The reader is urged to check this
argument carefully. The functions in the program have single-character names,
making it less likely that some step in the argument should sneak by on the ba-
sis of “wishful naming”. The reader is, in other words, thrust into a role similar
to that of a mechanized proof-checker. In this section, one Lisp and one CLOS
program are presented as instances of this verified parameterized program. The
reader who accepts the arguments of Section 2 should have no doubt that these
two programs are correct—and indeed, when the programs are executed, there
are no surprises.1

Section 3 shows that the proof argument of Section 2 is invalid in the pres-
ence of abstract data types with the standard method for proving correctness of
data representation [4]. It does this by exhibiting another instance of the param-
eterized program that meets all the requirements imposed during the argument
that the code is correct, yet does not meet its specification when executed.

Section 4 traces the source of the difficulty to the confluence of features men-
tioned above, and—because it stands out as a relative late-comer historically—
specifically to the introduction of user-defined abstract data types into a mix
with the other two features. In short, an accepted mechanism for “scaling up”
to deal with software engineering concerns [5] is the culprit. This section also
argues that there is no practical workaround that can salvage all three language
features.

Section 5 comments on related work, and Section 6 concludes with a rec-
ommendation for how to deal with this issue in a way that respects software
engineering considerations.

2 Modular Verification of a Simple Program Function

2.1 Framework for Modular Verification

The goal is to prove that a program unit E (e.g., code for an operation or a class)
implements its specification. By modular verification, we mean a system in which
such a proof has two properties: (1) it is based only on the specifications of the
program units that E directly depends on, and (2) the proof is done only once,
not once for every context where E is used. It is widely agreed that a verification
system must be modular in order to “scale up” to large programs so they can be
proved correct one piece at a time; this is the only way to manage the intellectual
complexity involved [5].
1 The actual code comprising these examples is available at
http://www.cse.ohio-state.edu/~bronish/public/rsrg/Soundness.html.



H

E

B Q P R

Spec (R)Spec (B) Spec (Q) Spec (P)

Spec (E)

implements

uses usesusesuses

uses

impl impl implimpl

Fig. 1. Modular reasoning about a program unit’s correctness

Figure 1 illustrates this situation for the Lisp program to be verified later in
this section. Here, E is a Lisp function that can invoke B, Q, P, and R; a client of
E might be another function H. The proof of correctness of E must not involve
the code for B, Q, P, R, or H. It must rely only on the specifications of B, Q, P,
R, and E itself—and it must be independent of H. The proof is relative: if B, Q,
P, and R implement their respective specifications, and if E has been proved to
implement its specification, then E should behave correctly in the context of any
H that relies only on the specification of E. In short, modular verification that E
implements Spec(E) involves only the part of Fig. 1 inside the dotted boundary.

2.2 Example Program to be Verified

Consider the following Lisp function, which tests equality of two lists using the
natural recursive approach:

(defun lists-are-equal (list1 list2)
(cond
((null list1) (null list2))



((null list2) nil)
(t (and (equal (car list1) (car list2))

(lists-are-equal (cdr list1) (cdr list2))))))

The strategy evinced by this code generalizes to a “project and reduce” ap-
proach for testing equality of any two “complex” values by projecting to “simple”
values which themselves are testable for equality. We can formulate this as a Lisp
function schema stripped of semantically-loaded function names:

(defun E (x1 x2)
(cond
((B x1) (B x2))
((B x2) nil)
(t (and (Q (P x1) (P x2))

(E (R x1) (R x2))))))

The reader should recognize the connection between this code and Figure 1,
and should realize that Spec(E) and the other specifications are not yet known;
the code above is just the box labeled E.

2.3 Semantics, Specifications, and What Needs to be Proved

As noted by McCarthy [6], the key feature of Lisp from the standpoint of “prov-
ing the correctness of Lisp programs” is that “Lisp functions are functions.” That
is, for purposes of mathematical reasoning about Lisp programs, the language
semantics Sem assigns as the meaning of each program function a correspond-
ing mathematical function—the obvious one [7]. For convenience, we use e as
shorthand for Sem(E), so e denotes that corresponding mathematical function;
similarly for the other program functions B, Q, P, and R. Specifically, this is
the mathematical function that the above program computes, according to the
language semantics:

e(x1, x2) =

 b(x2), if b(x1)
false, if ¬b(x1) ∧ b(x2)
q(p(x1), p(x2)) ∧ e(r(x1), r(x2)), otherwise

(?)

Let us suppose the specifications of all these program functions stipulate that
they are restricted to their intended domains, as outlined above for the equality-
testing task that the code is intended to solve. In other words, the programs
in question are not required to work as advertised unless invoked on arguments
that make sense. The signatures of the mathematical functions computed are
then as follows, where C is the mathematical type (with =) of the “complex”



things and S is the mathematical type (also with =) of the “simple” ones:

e : C × C → B
b : C → B
q : S × S → B
p : C → S

r : C → C

The formalization of the requirement that E should test equality of two C
values is:

Spec(E)
def≡ e(x1, x2) ⇐⇒ x1 = x2

The verification task is to show that the semantics for E, i.e., the mathe-
matical function shown in equation (?) above, satisfies the property demanded
by Spec(E). The proof that it does may rely only on the specifications of the
functions involved in the code. The only one of these we know for sure is:

Spec(Q)
def≡ q(z1, z2) ⇐⇒ z1 = z2

The unknown specifications will be important in the proof as well, as one
would expect. In particular, to complete the proof it will be sufficient that b, p,
and r should together satisfy the following properties:

∃ ! x : C s.t. (b(x)) (P1)
∀ x, y : C (¬b(x) ∧ ¬b(y) =⇒

(p(x) = p(y) ∧ r(x) = r(y) =⇒ x = y)) (P2)
∃ m : C → N s.t. (∀x : C (¬b(x) =⇒ m(r(x)) < m(x))) (P3)

According to the definition of modular verification, these properties must be
deducible from the specifications of Spec(B), Spec(P), and Spec(R). The reasons
these particular properties are needed will become evident in the proof that
follows.

2.4 Proof that E Implements Spec(E)

The proof of correctness is, not surprisingly, by mathematical induction, as dic-
tated by the structure of the code with its recursive call to E [8]. The proof
is divided into three parts. First, we show that x1 = x2 =⇒ e(x1, x2),
i.e., that if its arguments are equal then E reports this. Next, we show that
e(x1, x2) =⇒ x1 = x2, i.e., that if E reports its arguments are equal then in-
deed they are. Finally, we show that the code terminates, or equivalently, that the
induction is well-founded. The inductive hypothesis states that the recursive call
does in fact perform an equality test, that is: e(r(x1), r(x2)) ⇐⇒ r(x1) = r(x2);
this comes directly from Spec(E).



Proof that x1 = x2 =⇒ e(x1, x2): Assume that x1 = x2. Note that
since b is a function, b(x1) = b(x2). We proceed by case analysis to establish
e(x1, x2).

Case 1: b(x1) = b(x2) = true: By the first condition of (?), we see that
e(x1, x2) is true.

Case 2: b(x1) = b(x2) = false: Since p is a function, p(x1) = p(x2). So by
Spec(Q) we know q(p(x1), p(x2)) is true. Since r is a function, r(x1) = r(x2).
The inductive hypothesis then gives e(r(x1), r(x2)). We see now that the result
in the third case of (?) is true, so e(x1, x2) is true.

Proof that e(x1, x2) =⇒ x1 = x2: Assume that e(x1, x2) is true.
Notice from (?) that there are only two ways for this to occur: b(x1) ∧ b(x2) or
¬b(x1) ∧ ¬b(x2) ∧ q(p(x1), p(x2)) ∧ e(r(x1), r(x2)). Again we proceed by cases.

Case 1: b(x1) ∧ b(x2): In this case property (P1) implies that x1 = x2.
Case 2: ¬b(x1) ∧ ¬b(x2) ∧ q(p(x1), p(x2)) ∧ e(r(x1), r(x2)): By Spec(Q), we

know that p(x1) = p(x2). By the inductive hypothesis, we have r(x1) = r(x2),
and so by property (P2) we see that x1 = x2.

Termination/well-foundedness: Given the inductive definition (?) for E,
property (P3) is sufficient to show there are no infinite descending chains in the
series of arguments to e: there is a progress metric m that maps the first argu-
ment r(x1) in the recursive invocation of e to a natural number strictly smaller
than m(x1). The existence of m essentially ensures that invoking R “reduces the
problem.”

Both directions of the bi-implication having been established, the proof that
e(x1, x2) ⇐⇒ x1 = x2 is completed. This coupled with the termination argu-
ment implies that E does indeed implement Spec(E). �

We can now return to the lists-are-equal code and convince ourselves
that the proof is applicable. The functions match up as follows: E=lists-
are-equal, B=null, P=car, and R=cdr. Property (P1) is satisfied because there
is exactly one list for which null returns true, namely the empty list. Property
(P2) is satisfied because, by the semantics of Lisp, two lists with equal cars
and equal cdrs are equal. Property (P3) is satisfied with m as the length of the
argument (a list). This program is evidently verified, then, as an instance of the
parameterized program E.

2.5 An Example With Abstract Data Types

Now consider the following function, presented using CLOS syntax, i.e., def-
method and type restrictions on n1 and n2 in the parameter list. CLOS is used
because there are user-defined abstract data types involved. This code checks
the equality of two nats, where the mathematical model of a nat is a natu-
ral number, the mathematical model of a digit is a natural number between



0 and 9 inclusive, and the function names accurately reflect their behavioral
specifications (shown below).

(defmethod nats-are-equal ((n1 nat) (n2 nat))
(cond
((is-zero n1) (is-zero n2))
((is-zero n2) nil)
(t (and (digits-are-equal (mod-by-10 n1) (mod-by-10 n2))

(nats-are-equal (div-by-10 n1) (div-by-10 n2))))))

The significance of modular verification is that the correctness of this code
should be determined independently of the representations used for nat and
digit and of the algorithms used for the functions is-zero, digits-are-equal,
mod-by-10, and div-by-10; all that matters is that these should satisfy their
specifications. The functions match up with E=nats-are-equal, B=is-zero,
Q=digits-are-equal, P=mod-by-10, and R=div-by-10; the domains of inter-
est are C = S = N. The specifications of B, P, and R are:

Spec(is-zero)
def≡ is-zero(n) ⇐⇒ n = 0

Spec(mod-by-10)
def≡ ∃k : N s.t. (n = 10 ∗ k + mod-by-10 (n)
∧ 0 ≤ mod-by-10 (n) < 10)

Spec(div-by-10)
def≡ ∃k : N s.t. (n = 10 ∗ div-by-10 (n) + k ∧ 0 ≤ k < 10)

Property (P1) is satisfied because there is exactly one natural number for
which is-zero returns true, i.e., 0. Property (P2) is satisfied because if two
natural numbers are divided by 10 and have equal quotients and equal remain-
ders, then they are equal. Property (P3) is satisfied with m as the mathematical
value of its argument (a natural number). This program is evidently verified, as
another instance of the parameterized program E.

3 Unsoundness

Consider one final CLOS function. This code checks the equality of two sets,
where the mathematical model of a set is a finite set of elements, and the
function names accurately reflect their behavioral specifications (shown below).

(defmethod sets-are-equal ((s1 set) (s2 set))
(cond
((is-empty s1) (is-empty s2))
((is-empty s2) nil)
(t (and (elements-are-equal (member-from s1) (member-from s2))

(sets-are-equal (remove-one s1)
(remove-one s2))))))



The functions match up to the schema, with E=sets-are-equal, B=is-
empty, Q=elements-are-equal, P=member-from, and R=remove-one; the do-
mains of interest are S (the type of the set elements), and C = P(S). The
specifications are as follows:

Spec(is-empty)
def≡ is-empty(s) ⇐⇒ s = {}

Spec(member-from)
def≡ s 6= {} =⇒ member-from(s) ∈ s

Spec(remove-one)
def≡ s 6= {} =⇒ remove-one(s) = s \member-from(s)

Property (P1) is satisfied because there is exactly one set for which is-empty
returns true, i.e., the empty set. Property (P2) is satisfied because if equal ele-
ments are removed from each of two non-empty sets, and the resulting sets are
equal, then the original sets are equal. Property (P3) is satisfied with m as the
cardinality of its argument (a finite set). The program is evidently verified, then,
as another instance of the parameterized program E.

The problem is that executing this program when s1 = s2 may return false,
even though the function implementations satisfy the above specifications. The
following class and method definitions comprise one realization that leads to the
faulty behavior. The idea of this code is to use a list to represent an abstract
set. The principle of information hiding dictates that clients of set will not
manipulate or reason about the list directly, and indeed this could be enforced
via Lisp’s packaging and exporting constructs, but the syntax is omitted for
brevity. The empty-set, singleton, and set-union functions provide ways of
constructing new sets.

(defclass set () ((rep :initarg :init-val
:reader my-set-rep)))

(defmethod is-empty ((x set))
(null (my-set-rep x)))

(defmethod empty-set ()
(make-instance ’set :init-val nil))

(defmethod singleton (x)
(make-instance ’set :init-val (cons x nil)))

(defmethod set-union ((x set) (y set))
(make-instance ’set :init-val
(union (my-set-rep x) (my-set-rep y))))
; union is a built-in list function that combines
; its argument lists and throws away duplicates

(defmethod member-from ((x set))
(car (my-set-rep x)))



(defmethod remove-one ((x set))
(make-instance ’set :init-val (cdr (my-set-rep x))))

(defmethod elements-are-equal ((s1 set) (s2 set))
(sets-are-equal s1 s2))

(defmethod elements-are-equal (e1 e2)
(equal e1 e2))

One potentially confusing aspect of this implementation is the overloaded
elements-are-equal method. The first version, with parameters specialized to
be sets, allows sets-are-equal to handle a recursive set data structure (e.g.,
a set of sets of integers). The second version will be invoked in all other cases,
and relies on the built-in Lisp equal function. Once more, due to the relative
nature of modular reasoning, the argument of Section 2.4 only establishes the
correctness of sets-are-equal when the set elements are themselves sets, or
are objects for which equal correctly implements the equality predicate. This
limitation could be surmounted by parameterizing the set class with an equality
operation for its elements rather than trying to build one from scratch inside the
implementation, but the details are tangential to this work, and thus are omitted.

We can see that sets-are-equal is defective by testing the equality of two
sets that contain the same elements, and hence are equal according to the
specification, but whose internal list representations differ:

[1]> (sets-are-equal
(set-union (singleton 1) (singleton 2))
(set-union (singleton 2) (singleton 1)))

NIL

4 Analysis

What went wrong? A key part of the argument in Subsection 2.4 first appears in
Case 2 of the first part of the proof: “Assume that x1 = x2 . . . Since p is a func-
tion, p(x1) = p(x2).” The subtle problem with this argument is that, when x1
and x2 are variables of an abstract data type (in the problematic case, sets), the
conclusion p(x1) = p(x2) may not be valid even though the language semantics
says “each program function denotes a mathematical function.” There has been a
failure to distinguish between (a) the semantics of each program function being a
mathematical function on the concrete (representation) domain—where, indeed,
it is, by construction; and (b) the semantics of each program function being a
mathematical function on the abstract domain of the ADT—where evidently
it may not be. Specifically, if the mathematical set x = {1, 2} is represented
by the list (1 2) then (member-from x), as implemented by the code in Sec-
tion 3, returns 1. If that same abstract value is represented as (2 1) instead,
(member-from x) returns 2. Figure 2 illustrates this situation.



Abstract

Concrete

{1, 2}
{1}

{2}

(1)
(2)

(2 1)(1 2)
1

2
Argument Value Return Value

Fig. 2. Correspondence between abstract set values and concrete representations un-
dergoing a call to remove-one. The labels on the arrows from the arguments to the
return values indicate the element that is removed by remove-one. Notice that although
we see two representations of the same abstract value as arguments, the call produces
different abstract results. The dotted arrows indicate non-functional behavior at the
abstract level, which is incompatible with the assumption that the language semantics
assigns a mathematical function as the meaning of every program function.

An initial response to this difficulty might be that the implementation of
set should be considered defective. However, by standard arguments used in
showing the correctness of data representation, it is evident that all these meth-
ods meet their specifications. With a Lisp list as the data representation, the
null test in is-empty clearly satisfies Spec(is-empty). Likewise, using car to
return an element from the set representation in member-from is a legitimate
realization of that method’s specification. Finally, simply constructing a new
set whose representation is the cdr of the argument set’s representation ful-
fills Spec(remove-one). Each of the latter two functions meets its specification
by remaining within the envelope of behavior that the relational specification
allows. Note that member-from never returns a value from the argument’s rep-
resentation list other than its car, even though the specification licenses it to
return any element of the list. No matter which set element happens to be at
the front of the list that represents it, member-from meets its specification; sim-
ilarly, remove-one. Even if the implementation of member-from instead made a
random choice of which element from the list to return, it could still be reasoned
about in a functional manner [9]. Non-determinism is not the issue; the fact
that a functional semantics is not preserved across abstraction boundaries is the
issue.



One might suggest that the rules for proof of correctness of data represen-
tation should be changed, in order to guarantee that functional behavior in the
concrete domain always leads to functional behavior in the abstract domain
(even for relational specifications). The problem with this path is that perfor-
mance must be seriously compromised to achieve it. In this situation, each of
member-from and remove-one would have to pick the same element of the set
no matter where that element happened to be in the list representing the set.
How could they do this, knowing nothing else about the elements? Even if there
were enough information to select a canonical element (e.g., a set client could be
required to supply a total ordering on the elements that could be computed dur-
ing execution of member-from and remove-one), these two program functions,
which should have taken constant time, would instead take linear time.

One might then be tempted to disallow the aforementioned relational specifi-
cations, on the grounds that they seem in some sense discordant with the code’s
presumed functional semantics. On further reflection, however, set itself con-
stitutes one example of this position’s untenability. In general, any unordered
collection that may be filled with arbitrary data requires a way for clients to
iterate through its contents. Sets that do not offer such a mechanism are cum-
bersome in practice, as [10] demonstrates. In that work, the author specifies a set
ADT in a purely functional manner, but must immediately resort to ungainly
workarounds to compensate for its lack of relational behavior. For example, in
a proposed solution to the set-covering problem, the design forces the collection
of subsets to be passed in as a list of sets—because if they were passed in as
a set of sets (which would make logical sense), then there would be no way to
actually examine or process the subsets as the solution requires. In addition, the
proposed implementations of the ADT include an extra operation not specified
in the interface: showset. This operation evidently is intended to have relational
behavior: the two proposed implementations do not produce the same results for
the same abstract set value, yet both are claimed to have been “verified.”

A common idiom, particularly in functional languages, is to use mapcar (or
an analog of it) as an iterator to compute over a collection in an apparently
holistic rather than piecewise manner. This is not a solution to the problem,
however, since the specification of such a construct will again involve relational
rather than functional behavior in order not to tie down the implementation
to one particular order of application. Java’s java.util package serves as an
instructive example here: the interface for its Set collection specifies (albeit
informally) that the result of the iterator method is not guaranteed to return
elements in any particular order.

Another attempt to repudiate problematic cases such as set might be to
demand that we choose data representations that correspond to abstract val-
ues in a one-to-one fashion, thus collapsing functions on abstract domains and
functions on concrete domains into a single notion. Note, however, that this
amounts to a relinquishment of true abstraction. The ability to represent a sin-
gle abstract value in multiple ways is essential, not only for elegant design, but
also for efficiency [11].



5 Related Work

Hoare [4] first proposed inductive proofs for verifying the correctness of ADTs.
His primary example is indeed a set, but his formulation offers no relational
behavior. Early subsequent work along these lines focused on ADTs that were
specified algebraically rather than by a model [12], leaving the issue of relational
specification mostly obscured. However, Hoare has remarked that “the complexi-
ties of application seem to require the model-based approach” [13]. It is therefore
no surprise that virtually all modern specification methods and languages (e.g.,
Larch [14], Z [15], JML [16], Resolve [17]) are model-based [18].

Schweizer and Denzler [19] verify a set ADT by automatically generating
algebraic specifications from a proposed implementation, and showing that these
semantically match the desired specifications. As in [10], the verified set suffers
from low utility, allowing only a limited range of small integer elements due to
the chosen implementation: an array of Boolean values.

Tucker and Zucker [20] develop a language-independent theoretical frame-
work for formal reasoning about abstract data types, and specifically observe
that a relational approach is necessary for specification, even when the programs
themselves are purely functional. Other work on specifications with functional
languages includes EML [21].

More generally, the message from related work on verification is that sound-
ness matters. History has demonstrated that unsoundness is not merely an un-
fortunate technical shortcoming of some verification systems, but also a potential
public-relations problem that has led some to question the very idea of program
verification [22]. It should, therefore, be viewed as a challenge to the software
verification community when any new or even slightly modified verification sys-
tem is proposed: determine whether the system is sound, and if not, identify the
factors that contribute to its unsoundness.

For example, thirty years ago, Cook [23] explained how repeated arguments
to calls (e.g., P (x, x)), and similarly global variables as arguments to calls, can
render Hoare logic unsound. This was a valuable observation because it served as
a clear warning about specific pitfalls to be avoided by those proposing modular
verification systems.

This is hardly the only hazard, though. Two specific documented threats to
soundness are potentially aliased pointers/references to mutable objects (a vari-
ant on Cook’s observation about repeated arguments), and the failure to dis-
tinguish fully between mathematical and programming entities [24]. Heym [25]
illustrates how it is easy to introduce unsoundness when generating verification
conditions on the basis of very plausible but informal arguments, and cites ex-
amples of such mistakes in earlier approaches. He then proceeds to prove the
soundness of his own proposed method for verification.

Soundness can be compromised as well by the absence of clear semantics for
specifications and code. A new paper [26] claims to have achieved “full functional
[and modular] verification of linked data structures” in Java. The paper makes
a number of interesting observations, but it does not address the soundness of
the proposed verification method in any formal sense. Indeed, this would be



impossible without considering the formal semantics of both the specification
language and Java. Yet there are two plausible meanings for the specifications
in the paper. The paper says its specifications “completely capture the desired
behavior of the Java data structure implementations”, and argues that “there is
a broad consensus on how they should behave.” With one obvious interpretation
of the specifications, the components are of limited utility to clients and are
quite different in behavior from their counterparts in the Java libraries, so this
interpretation seems dubious. However, with the other obvious interpretation—
the one in which the specifications really do “capture the desired behavior”—
there is a more serious problem. The proof rules’ assumption that the built-in
Java “==” operator coincides with mathematical equality in the specifications,
combined with this more likely interpretation of the specifications, subverts the
soundness of the verification method.

Repeated arguments, potentially aliased references to mutable objects, failure
to make all appropriate distinctions between programming and mathematical en-
tities and operators, and vague semantics are potential sources of unsoundness in
modular verification systems. This paper shows that there is another—certainly
not the last one.

6 Conclusion and Recommendation

A threat to sound verification arising from the confluence of purely functional
semantics, relational specifications, and abstract data types has been identified
and explained. The latter two properties have been argued to be indispensable
on what amount to software engineering grounds. We therefore conclude that
purely functional semantics must be relaxed. This is not to say that no program
entities may correspond to mathematical functions; indeed this is quite a use-
ful attribute in many cases. It is recommended instead that purely functional
code be distinguished, both semantically and syntactically, from code that may
exhibit relational behavior in the abstract domain, even when it perforce acts
functionally on a concrete data representation.

Specifically, we recommend the following approach to work around this sound-
ness problem: (1) partition program operations into “function” operations and
“procedure” operations; (2) define the language semantics so that the meaning of
each function operation is a mathematical function, and permit only a functional
specification for a function operation; and (3) define the language semantics so
the meaning of each procedure operation is a mathematical relation, and per-
mit either a functional or a relational specification for a procedure operation.
A sound and relatively complete verification system that supports both speci-
fication of relational behavior and efficiently implementable ADTs seems to be
possible under this scenario [25].

Finally, we observe that the natural desire to have purely functional rather
than relational semantics is similar to the desire to have only abstraction func-
tions rather than abstraction relations as the basis for verifying data representa-
tions for ADTs. Functions are somewhat simpler to deal with in both situations;



the problem is that they are just a little too simple in both situations. The need
for abstraction relations arises from an expressiveness problem [11]. The need
for program operations whose meanings are relations arises from a soundness
problem that apparently cannot be addressed in any other acceptable way.

Acknowledgments

The authors are grateful for healthy skepticism and constructive feedback from
Paolo Bucci, Steve Edwards, Harvey M. Friedman, Wayne Heym, Gary Leavens,
Brandon Mintern, Bill Ogden, Nasko Rountev, Don Sannella, Murali Sitaraman,
Paul Sivilotti, Hampton Smith, Neelam Soundarajan, and Anna Wolf. This work
was supported in part by the National Science Foundation under grant DMS-
0701260.

References

1. McCarthy, J.: LISP 1.5 Programmer’s Manual. The MIT Press (1962)
2. McCarthy, J.: A Basis for a Mathematical Theory of Computation. In Braffort, P.,

Hirschberg, D., eds.: Computer Programming and Formal Systems, North-Holland,
Amsterdam (1963) 33–70

3. Bobrow, D.G., DeMichiel, L.G., Gabriel, R.P., Keene, S.E., Kiczales, G., Moon,
D.A.: Common lisp object system specification. SIGPLAN Not. 23(SI) (1988)
1–142

4. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1(4)
(1972) 271–281

5. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12) (1972) 1053–1058

6. McCarthy, J.: Lisp - notes on its past and future. In: LFP ’80: Proceedings of
the 1980 ACM conference on LISP and functional programming, New York, NY,
USA, ACM (1980) .5–viii

7. Boyer, R.S., Moore, J.S.: Program verification. Journal of Automated Reasoning
1(1) (1985) 17–23

8. Boyer, R.S., Moore, J.S.: Proving theorems about lisp functions. J. ACM 22(1)
(1975) 129–144

9. Burton, F.W.: Nondeterminism with referential transparency in functional pro-
gramming languages. Comput. J. 31(3) (1988) 243–247

10. Harrison, R.: Abstract data types in standard ML. John Wiley & Sons, Inc., New
York, NY, USA (1993)

11. Sitaraman, M., Weide, B.W., Ogden, W.F.: On the practical need for abstraction
relations to verify abstract data type representations. IEEE Trans. Softw. Eng.
23(3) (1997) 157–170

12. Guttag, J.V., Horowitz, E., Musser, D.R.: Abstract data types and software vali-
dation. Commun. ACM 21(12) (1978) 1048–1064

13. Hoare, C.A.R., Jones, C.B., eds.: Essays in computing science. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1989)

14. Guttag, J.V., Horning, J.J.: Larch: languages and tools for formal specification.
Springer-Verlag New York, Inc., New York, NY, USA (1993)



15. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1989)

16. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations
and tools supporting detailed design in Java. In: OOPSLA 2000 Companion,
Minneapolis, Minnesota. (2000) 105–106

17. Edwards, S.H., Heym, W.D., Long, T.J., Sitaraman, M., Weide, B.W.: Specifying
components in resolve. SIGSOFT Softw. Eng. Notes 19(4) (1994) 29–39

18. Wing, J.: A specifier’s introduction to formal methods. Computer 23(9) (Sep
1990) 8, 10–22, 24

19. Schweizer, D., Denzler, C.: Verifying the specification-to-code correspondence for
abstract data types. In: Proc. 6th Conf. on Dependable Computing for Critical
Applications, Garmisch-Partenkirchen, Germany (1997)

20. Tucker, J.V., Zucker, J.I.: Toward a general theory of computation and specification
over abstract data types. In Akl, S.G., Fiala, F., Koczkodaj, W.W., eds.: Advances
in Computing and Information ICCI ’90, International Conference on Computing
and Information, Niagara Falls, Canada, May 1990. Volume 468. Springer-Verlag,
New York, N.Y. (1991) 129–133

21. Kahrs, S., Sannella, D., Tarlecki, A.: The definition of Extended ML: A gentle
introduction. Theoretical Computer Science 173(2) (1997) 445–484

22. Fetzer, J.H.: Program verification: the very idea. Commun. ACM 31(9) (1988)
1048–1063

23. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM J. Comput. 7(1) (1978) 70–90

24. Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B.W., Long, T.J., Bucci,
P., Heym, W.D., Pike, S.M., Hollingsworth, J.E.: Reasoning about software-
component behavior. In: ICSR-6: Proceedings of the 6th International Conerence
on Software Reuse (LNCS). Volume 1844., Springer-Verlag (2000) 266–283

25. Heym, W.D.: Computer Program Verification: Improvements for Human Reason-
ing. PhD thesis, Department of Computer and Information Science, The Ohio
State University, Columbus, OH (December 1995)

26. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked
data structures. In: ACM Conf. Programming Language Design and
Implementation (to appear), http://lara.epfl.ch/~kuncak/papers/

ZeeETAL08FullFunctionalVerificationofLinkedDataStructures.pdf. Accessed
4/24 (2008)


