
Distinguishing Movement from Failure in Dynamic
Distributed Systems

Matthew Lang and Paolo A. G. Sivilotti
Computer Science & Engineering

The Ohio State University
Columbus, Ohio 43210

{langma,paolo}@cse.ohio-state.edu

Nigamanth Sridhar
Electrical & Computer Engineering

Cleveland State University
Cleveland, Ohio 44115
n.sridhar1@csuohio.edu

Abstract

One of the main challenges in building fault-tolerant asynchronous systems lies in that, given a finite amount of
time, it is not possible to distinguish a slow process from a process that has failed. Failure detectors—oracles that
provide a set of processes suspected to have failed—were introduced to overcome this fundamental barrier while
still maintaining the separation between algorithm and architecture.

Until recently, failure detector research had not been extended to models of computation with dynamic com-
munication topologies (e.g., sensor networks with mobile nodes). One of the first works tomake this extension
introduced3Pm

l
, a failure detector that distinguishes failure from movement, and provided an implementation of

the failure detector for sensor networks.
Unfortunately, the specification of3Pm

l
is unimplementable; the existing algorithms make strongerassumptions

about the underlying network than are stated—or even possible—in the model.
In this work, we provide a formal model of computation that incorporates mobility and failure, thereby providing

a framework for reasoning about algorithms in environmentswith dynamic topologies and process failures. We prove
the unimplementability of3Pm

l
in our model and suggest an alternate specification for a mobility-tolerant failure

detector. An algorithm implementing this alternate specification is presented, followed by an analysis of the expected
behavior and cost of the algorithm in different environments.

I. INTRODUCTION

In asynchronous distributed systems, there is no bound on the time required for a process to execute an instruction,
nor is there a bound on message delay. Because of this, it is impossible to distinguish between processes that have
failed and processes that are slow or have sent messages thatare yet to be received. As a result, fundamental
problems, such as consensus, are impossible to solve [11].

Failure detectors[4] were introduced by Chandra and Toueg to overcome this issue. Failure detectors are oracles
that, when queried by an algorithm, give an approximation ofthe set of processes that have failed. Most of the
work surrounding failure detectors focuses on providing this approximation to each process and is framed by a
model of computation that assumes a static network topology.

However, there are systems, such as sensor networks, where the network topology may not be static. Nor, in a
system such as this, is it necessary for all processes to be aware of all failed processes in the system. In fact, it
may not even be feasible.e.g., a sensor network where the storage capacity of nodes is limited and the size of the
network is very large.

In [16], Sridhar introduced the notion of a local failure detector for a system where the network topology is
dynamic. The failure detector,3Pm

l , allows processes to distinguish between neighboring processes that have
failed and those that have moved (and therefore appear to have failed)without requiring the failure detector for an
individual process to have knowledge of all failed processes in the network. The need for such a failure detector
is motivated by noticing that there are fundamental problems, such as the distributed resource allocation problem
[7], where it is important to distinguish between a neighboring processfailing while holding a resource and alink
between processes failing. In the first case, a process requesting access to the held resource may choose to allow

This work was supported in part by a CAREER grant from the NSF (CNS-0746632).

itself to starve by lowering its priority, thereby allowingits other neighbors to make progress (as in [15], [14]). In
the second case, the process may not need to sacrifice its own progress if a resource held by a process that has
moved is no longer considered shared.

a dc eba dc eb
Fig. 1. Local Failure Detection Preserves Progress

To illustrate, consider Figure 1. In the figure, a gray node indicates a process holding a resource. In case one,
processb has failed while holding a resource. To allowd and c to make progress, processa allows itself to
starve. In case two, the link betweena and b has failed. If a is able to detect this link failure, it need not starve
itself to preserve the progress ofd and c .

Unfortunately, the specification of3Pm
l is unimplementable: it requires processes to distinguish between network

topology changes that are unobservable. In addition, the algorithm presented along with3Pm
l is flawed—there

are circumstances where observable changes in network topology are not recognized by processes.
This work makes the following contributions: we develop a formal model of computation that provides a context

to reason about process failure and mobility and allows algorithm designers to have a concise abstract view of
environments where failure and mobility are present; we prove the impossibility of3Pm

l in our model; we present
an alternate specification that is implementable but still useful in the context of process mobility; and finally, we
present an algorithm implementing our alternate specification, along with a discussion of its expected behavior in
practice and possible optimizations.

This paper is organized as follows. Section II discusses related work and presents the informal model described
in [16]. Section III introduces a model of computation incorporating failure and mobility. Section IV contains the
proof of impossibility of 3Pm

l . Section V presents our alternate specification and sections VI and VII contain
an implementation and its proof of correctness. Section VIII describes possible optimizations to our algorithm and
discusses its behavior under real-world conditions. Finally, section IX concludes the paper.

II. M OBILITY-AWARE FAILURE DETECTION

In [16], the need for a computation to distinguish process mobility from process failure is discussed; to meet
this need, the specification of an eventually perfect local failure detector that can make this distinction,3Pm

l is
introduced.

The work most closely related to3Pm
l is that related to partitionable networks [9] and disconnection detectors

[17]. Neither thread of research, however, considers the mobility of individual nodes.
The specification of3Pm

l was given in terms of three layers; here we describe them informally.
Each processp in the system is comprised of four layers: a local computation, a discovery layerDISC , a

local failure detectorLFD , and a mobility detection layerMOBILE . Each process has a set of processes it
may potentially communicate with: itscommunication pattern. Each processp has an associatedneighbor setNp

andsuspect setSp ⊆ Np ; these two sets are the only elements of a process’s state that is shared between layers.

• The Local Computation Layer
Each process performs a local computation. The local computation on processp may read fromNp and Sp

and exchange messages only with processes inNp . The local computation usesSp as an estimate of failed
processes in its neighborhood. The other three layers provide guarantees about the accuracy of the contents
of Np and Sp .
Informally, the local computation layer expects an implementation of 3Pm

l to ensure that all processes in its
communication pattern are in its neighbor set and all processes that are outside of its communication pattern

are not in its neighbor set. Furthermore, it expects that allfailed processes in its neighborhood are in its
suspect set.

• The Discovery LayerDISC

The discovery layer on processp , DISCp adds processes toNp . The discovery layer ensures that if a
correct processq remains in the communication pattern ofp long enough,DISCp will eventually discover
q ’s presence and addq to Np .
The discovery layer forp should not be cognizant ofp ’s movement; the location of a process or the set
of processes with which it may communicate must be discovered via communication with other processes in
the network.
The exact implementation ofDISCp is network architecture dependent: in a sensor network where channels
are defined by the ability of other processes to send and receive radio signals, a straightforward implementation
of DISCp would be to periodically broadcastp ’s presence and, upon receiving such a signal fromDISCq ,
add q to Np .

• The Local Failure DetectorLFD

Each processp is equipped with a failure detectorLFDp . LFDp reads fromNp to generate the suspect
set Sp .
The LFD layer satisfies a version of the3P specification [4] adapted to our system model. Namely, for
a correct processp , LFDp satisfies the following two properties:

– Local Completeness:If a processq crashes and remains in the neighbor set ofp indefinitely, then there
is a time after whichp permanently suspectsq .
If a processq moves outside of the communication pattern ofp and remains outside it, then there is a
time after whichp permanently suspectsq .

– Eventual Local Accuracy:If q is correct, there is a time after whichq is never suspected byp if q

remains inNp and in the communication pattern ofp .
Like the discovery layer, theLFD layer is network architecture-dependent. The purpose ofLFD is to
discover processes with whichp can no longer communicate (whether as a result of movement orfailure).
Existing implementations of the3P failure detector are suitable for this purpose, as a processfailing in a
static network has the same behavior as a process moving in a dynamic network; neither process may be
communicated with by its former neighbors.
There are many implementations of the3P specification (such as heartbeats [1], adaptive timeouts [10],
pinging [12], leases [2], etc.) that may be used as implementations of LFD , depending on the characteristics
and timing properties of a given network architecture.

• The Mobility DetectorMOBILE

The mobility detection layer determines, for each processq ∈ Sp , whether q has indeed failed or ifq is
no longer in the communication pattern ofp . The purpose of theMOBILE layer is to prevent the local
computation from blocking on non-failed neighbors that have moved away (and appear to have failed).
The MOBILE layer, unlike the DISC and LFD layers, should not be dependent on the network
architecture; it should provide guarantees to the local computation on the contents ofNp and Sp regardless
of message delay and differences in relative clock speeds.

In the next section, we will formally define a model of computation for process mobility. The design of this
model is informed by the separation of processdetectionfrom processsuspiciondiscussed in this section. We will
then give the specification of3Pm

l in our model and show that there are no implementations ofMOBILE that
satisfy 3Pm

l .

III. M ODEL OF COMPUTATION

Our system model is that of an asynchronous distributed system; message delay, clock drift, and the time required
by a process to execute a single step are all finite but unbounded. Our model is similar to that of [3] but adapted
to model a network of mobile processes.

Formally, a system is comprised of a set of processesΠ = {p0 . . . pn} . All processes are connected pair-wise
by a channel; for a pair of processesp and q , the channelchannel(p, q) is the set of unreceived messages sent

by p to q .
There is a discrete global clockT ordered by< .
1) Failure and Communication Patterns:Processes are assumed to befail stop and do not recover. Afailure

pattern is a monotone functionF : T −→ P(Π) that models the occurrence of failures in an execution1. If
p ∈ F(t) then p may neither send nor receive messages with any of its neighbors at or after timet . Let the function
correct(F) denote the set of processes that do not fail inF . i.e., p ∈ correct(F) if (∀ t ∈ T :: p 6∈ F(t)) .
Let crashed(F) denote the set of processes{q ∈ Π|q 6∈ correct(F)} .

A communication patternmodels the set of processes that a processes may successfully send a message to at
each point in time. A communication pattern is a functionC : Π × T −→ P(Π) that satisfies the following two
properties:

• The communication pattern is symmetric:p can successfully send a message toq if and only if q can
successfully send a message top . (∀ p, q ∈ Π :: (∀ t ∈ T :: p ∈ C(q, t) ⇔ q ∈ C(p, t))) .

• The communication pattern is irreflexive:(∀ p ∈ Π :: (∀ t ∈ T :: p 6∈ C(p, t))) .
• The graph induced over correct processes by the communication pattern at each timet is connected.(∀ t ∈

T :: (∀ p, q 6∈ F(t) : p 6= q : (∃ p0, p1, . . . pn ∈ Π : p0 = p ∧ pn = q : p1 ∈ C(p0, t) ∧ p2 ∈
C(p1, t) ∧ . . . ∧ pn ∈ C(pn−1, t))) .

Note that the definition of the communication pattern allowsprocesses to move after they have failed.
2) Algorithms and Executions:An algorithm A is a set of deterministic automata, one for each process. We

use the notionAp to denote the automaton for processp . The basic unit of computation is astepof A .
A configurationis a tuple 〈s, c〉 where s is a function giving value to processes’ local variables, and c is a

function giving value to the channels between all process. Each processp has the setsNp and Sp as elements
of local state. Steps are functions from configurations to configurations.

An executionE = 〈I,A,F , C, T,D,H〉 of an algorithmA is a seven-tuple whereI is the initial configuration
of the system,A is a sequence of steps inA , F is a failure pattern,C is a communication pattern, andT is
a function mapping each step inA to a time t ∈ T subject to the constraint that subsequent actions inA are
assigned increasing time values.D and H arediscoveryand failure detector histories, respectively.

A discovery historyis a functionD : Π × T −→ P(Π) . If q ∈ D(p, t) then we say thatq is discovered byp
at time t . A discovery historyD is valid for an executionE if it satisfies the following:

• If a non-failed processq is in the communication pattern of a correct processp , either q is discovered,q
leaves the communication pattern ofp , or q fails.
(∀ p ∈ correct(F) :: (∀ q ∈ Π :: (∀ t ∈ T :: q ∈ C(p, t) ∧ q 6∈ F(t) ⇒ (∃ t′ ∈ T :: q ∈ D(p, t′) ∨ q 6∈
C(p, t′) ∨ q ∈ F(t′)))))

• If a processq is discovered by a correct processp , it was in the communication pattern ofp at some
previous time.
(∀ p ∈ correct(F) :: (∀ q ∈ Π : p 6= q : (∀ t ∈ T :: q ∈ D(p, t) ⇒ (∃ t′ ∈ T : t′ ≤ t : q ∈
C(p, t′)))))

• If a processq is permanently outside the communication pattern of a correct processp , there is a time after
which q is never discovered byp .
(∀ p ∈ correct(F) :: (∀ q ∈ Π :: (∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : q 6∈ C(p, t′))) ⇒ (∃ t ∈
T :: (∀ t′ ∈ T : t′ ≥ t : q 6∈ D(p, t′)))))

• If processq fails, there exists a time after whichq is never discovered by any correct process.
(∀ q ∈ crashed(F) :: (∀ p ∈ correct(F) :: (∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : q 6∈ D(p, t′)))))

A failure detector historyis a function H : Π × T −→ P(Π) that models the set of processes believed to
be failed by processp at each point in time. For this paper, we stipulate thatH satisfies a version of the3P
specification adapted for a situation in which processes aremobile. A failure detector historyH is valid for an
executionE if it satisfies the following:

• Completeness:If a processq remains in the communication pattern of a processp after failing, then p

eventually and permanently suspectsq .

1where P(A) denotes the power set of the setA

(∀ p ∈ correct(F) :: (∀ q ∈ crashed(F) :: (∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : q ∈ C(p, t′))) ⇒ (∃ t ∈
T :: (∀ t′ ∈ T : t′ ≥ t : q ∈ H(p, t′)))))

• Accuracy:If a correct processq remains in the communication pattern of a correct processp permanently,
then there is a time after whichq is never suspected byp .
(∀ p, q ∈ correct(F) :: (∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : q ∈ C(p, t′))) ⇒ (∃ t ∈ T :: (∀ t′ ∈ T :

t′ ≥ t : q 6∈ H(p, t′))))
• Locality: If there is a time after which a processq is permanently outside of the communication pattern of

a correct processp then p permanently suspectsq .
(∀ p ∈ correct(F) :: (∀ q ∈ Π : q 6= p : (∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : q 6∈ C(p, t′))) ⇒ (∃ t ∈
T :: (∀ t′ ∈ T : t′ ≥ t : q ∈ H(p, t′)))))

A step of Ap consists of a finite number of the following operations:

• Changes to internal state. An step may make changes to the process’s local state subject to the restriction
that it may not add processes toNp or Sp .

• Message send operation. If the step occurs at timet and involves the send of a messagem to processq
such that q ∈ C(p, t) , the message is added to the channel: ifchannel(p, q) = M before the step, then
channel(p, q) = M ∪ {m} afterwards and we say the send operation wassuccessful. If p sends a message
m to processq such thatq 6∈ C(p, t) then the message is not added to the channel: the state of the channel
after the step is the same as it was before and we say the send operation hasfailed.

• Message receive operations. As in [3] message receive operations behave as follows: If the step contains a
receive operation, then either a messagem ∈ channel(q, p) is delivered top and removed from the channel
or a null message is received. If there does not exist aq such thatchannel(q, p) 6= ∅ then a null message
is received. Non-determinism is introduced into the model by not constraining the order of message delivery
and by allowing null messages to be received when a process’schannels contain messages. However, every
message inchannel(q, p) is eventually delivered; after a message is sent, it is received after a finite but
unbounded number of receive operations.
Note that this definition allows a message to be received byp at time t from some q 6∈ C(p, t) if q was
in C(p, t′) at some timet′ < t .

Steps ofAp may not readF , C , T , D , or H .
We assume the same constraints on executions as [3] with respect to process fairness; each correct process takes

an infinite number of steps inA .
If step α in Ap occurs in A at a time t such thatp ∈ F(t) , then the step has no effect on state. That is,

if the step occurs in a configuration〈s, c〉 , then the configuration after the action occurs is〈s, c〉 . Actions are
atomic—processes do not fail nor does the communication pattern change in the middle of a step.

An executionE begins in the initial configurationI and proceeds by taking steps ofA given by A . A step
αi in A occurs in the configuration given by the result of the previous stepαi−1 or the initial configuration (in
the case ofi = 0) and the value ofD and H at time T (αi) .

Supposeαi−1 resulted in a configurationσ = 〈s, c〉 . The configuration thatαi occurs in isσ′ = 〈s′, c′〉 where
c′ = c and for all processesp , s′(a) = s(a) for all variables a 6= Np or a 6= Sp . The values ofs′(Np) and
s′(Sp) are given byD and H : s′(Np) = s(Np) ∪ {q| (∃ t ∈ T : T (αi−1) < t ≤ T (αi) : q ∈ D(p, t))} and
s′(Sp) = s′(Np) ∩ {q|q ∈ H(p, T (αi))} .

We will use the notationσi = 〈si, ci〉 to denote the configuration that stepαi occurs in. For an executionE ,
the traceσ produced byE is the sequenceσ = 〈σ0, σ1, . . .〉 .

We will also defineNp(t) to be the value ofsi(Np) if there exists a stepαi such thatT (αi) = t . If there does
not exist such a step, lett′ be the least time greater thant such that there exists an actionαi where T (αi) = t′

and let Np(t) = si(Np) . Let Sp(t) be defined similarly.
It is important to note that in the operational view of the system described in section II, the discovery layer

and local failure detector are components of a process; here, we deliberately make them a part of the model of
computation. This separation simplifies reasoning about algorithms that execute within the model. In practice, there
will be a components ofp much like the ones described in the previous section runningon a local process. To

show that these components are correct, one must verify thata particular implementation produces sequences of
values of Np and Sp that are possible sequences ofNp and Sp produced by validD and H . For the rest of
the paper, a processp suspecting a processq meansq is in Sp .

IV. I MPOSSIBILITY OF 3Pm
l

In [16], Sridhar proposed the3Pm
l specification for a mobility-aware local failure detector.An algorithm A

satisfies3Pm
l if the following properties are satisfied2:

The following are quantified over all executions:
• Strong Local Completeness: There exists a time after which all correct processes suspect all crashed processes

in their communication set.
(∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : (∀ p ∈ correct(F) :: (∀ q ∈ crashed(F) :: q ∈ C(p, t′) ⇒ q ∈

Sp(t
′)))))

• Eventually Strong Local Accuracy: There exists a time after which no correct process suspectsanother correct
process in their neighbor set and the neighbor set of all correct processes are infinitely often equal to their
communication set.

– (∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : (∀ p, q ∈ correct(F) :: q ∈ Np(t
′) ⇒ q 6∈ Sp(t

′))))
– (∀ p ∈ correct(F) :: (∀ t ∈ T :: (∃ t′ ∈ T : t′ ≥ t : Np(t

′) = C(p, t′))))

• Suspicion Locality: There exists a time after which all processes suspected by acorrect process are in its
neighbor set.
(∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : (∀ p ∈ correct(F) :: Sp(t

′) ⊆ Np(t
′))))

These properties indeed represent a failure detector that can distinguish between mobility and failure. However,
these properties are too strong: they require aMOBILE implementation to be able to distinguish between a
process that fails and a process that moves and subsequentlyfails without sending any messages.

A. Impossibility of3Pm
l

First, we will show that in the general case,3Pm
l is unimplementable. Our proof will exploit the properties

that 3Pm
l guarantees about processes that fail at a timet and the communication set of which change at a time

later than t . This is sufficient to show that3Pm
l is unimplementable; however, the case used to illustrate the

impossibility of 3Pm
l can be ruled out by slightly weakening the specification. To show that the weakened version

of the specification is still unimplementable, we will also show that it is not possible to implement3Pm
l even if

processes’ communication patterns do not change after theyfail.
Informally, 3Pm

l is unimplementable because an algorithm implementing it must be able to distinguish between
the two executions shown in Figure 2. In the figure,a , b , and c are processes and edges between processes
represent the communication pattern.

In the first execution, the communication pattern remains constant throughout the execution;a ’s communication
pattern is b and c and b ’s communication pattern isa . At some point in time,c fails.

In the second execution, the communication pattern changes; initially a ’s communication pattern isb and c

and initially b ’s communication pattern isa . Then, at some later time, processc moves and subsequently fails,
without being discovered byb . Since b did not discoverc before it failed (and cannot discover it after it fails),
b will never suspectc and behave as it would in the first execution. This violates the Strong Local Completeness
property of the3Pm

l specification, which requiresb to suspectc .
The first proof of impossibility follows this intuition, except c moves after it fails. We will formalize the above

intuition when we discuss the impossibility of a slightly weaker version of the3Pm
l specification.

Theorem 4.1:There does not exist an algorithmA such thatA satisfies the3Pm
l specification.

Proof: By contradiction. For a contradiction assume there does exist such anA .
Let Π = {a, b, c} and let E = 〈I,A,F , C, T,D,H〉 be an execution ofA satisfies the following:
• {a, b} ∈ correct(F) , c 6∈ F(T (α0)) , and tc ∈ T is the least time such thatc ∈ F(tc) .
• For all t ∈ T , C(a, t) = {b, c} and C(b, t) = {a} .

2These properties are stated in terms of our model,3Pm

l was originally stated informally.

a c b a c b
a c b a c b a c b

a c bN = { b , c }a N = { a }b N = { b , c }a N = { a }b N = { b , c }a N = { a }b
N = { b , c }a N = { a }b N = { b , c }a N = { a }b N = { b , c }a N = { a }b1 .

2 .
Fig. 2. Indistinguishable Computations

• There exists a timet such that for allt′ ≥ t , c ∈ H(a, t′) and c ∈ H(b, t′) . This is a valid failure detector
history for E as c is eventually permanently suspected bya .

Let σ be the trace produced byE . SinceA satisfies3Pm
l , by the Eventual Strong Local Accuracy property,

it is true that Nb(t) is equal toC(b, t) for an infinite number of values oft ∈ T . Then, since Suspicion Locality
requiresSb(t) ⊆ Nb(t) for all t , there does not exist a timetb such that for allt ≥ tb , c ∈ Sbt .

Now let E′ be an execution such thatE′ = 〈I,A,F , C′, T,D,H〉 . Let tm be a time greater thantc and let
C′ such that for allt less thantm and processesp , C′(p, t) = C(p, t) and for all t greater than or equal totm ,
C(a, t) = {b} and C(b, t) = {a, c} . Since tm > tc , D is a valid discovery history forE′ . Also, since there is a
time after whichc is permanently suspected byb , H is a valid failure detector history forE′ .

Now, sinceA is correct, by the Strong Local Completeness property of3Pm
l there is a timet′b such that for

all t ≥ t′b , c ∈ Sb(t) .
For a contradiction, we will show thatσ is produced byE′ .
Since F , A , T , D , and H are the same inE and E′ , it suffices to show by induction oni that for all i ,

σi is the configuration in which stepαi occurs in E′ .
First, since I is the initial configuration ofE′ and the values ofF , C , D , and H are the same as inE

before tc , σ0 is the configuration in which stepα0 occurs in E′ .
Now assumeσi is the configuration in whichαi occurs in E′ . We will show thatσi+1 is the configuration in

which αi+1 occurs in E′ . Let γ be the configuration that results fromαi in E and let γ′ be the configuration
that results fromσi in E′ .

Since steps are deterministic, the only way forγ to be a different configuration fromγ′ is for the value ofC
to differ from C′ at time T (αi) and as a result, a send operation ofαi fails.

There are two cases for the value ofT (αi) : T (αi) < tm and T (αi) ≥ tm . If T (αi) < tm , then C agrees
with C′ and γ′ = γ . If T (αi) ≥ tm , since tm > tc and c has already failed, messages sent to or fromc fail
regardless of the change in the communication pattern and again it is the case thatγ = γ′ .

Since D and H are valid detection and failure detector histories forE′ and T (αi+1) is the same value in both
E and E′ , the configurations induced byD and H from γ and γ′ are equal. Soσi+1 is the configuration in
which αi+1 occurs in E .

Then σ is produced byE′ . However, we have shown that both(∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : c ∈ Sb(t)))
holds for σ (since σ is produced byE′) and (∀ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : c 6∈ Sb(t))) holds for σ

(since σ is produced byE), which is a contradiction.
Then there does not exist an algorithmA such thatA satisfies3Pm

l .

This establishes our result; however, one may note that the proof relies on a process’s communication pattern
changing after it fails (i.e., the process fails and subsequently moves) and that it is unreasonable to expect a process
detects the existence of a process that no longer communicates and moved into its communication pattern. This
suggests a slightly weaker specification of3Pm

l —one in which processes that do not change their communication
pattern after failing must be permanently suspected by members of their communication pattern. This specification
is unimplementable as well.

Theorem 4.2:An execution E = 〈I,A,F , C, T,D,H〉 of an algorithm A has stationary failed processesif
(∀ p ∈ crashed(F) :: (∀ t ∈ T :: p ∈ F(t) ⇒ (∀ t′ ∈ T : t′ ≥ t : C(p, t) = C(p, t′)))) .

There does not exist an algorithmA such that all executions ofA with stationary failed processes satisfy the
3Pm

l properties.
Proof:
For a contradiction suppose there does exist such an algorithm A . Let Π = {a, b, c} and letE = 〈I,A,F , C, T,D,H〉

be an execution such thatE satisfies the following:
• {a, b} = correct(F) , c 6∈ F(T (α0)) , and tc is the leastt such thatc ∈ F(t) .
• Let T (αi+1) = tc and let T (αi) = tp . Let T be such that there exists a timetm such thattp < tm < tc .
• For all t ∈ T , C(a, t) = {b, c} and C(b, t) = {a} .
• There exists a timet such that for allt′ ≥ t , c ∈ H(a, t′) and c ∈ H(b, t′) . This is a valid failure detector

history for E as c is eventually permanently suspected bya .
Notice that E is an execution with stationary failed processes.
By the definition of discovery histories, there does not exist a time t ≥ tc such thatc ∈ D(b, t) .
As in Theorem 4.1, letσ be the trace produced byE . SinceA satisfies3Pm

l , by the Eventual Strong Local
Accuracy propertyNb(t) is equal to C(b, t) for an infinite number of values oft ∈ T . Then, by Suspicion
Locality, there does not exist a timetb such that for allt ≥ tb , c ∈ Sb(t) .

Now let E′ = 〈I,A,F , C′, T,D,F〉 where C′ is such that for allt < tm and processesp , C′(p, t) = C(p, t)
and for all t ≥ tm , C(a, t) = {b} and C(b, t) = {a, c} . Notice that bothD and H are valid histories for
E′ since c fails after tm and botha and b permanently suspectsc . Also notice thatE′ is an execution with
stationary failed processes.

As before, sinceA is correct, by the Strong Local Completeness property of3Pm
l there is a timet′b such

that for all t ≥ t′b , c ∈ Sb(t) .
We will show that σ is produced byE′ ; as before, it suffices to show that for alli , σi is the configuration

in which αi occurs in E′ .
As before,σ0 is the configuration in which stepα0 occurs in E′ .
Now supposeσi is the configuration in which stepαi occurs inE′ . We will show thatσi+1 is the configuration

in which αi+1 occurs in E′ . This follows from similar reasoning to the previous theorem; in this case, however,
the only disagreement betweenC and C′ occurs at a time immediately prior toc failing. After c fails, no step
of Ac has any effect on state, so no different configuration can result from a step aftertp .

Then σ is produced byE′ . As in the previous theorem, we have shown that both(∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥
t : c ∈ Sb(t))) holds for σ (since σ is produced byE′) and (∀ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : c 6∈ Sb(t)))
holds for σ (since σ is produced byE), which is a contradiction.

Then there does not exist an algorithmA such thatA satisfies3Pm
l for all executions with stationary failed

processes.

It should be noted that3Pm
l also requires implementations to exhibit correct behaviorwhen the communication

pattern is not quiescent. If processes move infinitely often, a correct algorithm must be able to detect this, even
though it may never be able to observe the movement.

V. SPECIFICATION OF AMOBILITY-AWARE FAILURE DETECTOR

Since the specification for3Pm
l is unimplementable, we propose a mobility-aware failure detector specification

that still provides useful guarantees to the computationallayer and is implementable; an implementation is given
in the next section.

Our specification differs from3Pm
l in that we weaken the requirement that a process suspect failed processes

within its communication pattern; we only require that processes which consider a failed process to be a neighbor
suspect it. We also make the completeness and accuracy properties conditional on the communication pattern being
quiescent.

In the following, let Q(C) ≡ (∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : (∀ p ∈ Π :: C(p, t) = C(p, t′)))) . That
is, Q(C) is true if the communication pattern eventually stabilizes.

Our mobility-aware failure detector specification is as follows:
• Completeness:If the communication pattern eventually stabilizes, thereis a time after which it is permanently

the case that all correct processes suspect incorrect processes that are considered neighbors.
Q(C) ⇒ (∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : (∀ p ∈ correct(F) :: (∀ q ∈ crashed(F) :: q ∈
Np(t

′) ⇒ q ∈ Sp(t
′)))))

• Accuracy:If the communication pattern eventually stabilizes, thereis a time after which it is permanently the
case that no correct process is suspected by any other correct process.
Q(C) ⇒ (∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : (∀ p, q ∈ correct(F) :: q 6∈ Sp(t

′))))
• Locality:

1) The suspect set of a correct process is always a subset of its neighbor set.(∀ p ∈ correct(F) :: (∀ t ∈
T :: Sp(t) ⊆ Np(t)))

2) If the communication pattern stabilizes, there is a time after which it is permanently the case that all
correct processes are in another correct process’s neighbor set if and only if they are in its communication
pattern.
Q(C) ⇒ (∃ t ∈ T :: (∀ t′ ∈ T : t′ ≥ t : (∀ p, q ∈ correct(F) :: q ∈ C(p, t′) ⇔ q ∈ Np(t

′))))

Even though this specification provides weaker guarantees to a client, it is still useful—processes are still able to
differentiate between movement and failure. Though our specification does not guarantee that processes that move
and subsequently fail are removed from a process’s neighborset, it does provide the guarantees necessary fora to
make progress in the example given in Figure 1: the difference betweenb failing and b moving will be detected.

Our requirement of quiescence is similar to the assumptionsmade when reasoning about self-stabilizing algorithms—
that the system is not perturbed while the algorithm is stabilizing—in that it simplifies the specification and simplifies
reasoning about implementations. An algorithm implementing the specification provides a correct view of the system
after a “sufficiently long” period of quiescence. Stating our properties in terms of an infinitely long period of
quiescence eliminates the need to discuss exactly what duration of time is “sufficiently long.” It has been noted that
in practice, the most common cases of topology perturbationoccur when battery sources degrade over time and
links begin to fail ([6]). As batteries are replaced, new links are formed. It has been noted that in these types of
systems, there are long periods where the topology remains static; it is in these periods that algorithms implementing
the specification make corrections to nodes’ view of the system.

VI. A LGORITHM

Our implementation of the mobility-aware failure detectorspecification, theMD algorithm, is a diffusing
computation [8], [13]. TheMD algorithm is designed to run periodically. After each successful run of the algorithm,
the neighbor set and suspect set of each correct process is updated to remove processes that are suspected of failure
by that process but are not suspected of failure by at least one other process that considers the suspected process
a neighbor. By doing so, theMD algorithm guarantees that eventually all correct processes are not suspected by
any other correct process.

The MD algorithm, in contrast to the algorithm presented in [16], distributes the set of allcorrect processes to
every process in the system. This simplifies reasoning aboutthe correctness of the algorithm. We realize that in a
setting where the number of failed processes or links is muchsmaller than the size of the entire network, it may
be wasteful to share the list of correct processes throughout the network. We presentMD as a general solution
and discuss optimizations that can reduce both the number ofmessages exchanged and the size of messages in
Section VIII.

In the following, we refer toNp as the neighbors ofp and Sp as the processes suspected byp .
Processes are in one of three states:idle, collect, or distribute. Each run of theMD algorithm (given

in Algorithm 1) begins with each process in theidle state and starts with a uniqueroot process initiating a round
of the computation by setting its state tocollect and sending a message to all its neighbors,Nroot , containing
the set of processes not suspected byroot .

When anidle process receives a message from a neighbor, it enters thecollect state and sets itsparent

to be the process from which it received the message and itschildren to all other neighbors. It then initializes a
set X to be the set of processes it does not suspect and then sends this set to all of its children .

If a process in thecollect state receives a message from a child, it removes that process from its children

and unions the set of processes it received withX . After a process has received messages from all its children, it
sends the accumulated set of unsuspected processes to its parent and sets its state todistribute.

When theroot process has received messages from all processes in itschildren set, it begins a second round
of the computation by sending a message containing the set accumulated in the first round to all its neighbors and
enters theidle state.

When a process in thedistribute state receives a message it passes the message on to its neighbors and
enters theidle state.

The algorithm is complete when all processes are in theidle state and the set of processes that at least one
process does not suspect has been distributed to every correct process.

In the presentation of the algorithm, we ignore the circumstances under which the algorithm will not terminate.
This can occur if processes fail or the communication pattern changes during a run of the algorithm. We also do
not describe how aroot process is chosen or how a newroot process is selected if theroot fails. We assume
that the algorithm is run periodically by a client that manages the selection of aroot process and interrupts the
computation to prevent non-termination by setting processes states toidle after some network-dependent timeout.
The proof of correctness makes clear assumptions about the state of the system during a terminating run of the
algorithm. Given the model of computation and the assumption of quiescence, these conditions are eventually met.
It is the responsibility of the client to ensure that the algorithm is run under these circumstances.

VII. PROOF OFCORRECTNESS

In the following, let E = 〈I,A,F , C, T,D,H〉 be an arbitrary execution ofMD .
The Completeness and the first Locality properties follow trivially from the program text, the model of compu-

tation, and the definition ofH .
To show the second Locality the Accuracy properties, we firstintroduce a few lemmas.
In the following, if Q(C) is assumed to hold, lettm ∈ T be a time after which the failure and communication

patterns remains constant. Such a time is guaranteed to exist by the definition ofQ and the fact thatΠ is finite.
Lemma 7.1:If Q(C) there is a timetq ≥ tm after which the following properties hold:
1) If a processq has failed andq ∈ Np for some correct processp , q ∈ Sp . Formally, (∀ p ∈ correct(F) :: (∀ q ∈

crashed(F) :: (∀ t ∈ T : t ≥ tq : q ∈ Np(t) ⇒ q ∈ Sp(t)))) .
2) If p and q are correct processes andq ∈ Np , then q ∈ Sp if and only if q is not in the communication

set of p . (∀ p, q ∈ correct(F) :: (∀ t ∈ T : t ≥ tq : q ∈ Np(t) ⇒ (q ∈ Sp(t) ⇔ q 6∈ C(p, t))))
3) If p and q are correct processes andq is in the communication set ofp , then q is infinitely often added to

Np . (∀ p, q ∈ correct(F) :: (∀ t ∈ T : t ≥ tq : (∃ t′ ∈ T : t′ ≥ t : q ∈ C(p, t′) ⇒ q ∈ Np(t
′)))) .

Proof: AssumeQ(C) . Notice that for all t ≥ tm , C(p, t) = C(p, tm) for all p and F(t) = F(tm) .
For property one, by the completeness and locality definitions of H , there exists a timet ≥ tm for each failed

processq and correct processp such that for allt′ ≥ t if q ∈ C(p, t′) then q ∈ H(p, t′) . Then, by the definition
of the model of computation and the first Locality property, if q ∈ Np(t

′) , q ∈ Sp(t
′) . Also, by the definition of

the model of computation ifq 6∈ C(p, t′) and q ∈ Np(t
′) , q ∈ Sp(t

′) .
Let t1 be the maximum of all sucht . t1 satisfies property one.
For property two, letp and q be correct processes. By the accuracy property ofH and the model of computation,

there exists a timet ≥ tm such that for all t′ ≥ t , if q ∈ Np(t
′) and q ∈ Sp(t

′) then q 6∈ C(p, t′) . By the
locality property ofH and the model of computation, there exists a timet such that for allt′ ≥ t , if q ∈ Np(t

′)
and q 6∈ C(p, t′) then q ∈ Sp(t

′) .
Let t2 be the maximum of all sucht . t2 satisfies property two.
For the third property, letp and q be correct processes such thatq ∈ C(p, tm) . By the definition of D and

the definition of tm , for all t ≥ tm there exists at′ ≥ t such thatq ∈ D(p, t′) . tm satisfies property three.
Finally, let tq = max(t1, t2, tm) . tq satisfies the three properties listed.
Lemma 7.2:If the root process begins theMD algorithm by entering thecollect state at timetstart then

the algorithm terminates with all correct processesp in theidle state with Xp = Xroot at time tend , provided
the following hold for all t such thattstart ≤ t ≤ tend and for all p such thatp 6∈ F(tstart) :

Algorithm 1 Mobility Detection Algorithm for Processp : MDp

Program MDp

initially statep = idle

assign
p = root ∧ statep = idle −→

statep := collect

childrenp := Np \ Sp

Xp := Np \ Sp

forall r ∈ childrenp

sendXp to r

p = root ∧ statep = distribute ∧ childrenp = ∅ −→
forall r ∈ Np \ Sp

sendX to r

statep = idle ∧ receiveN from q −→
parentp := q

childrenp := Np \ Sp \ {q}
Xp := N ∪ (Np \ Sp)
forall r ∈ childrenp

sendXp to r

if children 6= ∅ thenstatep := collect

elsestatep := distribute

sendXp to parentp

statep = collect ∧ receiveN from q −→
childrenp := childrenp \ {q}
Xp := Xp ∪ N

if children = ∅ thenstatep := distribute

sendXp to parentp

statep = distribute ∧ receiveN from q −→
forall r ∈ Np \ Sp \ {q}

sendN to r

• F(t) = F(tstart) .
• C(p, t) = C(p, tstart) .
• Np(t) = Np(tstart) and Sp(t) = Sp(tstart)
• If q ∈ Np(t) \ Sp(t) then q ∈ C(p, t) and p ∈ Nq(t) \ Sq(t) .
• (∃ p0 . . . pn : p0 = root ∧ pn = p : p1 ∈ Np0

(t)\Sp0
(t) ∧ p2 ∈ Np1

(t)\Sp1
(t) ∧ . . . ∧ pn ∈ Npn−1

\Spn−1
) .

Proof: Assume theroot process begins theMD algorithm by entering thecollect state at timetstart and
if at tend all processes are in theidle state, the properties stated in the lemma hold.

We will show for all processesp 6∈ F(tstart) , transitioning to thecollect state from theidle state and was
therefore not inG1 or G2 . To enter thecollect state,p must have received a message from a processq already
in the graph. Soparentp = q and p is a leaf, preserving the tree structure. Processes are onlyremoved from

G2 when they enter thedistribute state. A processp entering thedistribute state must have received a
message from all its children, including any processq that considersp its parent. Since such aq only sends a
message top after entering thedistribute state,q 6∈ V2 . Then only leaves are removed fromG2 , preserving
the tree structure.

Notice that when all process enter thecollect state,G1 is a spanning tree of all processes not inF(tstart) .
To show that the first phase terminates, we make use of ametric. Define the metricM as the tuple(|{p ∈

Π \ F(tstart)|statep = distribute}|, |{p ∈ Π|statep = collect|) 3. Let values of M be lexicographically
ordered. NoticeM is bounded above (by(|Π \ F(tstart)|, 0)).

We show that ifM = (k, j) then eventuallyM > (k, j) if M 6= (|Π \ F(tstart)|, 0) .
Let M = (k, j) where j > 0 and consider a processp 6∈ F(tstart) such thatstatep 6= distribute . There

are two cases:
• p is idle. Consider any path top from the root process following the neighbor sets of processes. From

the assumptions there is such a path, and sinceroot initiated the computation there is at least one process
on any path inG2 . Let q ∈ V2 be the last such process on a path. Then there is a processv ∈ Nq such
that v 6∈ V2 (and therefore isidle). Since q ∈ V2 , stateq = collect . Then q has sent or will send a
message tov . So eventuallyv ∈ V2 and the metric increases.

• p is in thecollect state. Thenp ∈ V1 and p ∈ V2 . If there is another processq such thatstateq = idle

then the previous case applies. So assume there does not exist such a q . Since G1 is a tree andG2 is a
sub-tree ofG1 , let q be the last process on a path fromroot through p such thatq ∈ V2 . Since q is
the last process on the path, any node (if any) which considered q a parent has entered thedistribute
state and therefore sentq a message. Also, since all processes are in thecollect or distribute state,
all processes which did not considerq a parent sentq a message. Thenq will eventually receive these
messages and enter thedistribute state, increasing the metric.

Then M eventually increases. SinceM is bounded above, eventually all processes are in thedistribute
state.

For the second phase of the algorithm, notice that if theroot process is in thedistribute state,childrenroot =
∅ and root sendsXroot to its neighbors. When a processp in thedistribute state receives a message with
a set of processesN , it assignsXp = N , sends the message to its neighbors, and enters theidle state.

The proof that all processes receive the set of processes sent by root is similar to the proof that the first phase
terminates and is omitted. Since all processes eventually receive the set of processes sent byroot , all processes
eventually enter theidle state and theMD algorithm terminates.

Lemma 7.3:Assume the root process begins theMD algorithm (by entering thecollect state) at timetstart

and the last process enters thedistribute at time tend and for all t such thattstart ≤ t ≤ tend and for all
p such thatp 6∈ F(tstart) the following hold:

• F(t) = F(tstart) .
• C(p, t) = C(p, tstart) .
• Np(t) = Np(tstart) and Sp(t) = Sp(tstart) .
• If q ∈ Np(t) \ Sp(t) then q ∈ C(p, t) and p ∈ Nq(t) \ Sq(t) .
• (∃ p0 . . . pn : p0 = root ∧ pn = p : p1 ∈ Np0

(t)\Sp0
(t) ∧ p2 ∈ Np1

(t)\Sp1
(t) ∧ . . . ∧ pn ∈ Npn−1

\Spn−1
) .

Then X =
⋃

p∈Π\F(tstart)

Np(tend \ Sp(tend)) at the root process.

Proof: Assume the root process begins theMD algorithm at time tstart and the last process enters the
distribute at time tend and the properties listed above hold for allt such thattstart ≤ t ≤ tend .

First notice, as in the previous Lemma, that the graph induced by the parent relation for processes in the
distribute state at timetend forms a spanning tree. Aleaf is a process that no other process considers its
parent. Apath is a sequence of processes starting with a leaf and followingthe parent relation.

We will show that at timetend the last processp on any path is in a state where
⋃

u∈path

(Nu(tend)\Su(tend)) ⊆ Xp

by induction on the length of the path. In the following assume the time istend .

3where |A| is the cardinality of a setA

For paths of length1 observe that a processp assigns X = N ∪ (Np \ Sp) before assigningstate =
distribute .

Now assume the property holds for paths of lengthi . We will show that it holds for paths of lengthi+1 . Let p be
the last process in a path of lengthi+1 . Sincestatep = distribute , it has received messages from all its children,
including the child process preceding it on the path, sayq . Since q is the last process in the path beforep , it is
the last process on a path of lengthi . Then, by the induction hypothesis,

⋃

u∈(path\{p})

(Nu(tend) \Su(tend)) ⊆ Xq .

Since statep = distribute , q has sent a message containingXq to p and p has assignedXp = Xq∪(Np\Sp) .
Then Xp ⊇

⋃

u∈(path\{p})

(Nu(tend) \ Su(tend)) ∪ (Np(tend) \ Sp(tend)) . Then
⋃

u∈path

(Nu(tend) \ Sp(tend)) ⊆ Xp .

Then the property holds for all paths.
The root process, sayp , is the last process on all paths. Then for all paths,

⋃

u∈path

(Nu(tend) \ Su(tend)) ⊆ Xp

at time tend .
Observe that theMD algorithm on a processu never adds a processv ∈ Su or v 6∈ Nu to Xu . Then, since

Nu and Su remain constant betweentstart and tend and all processes are in a path, it is the case that at time
tend , Xp =

⋃

u∈Π\F(tend)

(Nu(tend) \ Su(tend))

Theorem 7.1:If Q(C) then MD satisfies the secondLocality property of the mobility-aware failure detector
specification.

Proof: AssumeQ(C) .
⇒ Direction. First note thatMDp only removes a process fromNp if it is in Sp . Therefore, aftertq given by

Lemma 7.1, if q is removed fromNp at time t ≥ tq then eitherq ∈ F (t) or q 6∈ C(p, t) . Since by Lemma 7.1
correct processes in the communication set ofp are infinitely often added toNp and these neighbors are never
removed, there is a timet ≥ tq such that if q ∈ C(p, t) then q ∈ Np(t) and remains so thereafter.

⇐ Direction. By contrapositive. We show that there is a timet after which if q 6∈ C(p, t) then q 6∈ Np(t) for
all correct processesp and q .

First, we know by the forward implication that there is a timet ≥ tq such that for each pair of correct processes
p and q if q ∈ C(p, t) it is the case thatq ∈ Np(t) . Furthermore, since thist is greater thantq , q 6∈ Sp(t) .

Now, since Q(C) holds and by the definition ofD , there is a timet′ after which q will not be added toNp

for any p such thatq 6∈ C(p, t′) .
If the MD algorithm is initiated after these times described, the conditions listed in Lemma 7.3 are met. Then,

by Lemma 7.3,X =
⋃

p∈Π\F(tend)

(Np \ Sp) at the root when all processes are in thedistribute state.

Since for all correct processesq there exists a correct processp such thatq ∈ Np and q 6∈ Sp at that point,
q ∈

⋃

p∈Π\F(tend)

(Np \ Sp) . By Lemma 7.2,MD terminates andN is distributed to all correct processes.

Suppose there exists a processp that receivesX at time t and it is the case thatq ∈ Np and q 6∈ C(p, t) . By
Lemma 7.1,q ∈ Sp . By the program text, it is the case thatq will be removed fromNp .

ThereforeMD satisfies the second Locality property of the mobility-aware failure detector specification algo-
rithm.

The Accuracy property follows directly from the second Locality property and Lemma 7.1.
Then MD is a correct implementation of a mobility-aware failure detector.

VIII. D ISCUSSION

A. Performance ofMD

The MD algorithm is an implementation of the mobility-aware failure detector specification. There are several
refinements of theMD algorithm that may be better suited for detecting process movement in a network where
the cost of communication may be quite high (such as a sensor network).

The MD algorithm is a diffusing computation. As a coarse-grained analysis, notice that for a single instance
of the computation (beginning with theroot process entering thecollect state and ending with all processes

entering theidle state), the message complexity isO(|Π|2) —each process sends each message to all its neighbors.
In each phase of the algorithm, the message size isO(Π) .

The detection timeTD , mistake recurrence timeTMR , and mistake duration timeTM [5] of the MD algorithm
are the same as the3Pm

l algorithm presented by Sridhar [16] (with the adjustment incost for the missing second
phase of the3Pm

l algorithm). If the diameter of the graph induced in the first phase of theMD algorithm
is δ , τm is the average-case message transmission delay, the duration in time between two consecutive runs of
the algorithm isρg , the probability that theMD algorithm terminates in a given run ispt , and TD(H) is the
detection time ofH , then the average mistake duration ofMD is ρg+3·δ·τm

1−pt
+ TD(H) .

The first opportunity for optimization is the size of messages: since the size of the messages exchanged depends
on the size of processes’ neighbor sets and suspect sets, themessage size may be reduced if the number of suspected
processes in the system is low compared to the number of unsuspected processes. For example, if process movement
or failure is a rare occurrence and the local failure detector used by each process is reliable (in the sense that its
mistake duration time is low and its mistake recurrence timeis high), it may be more efficient to exchange the
suspect sets of processes and a set of processes “exonerated” by other processes.

The second opportunity for optimization is in reducing the total number of messages sent to perform the
computation. Since the algorithm is run periodically, it ispossible to pipeline the process of collecting information
about processes neighbors with distributing the set collected in the previous run of the algorithm. That is, the
second phase of the algorithm may be eliminated if theroot process distributes the value ofXroot collected in
the previous run of the first phase of the algorithm when it initiates the computation. This optimization reduces
the overall number of messages sent at the cost of increasingmessage size and increasing the response time of the
algorithm: processes must wait until the algorithm is run again before the results of the previous run are distributed.

Another possible optimization is to take into account the amount of time a process has been suspected by another
process. Our algorithm may remove processes from its neighbor set which have not failed nor moved; if a process
were to only remove a process from its neighbor set if anotherprocess has “heard from” the suspected process at a
later time, the number of occurrences of this can be reduced.Without a global clock, this can be done by keeping
track of the duration of time elapsed between the last time a process heard from a process or began to suspect it
and the current time.

B. Expected-Case Behavior

The MD algorithm is correct; it guarantees the weaker properties of the mobility-aware failure detector speci-
fication. However, in practice, the observed behavior of thealgorithm may be that of the stronger3Pm

l . We saw
in section IV that the obstacle that prevented the3Pm

l specification from being implementable was that processes
may change their communication pattern and fail without being detected by other processes. If it can be guaranteed
that processes which move are discovered before they fail (i.e., processes exhibit a stronger notion of failure than
fail-stop), then theMD algorithm satisfies the stronger specification.

In addition, the algorithm does not require quiescence in order to provide an accurate picture of the network; if
the rate of change in the communication pattern is less than the time required for a run of the algorithmand the
response times of the components implementing the discovery and failure histories have a “fast enough” response
time to provide a process with a updated view of which processes a node can communicate with. In practice, these
requirements are not difficult to ensure ([18]).

IX. CONCLUSIONS

In networks where the communication topology is dynamic andprocesses may fail, it is important for processes
to be able to determine whether or not a process has moved or failed, especially if resources are shared between
processes in a neighborhood. However, the previously proposed3Pm

l failure detector, is not implementable without
a stronger model of failure than fail stop or assumptions about the network architecture.

We have presented a model of computation that captures process mobility and failure. Our model is useful
not only for reasoning about mobility and failure (as demonstrated by our proof of impossibility of3Pm

l), but
also provides algorithm designers with an abstract view of an environment where mobility and failure, as well as
mechanisms for detecting mobility and failure, are present.

We also presented a revised specification of a mobility-aware failure detector that weakens the properties of
3Pm

l while still providing client systems with guarantees that can be used to prevent and limit starvation.
Finally, we presentedMD , an implementation of a mobility-aware failure detector. The version ofMD pre-

sented, though simple, may be optimized for different operating conditions and under certain realistic circumstances,
exhibits the behavior of3Pm

l .
This is not to say that we completely addressed the issue of detecting the difference between failure and mobility

within the model we presented, though. Future work may explore what properties a mobility-aware failure detector
can guarantee given more assumptions about the operating environment’s network architecture and analyze the
performance of refinements ofMD in different networks with different models of the cost of communication.

REFERENCES

[1] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: A timeout-free failure detector for quiescent reliable communication.
In Workshop on Distributed Algorithms, pages 126–140, 1997.

[2] Romain Boichat, Partha Dutta, and Rachid Guerraoui. Asynchronous leasing. InWORDS ’02: Proceedings of the The Seventh IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002), page 180, Washington, DC, USA, 2002.
IEEE Computer Society.

[3] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for solving consensus. In Maurice Herlihy,
editor,Proceedings of the 11th Annual ACM Symposium on Principles of Distributed Computing (PODC’92), pages 147–158, Vancouver,
BC, Canada, 1992. ACM Press.

[4] Tushar Deepak Chandra and Sam Toueg. Unreliable failuredetectors for reliable distributed systems.J. ACM, 43(2):225–267, 1996.
[5] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On the quality of service of failure detectors. InDSN ’00: Proceedings of the

2000 International Conference on Dependable Systems and Networks (formerly FTCS-30 and DCCA-8), page 191, Washington, DC,
USA, 2000. IEEE Computer Society.

[6] Andrew R. Dalton, Jason O. Hallstrom, Hamza A. Zia, and Nigamanth Sridhar. Improving network link quality in embedded wireless
systems. InProceedings of the3rd Workshop on Dependable Embedded Systems, pages 43–48, Leeds, UK, Oct 2006.

[7] Edsger W. Dijkstra. Hierarchical ordering of sequential processes.Acta Informatica, 1(2):115–138, 1971.
[8] Edsger W. Dijkstra and C.S.Scholten. Termination detection for diffusing computations.Inf. Proc. Letters, 11(1):1–4, 1980.
[9] Christof Fetzer and Karin Högstedt. Rejuvenation and failure detection in partitionable systems. InPRDC ’01: Proceedings of the 2001

Pacific Rim International Symposium on Dependable Computing, page 154, Washington, DC, USA, 2001. IEEE Computer Society.
[10] Christof Fetzer, Ulrich Schmid, and Martin Susskraut.On the possibility of consensus in asynchronous systems with finite average

response times. InICDCS ’05: Proceedings of the 25th IEEE International Conference on Distributed Computing Systems, pages
271–280, Washington, DC, USA, 2005. IEEE Computer Society.

[11] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process.J. ACM,
32(2):374–382, 1985.

[12] I. Gupta, T. Chandra, and G. Goldszmidt. On scalable andefficient distributed failure detectors, 2001.
[13] Jayadev Misra and K. M. Chandy. Termination detection of diffusing computations in communicating sequential processes. ACM

Trans. Program. Lang. Syst., 4(1):37–43, 1982.
[14] Scott M. Pike and Paolo A. G. Sivilotti. Dining philosophers with crash locality 1.icdcs, 00:22–29, 2004.
[15] Paolo A.G. Sivilotti, Scott M. Pike, and Nigamanth Sridhar. A new distributed resource-allocation algorithm withoptimal failure

locality. In Proceedings of the 12th IASTED Internation Conference on Parallel and Distributed Computing and Systems, volume 2,
pages 524–529. IASTED/ACTA Press, November 2000.

[16] Nigamanth Sridhar. Decentralized local failure detection in dynamic distributed systems. InProceedings of the25th IEEE International
Symposium on Reliable Distributed Systems (SRDS ’06), pages 143–152, Leeds, UK, October 2006.

[17] Lynda Temal and Denis Conan. Failure, connectivity anddisconnection detectors. InUbiMob ’04: Proceedings of the 1st French-
speaking conference on Mobility and ubiquity computing, pages 90–97, New York, NY, USA, 2004. ACM.

[18] Hamza A. Zia, Nigamanth Sridhar, and Shivakumar Sastry. Failure detectors for wireless sensor-actuator networks. Technical Report
CSU-ECE-TR-07-04, Cleveland State University, Electrical and Computer Engineering, 2007.

