
RDMA Service using Dynamic Page Pinning: An Onloading Approach

K. VAIDYANATHAN , M. SCHLANSKER, J. MUDIGONDA, N. BINKERT AND D. K. PANDA

Technical Report
Ohio State University (OSU-CISRC-5/08-TR21)



RDMA Service using Dynamic Page Pinning: An Onloading Approach

K. Vaidyanathan

Comp. Science and Engg.,

Ohio State University

vaidyana@cse.ohio-state.edu

M. Schlansker, J. Mudigonda, N. Binkert

Advanced Architecture Lab

HP Laboratories

{mike schlansker,jayaram.mudigonda,nathan.binkert}@hp.com

D. K. Panda

Comp. Science and Engg.,

Ohio State University

panda@cse.ohio-state.edu

Abstract

Remote Direct Memory Access (RDMA) has proven ben-
eficial to high-performance computing tasks and shows
great promise for commercial computing tasks such as
network-based file systems, distributed databases, and re-
mote procedure calls. While existing RDMA implementa-
tions do provide efficient one-sided, inter-node remote mem-
ory access, they do not preserve all of the benefits of virtual
memory. Further, RDMA memory regions are either man-
aged directly by users (requiring user control over system
critical resources) or by using complex NIC hardware. We
address these limitations by using a software-centric on-
loading approach and demonstrate it on a Ethernet plat-
form. Our approach exploits the abundant compute cy-
cles in future many-core processors to perform tasks such
as page pinning, DMA startup/completion, page releasing,
flow control and page fault handling. Our architecture pro-
vides access to objects in unpinned virtual memory, simpli-
fies the NIC hardware, and ensures robust system behavior
by managing memory within trusted kernel code.

1 Introduction

Many high-performance networks such as Infini-
Band [5], 10-Gigabit Ethernet [1], Quadrics [16],
Myrinet [7] and JNIC [18] support Remote Direct Mem-
ory Access (RDMA) [3] to provide high-performance and
scalability to applications. While there are multiple RDMA
standards, in this paper, we use the generic term to de-
note one-sided inter-node memory access. Unlike two-
sided sends and receives, one-sided operations access re-
mote memory without requiring the remote application’s
participation. RDMA often combines one-sided execution
with OS-bypass to achieve low latency and high bandwidth.
This provides network-centric application primitives that
achieve three major objectives: data is delivered without
expensive software-based copies; concurrency is improved
when one-sided access occurs without remote application

cooperation; application processing is reduced when asyn-
chronous remote processing is moved away from the appli-
cation. RDMA defines two primitives: aput writes to, and
agetreads from remote memory.

In the high-performance computing domain, the utility
of RDMA is already proven [12, 13]. MPI is the most pop-
ular standard for parallel computing and networks such as
InfiniBand, Quadrics, etc., use RDMA to accelerate MPI’s
two-sided messaging. More recently, MPI also includes di-
rect support for one-sided communications that exploits op-
timized RDMA. RDMA’s get and put operations are nat-
ural communication primitives for Partitioned Global Ad-
dress Space (PGAS) Languages, such as Unified Parallel C
(UPC) [2] and Co-Array Fortran [14], that incorporate ben-
efits from message passing’s scalability and shared mem-
ory’s ease-of-programming.

RDMA also offers potential in data-center environ-
ments [19]. The distributed applications [20] hosted in
these environments such as web and application servers,
file systems, caching and resource management services
can significantly benefit from RDMA for achieving data-
center-wide scalability. Researchers have proposed sev-
eral lower-level mechanisms such as Sinfonia [4], Khaz-
ana [8], DDSS [21] to build efficient data-center sub-
systems including cluster file system, distributed lock man-
ager, and databases. These mechanisms typically deal with
memory-based objects and manipulate these objects fre-
quently. Thus, it is important to provide efficient distributed
manipulation of memory-based objects usingget and put
operations to increase the performance and scalability.

While existing Remote Direct Memory Access (RDMA)
provides a foundation, a closer inspection indicates that to-
day’s RDMA is not suitable for many of these environ-
ments. Firstly, existing RDMA implementations do not pre-
serve all of the benefits of virtual memory to applications
such as the illusion of using more memory than that is phys-
ically present and the protection capabilities for memory re-
gions that are shared among user programs. Secondly, the
memory regions used for RDMA are typically managed by
users in an independent manner. Multiple users making in-

1



dependent decisions can lead to starvation of resources and
robustness issues (e.g., a system crash due to unavailable
pages). Networks such as Quadrics address some of these
limitations by using complex NIC hardware that maintains
the page tables and frequently interacts with the operat-
ing system. In this paper, we address these limitations by
proposing a software-centric onload approach. The salient
features and main contributions of the proposed approach
are:

1. Our approach exploits the abundant compute cycles in
future many-core processors to perform RDMA tasks.
Our experimental results are measured on a working
prototype and demonstrate a low-overhead for per-
forming needed operations in the critical path.

2. Unlike many existing networks, our design preserves
the key capabilities that are provided by virtual mem-
ory. The design allows access to more virtual memory
than is physically present and supports access protec-
tion for client applications. This is especially impor-
tant in complex multiple program environments asso-
ciated with commercial computing.

3. Our design utilizes a kernel helper thread to manage
memory pages leading to a robust and well controlled
environment for managing the virtual memory subsys-
tem. This compares to existing approaches which re-
quire that users manage memory pages or that pages
are managed through complex NIC hardware.

4. Our design simplifies the NIC hardware by on-
loading RDMA tasks such as page pinning, DMA
startup/completion, page unpinning, handling page
faults and flow control to the kernel helper thread. Fur-
ther, the presence of a kernel helper thread avoids repli-
cation of page table entries and provides faster access
to page tables and helps in easier maintenance. In ad-
dition, there are no changes/updates required in NIC
hardware as changes are made to the internal virtual
memory subsystems.

Further, due to the presence of a kernel helper thread
in our design, application-specific tasks such as distributed
queue insertions/modifications/deletions, locking opera-
tions and several other memory-based operations can be on-
loaded, thus providing opportunities to revise the design and
implementation of many subsystems in multi-program envi-
ronments.

The rest of the paper is organized as follows. Section 2
provides a brief background on RDMA capabilities offered
by existing high-performance networks, the JNIC architec-
ture and the registration issues with RDMA. Detailed design
of our RDMA prototype is discussed in Section 3. We eval-
uate our RDMA prototype and present the results in Sec-

tion 4. In Section 5, we present the related work. We con-
clude the paper in Section 6.

2 Background and Motivation

In this section, we present the capabilities of RDMA op-
erations in high-speed networks, the JNIC architecture and
the registration issues with RDMA.

2.1 RDMA Operations in High-Speed Networks

Several high-speed networks such as InfiniBand, 10-
Gigabit Ethernet, Quadrics, and Myrinet provide one-sided
memory semantics communication model. Here, Remote
Direct Memory Access (RDMA) operations are used which
allow the initiating node to directly access the memory of
remote-node without the involvement of the remote-side ap-
plication. Hence, an RDMA operation has to specify both
the memory address for the local buffer as well as that for
the remote buffer.

2.2 JNIC Architecture

The Intel/HP Joint Network Interface Controller
(JNIC) [18] prototype models in-data-center communica-
tions over Ethernet. Figure 1 shows a JNIC system con-
sisting of front-side-bus-attached NIC hardware and opti-
mized software using a dedicated kernel helper. The pro-
totype hardware is an FPGA-based Gigabit Ethernet NIC
that plugs into an Intel Xeon socket, allowing communi-
cation over the front side bus. A reliable communica-
tions (VNIC) layer implements JNIC-to-JNIC communi-
cation using the TCP protocol. The VNIC layer presents
virtual NIC device interfaces to user or kernel tasks. Mes-
sages are sent by multiplexing message requests from VNIC
clients to the reliable communications layer. Messages are
received when the reliable communications layer receives a
message and delivered to the appropriate receiving destina-
tion VNIC. The VNIC implements copy-free transport us-
ing physically addressed DMA. At the time of VNIC-layer
registration, VNIC source and target buffers are physically
locked/pinned regardless of when they are needed for future
RDMA. For more details on JNIC architecture and VNIC
layer, the readers are encouraged to refer to [18].

In this paper, we build on this prior work and describe
the architecture of a working onload-style RDMA imple-
mentation. This architecture is carefully crafted to ensure
forward progress even when client applications compete for
limited resources. To support multiple client RDMA oper-
ations on regions of arbitrary size, a number of key tasks
are executed. Tasks include: flow control, region segmenta-
tion, page pinning, initiating copy-free transport, and page
unpinning.

2



Figure 1. JNIC Prototype [18]

2.3 RDMA Registration

RDMA typically involves two steps: registration and
the actualput or get. The registration process can be
broadly classified into pinning-based registration [5, 1] and
hardware-assisted registration [16, 15]. In this section,we
present the details on these two registration strategies and
its associated issues.
Pinning-based Registration: In this method, to register a
buffer, a task makes a system call into a kernel component
of the RDMA service. The kernel initializes the control
data and creates a handle that encodes buffer access rights.
The kernel then swaps in and pins (locks) all the buffer
pages. After a successful buffer pinning, the kernel compo-
nent asks the NIC to install a mapping between the handle
and the pinned physical pages and waits for an acknowledg-
ment. The buffer handle is then passed back to the user task
after receiving the acknowledgment, which in turn sends the
buffer handle to remote tasks to be used in subsequentget
(or put) requests. Similarly, during a de-registration opera-
tion, the kernel component asks the NIC to remove the map-
ping between the handle and the pinned physical pages and
waits for an acknowledgment. The kernel then unlocks all
the buffer pages associated with the handle and removes the
corresponding entries associated with the handle. Due to
the page pinning restriction in the registration phase, this
approach not only limits the amount of buffers registered to
available physical memory but can also wastes the physi-
cal memory, if it is currently not utilized. Finally, allow-
ing users to pin physical memory compromises robustness.
One buggy application affects all others by monopolizing
physical memory. Further, the cost of this registration and

de-registration is typically expensive [11, 22] in networks
such as InfiniBand.
Hardware-assisted Registration: In this approach (e.g.
Quadrics [16]), the NIC combines a hardware TLB and
tweaks in operating system’s virtual memory support to al-
low the NIC to pin pages, initiate page faults and track
changes in the application’s page table. In this approach,
there is no restriction on what memory is DMA-able, po-
tentially the entire virtual memory can be made available
for RDMA operations. However, pushing the responsibility
of pinning and managing the page tables to the NIC comes
with increased hardware cost and complexity [6, 23]. Fur-
ther, the hardware requires frequent updates as changes are
made to the internal virtual memory subsystems.

In the following sections, we describe an architecture
that eliminates problems associated with user pinning and
hardware-based registration by combining dynamic page
pinning [10] (the ability to pin a small set of pages and
make progress in a pipelined manner) and onloading [17]
(the ability to perform the tasks on the host processor).

3 Proposed Design

In this section, we present the design goals and details of
our proposed onloaded RDMA service.
Goals: To address the limitations mentioned in Section 2.3,
our primary goal is to allow RDMA operations on unpinned
virtual memory with simplified NIC hardware. Thus, we
need a mechanism that supports page pinning only when
necessary in a pipelined manner but at the same time, the
pinning process should be rapid and should not slow down
RDMA. In addition, we need a mechanism that jointly pins
the pages on both sending and receiving side to allow a
copy-free hardware transport and a mechanism that guaran-
tees forward progress even when available memory is lim-
ited.

In the following sections, we present the detailed design
of RDMA service that meets our design goals.

3.1 Basic Design

The basic idea of our design is to exploit the abundant
compute cycles of future many-core processors to perform
the tasks involved ingetandput operations. We use a ded-
icated kernel helper thread to perform just-in-time physi-
cal page pinning, access rights enforcement, copy-free data
transport, guaranteeing progress even when the pages are
not resident in memory and flow control. We refer to the
RDMA service as JNIC’s Bulk Message Transport (JBMT)
and present the details in performing a JBMTgetoperation
in the rest of the paper.

Figure 2(a) shows the overall architecture of JBMT
that provides copy-free autonomous message delivery. As

3



RDMA

Section Complete
Remote

VNIC

Helper

Helper

...

Local
Section Request

Deliver Frames

Register
Source
Buffer Request

GET

VNIC VNIC

Registered
Buffer Table

DMA

Registered
Buffer Table

DMA

Registration
Source

Remote status

Local statusSection
Progress

Local

JBMT portJBMT port

Progress
Section
Remote

Client
Send JBMT Handle

Server

Do Local Section
(LS) Registration

Send LS Request

loop
polling

Pursue
Swap−in

polling GET Request

Init Msg. Status

Msg. done?

Receive Local

(All Frames)
Section

Yes

Head of Rem
Msg. Resident? No

No

Yes

loop

Send Remote

(All Frames)
Section

Yes

Init LS Status

LS done?

RS Resident?
Head of Rem

(RS) Registration
Do Remote Section

Yes

Local Section (LS) Request

No

No

Server Client

unregister

Progress

Update
RS

Pursue
Swap−in

unregister

Message
Progress

Update

Figure 2. RDMA Service: (a) JBMT Architecture and (b) getOperation in JBMT

shown in the figure, the JBMT kernel helper thread receives
requests and generates responses through virtualized JBMT
command and completion ports. In this approach, a source
buffer is registered by the server. JBMT registration pro-
vides access control for the source region and it does not
pin the memory pages. As a result, it does not consume
valuable resources which are otherwise required to manage
the pinned memory regions. On a successful registration
request, a token is generated by JBMT. The resulting reg-
istration token is sent to the receiver (client) using conven-
tional VNIC messaging, which can be used for data transfer.
During a get operation, the receiver specifies the source re-
gion token, an offset into the source region, a target region
pointer, and a transfer length. Legal transfers are confined
to source buffers for which access rights were granted in
prior source buffer registrations.

After checking the access rights, JBMT decomposes a
large message into smaller dynamically pinned sections.
First, a local section (a small portion of a largeget oper-
ation) is pinned. The local section can be any subset of the
target region requested by theget operation as dictated by
memory availability. A request for a local section is then
sent to the server-side remote interface. After checking for
available resources on the server, the server attempts to pin a
remote section for data transfer. The remote section is again
possibly a subset of the requested local section length. The
kernel helper thread on the server attempts to transmit the
remote section to the receiver as Ethernet-frame-size VNIC
transfers. During this data transfer both the local and re-
mote sections are pinned/locked and hence, we can directly
perform DMA operations to transfer the data. After a re-
mote section is transferred, it is unpinned and additional re-
mote sections are pinned and transmitted until the entire re-
quested local section has been received. After the local sec-
tion is completed, it is unpinned and the next local section
is pinned and the process continues until the entire buffer is
transferred. Upon successful transfer of the entire buffer, a
completion event is deposited in the JBMT port’s comple-

tion queue, depending on application’s request.
Figure 2(b) shows the detailed steps involved during a

getoperation. As shown in the figure, aget request is sub-
mitted as a message request into a local node command
queue for processing by the dedicated JBMT kernel helper.
This command queue (request and response) is a memory
mapped queue that is shared between the application and the
dedicated JBMT kernel helper thread. The helper thread de-
tects thegetrequest by polling on this command queue and
the local target buffer handle is checked to ensure that vir-
tual buffer access is valid. In JBMT registration, the buffers
can be of arbitrary size and can exceed the size of physi-
cal memory. Hence, this requires that virtual user buffers
are segmented into smaller pinned sections and processed
sequentially. Theget operation processes the target buffer
handle to determine the appropriate target virtual address
for data transfer. As mentioned above, the JBMT helper re-
quests that the underlying VNIC layer register and pin a por-
tion of a user buffer and return the successfully registered
physical section size which depends on resource availabil-
ity. This lower-layer registration pins sections of a larger
virtual buffer temporarily and on demand. Further, if the
pages are not resident in memory, the helper invokes a re-
quest to bring the swapped pages to memory and the details
of how this is handled will be discussed in Section 3.4. Al-
lowing the lower layer to determine the extent of physical
pinning facilitates rapid progress when resources are plenti-
ful and ensures forward progress when resources are scarce.
When resources are plentiful, a large physical section min-
imizes pinning costs. When resources are scarce, progress
is ensured when only the head of the buffer is physically
registered and as little as a single page is pinned.

Once the maximum size of the local section is deter-
mined, a local section request is sent to the server-side re-
mote interface and similar steps are followed on server-side
to determine the minimum remote section. This architec-
ture is carefully crafted to ensure forward progress on both
local and remote nodes. Upon completion of remote and

4



local sections, the status of the corresponding request is up-
dated, the locked pages are unpinned and proceeds to the
next local section.

In the following sections, we present the details of how
we handle page pinning while guaranteeing progress when
pages are not in memory, flow control and page swapping.

3.2 Handling Page Pinning

Page pinning consists of two actions. First, pinning re-
quires that the head of a requested buffer is physically res-
ident. Thus, if the request buffer pages are not physically
resident, JBMT kernel helper thread stimulates stimulates
the swap-in of needed pages. Second, page pinning pre-
vents future swap out of memory pages by marking kernel
tables. When pages are missing, a separate thread of exe-
cution swaps needed pages. When no pages are resident,
the resulting physical section has size zero, and DMA is de-
layed. JBMT keeps track of the pending RDMA tasks and
periodically attempts to lock a non-empty physical section,
if the head of the particular section is currently resident in
memory.

3.3 Handling Flow Control

Though the actual data is delivered through DMA, JBMT
sends control commands to remote-node to perform the ap-
propriate DMA data transfers. Thus, JBMT layer needs to
ensure that there is space on the remote-side to accept con-
trol commands and thus requires flow-control mechanisms
to prevent scenarios such as too many JBMT requests from
a single receiver, too many local section requests and sev-
eral others. As shown in Figure 3, we use a credit-based
flow control in our design. Every JBMTget operation re-
serves a local credit in order to send a local section request
(shown as Step 1 in the figure). Further, it also reserves
enough control credits for the remote node to send the con-
trol commands in performing the DMA transfer for the re-
quested local section. After the needed credits are success-
fully acquired, the client-side sends a local section request
to the remote node. Similarly, the remote node attempts
to acquire a remote section credit. This limit is applied to
prevent a remote section to service a large number of lo-
cal section requests. During the failure of this event, the
remote-node sends appropriate NACK messages to release
the credits/pages on the local-side and repeat Step 1 at a
later point in time using a timer. However, if enough remote
section credits are available, the remote node starts deliver-
ing the frames to the local node. After completion, the local
and remote node releases the credits to process future local
and remote section requests.

3.4 Handling Page Swapping

In operating systems like Linux, the kernel helper func-
tion that helps to lock/pin the user pages is typically a block-
ing call. In other words, if the user pages are not resident
in memory, the helper function usually does not return until
the pages are swapped in and a lock is acquired on these
pages. As a result, the dedicated kernel helper thread may
block for a very long time if it attempts to directly lock
buffers that are currently not resident in memory. This
would also result in blocking JBMT operations submitted
by other tasks that are currently in-flight and would signif-
icantly affect the performance of any other JBMT client
tasks. To avoid this scenario, we use an asynchronous
page fault handler thread to handle page fault requests from
JBMT kernel helper thread. The basic design of this thread
is to accept a sequence of page fault requests and make
progress on these requests. This thread attempts to bring
in pages from disk for a small portion of the accessed user
buffer. The thread only touches the pages and does not pin
or lock the pages in physical memory during a page fault
miss. This can also modified so that the first page of the
buffer can be locked/pinned and the remaining pages can
just be swapped in. Since the JBMT helper thread period-
ically checks if pages are resident in memory and immedi-
ately locks the pages if it is, locking the first page may not
be necessary. Also, to process multiple page fault requests
at the same time, we spawn several asynchronous page fault
handler threads and the JBMT service chooses these threads
in a round-robin manner to submit page fault requests.

Reserve LS Credit
Reserve Available

Pin Memory
Credits (control)

Section
Remote
Section

Local

GET
Request

ACK

Release Pinned
Memory

Release RS Credit

Reserve RS Credit
Pin Memory

Local Section Request

Section Complete

Last Frame

Section Request NACK

if resource unavailable

Release Credits (control)
Release LS Credit

Release Pinned
Memory

Release Memory &
Credits

Start Timer to
Repeat Step 1 

Step 1

Figure 3. Flow Control in JBMT

To summarize, our architecture provides substantial en-
hancement to traditional RDMA by onloading the RDMA
tasks such as page pinning, DMA startup/completion, flow
control, etc. Our architecture provides unlimited access
to objects in unpinned virtual memory, simplifies the NIC
hardware and supports more control in managing memory
pages.

5



4 Experimental Results

In this section, we analyze the performance of our pro-
posed RDMA service. Our experimental test bed consists of
two nodes with two 3 GHz Xeon “Gallatin” processors with
a 512 KB cache and 512 MB memory. The FPGA-based 1-
Gigabit Ethernet NIC is connected via the FSB. In our pro-
totype implementation, we design theput as a remoteget
operation and defer a more efficientput implementation for
future work.

4.1 Latency

In this experiment, we show the latency of a JBMTget
operation. We perform the benchmark in the following way.
To measure theget latency, we initiate a JBMTget opera-
tion and poll on the memory to wait for completion. Af-
ter completion, we post the next JBMTget operation. We
repeat this for several iterations and report the average, as
shown in Figure 4. As mentioned earlier, a JBMTgetoper-
ation involves processing local and remote sections (shown
as JBMT Processing Time in the figure), a local section re-
quest (shown as VNIC Control Message Time in the figure)
and the actual data transfer (shown as VNIC Data Transfer
Time in the figure). We see that the latency ofget opera-
tion for a 1 byte message is 19µs. Further, we observe that
theJBMT Processing Timeand the VNIC Control Message
Time occupies only 3µs and 7µs, respectively. Also, we
see that theJBMT Processing Timedoes not increase with
increasing message sizes. However,JBMT Processing Time
will start varying when the buffers span over multiple pages
and multiple local and remote section sizes, especially for
very largeget operations. There are existing caching tech-
niques [22, 15] which can be used to further alleviate this
overhead.

 0

 10

 20

 30

 40

 50

 60

102451225612864321684

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

VNIC Data Transfer Time
JBMT Processing Time

VNIC Control Message Time

Figure 4. Latency of getoperation

4.2 Bandwidth

Here, we present the bandwidth performance of theget
operation. To measure theget bandwidth, we post a win-
dow of getoperations. After everygetcompletion, we post
anotherget operation and repeat this for several iterations
and measure theget bandwidth. Figure 5 shows the band-
width performance ofgetoperation. We see that the JBMT
get can achieve a peak bandwidth of up to 112 MB/s for
very large messages, thus almost saturating the link band-
width. Hence, it demonstrates that performing page pinning
during a JBMTget operation does not significantly affect
the bandwidth performance. However, for very small mes-
sages, we see that the JBMTgetshows poor bandwidth due
to several factors including latencies required for Ethernet
transmission, needed page pinning in the critical path, and
limitations of our prototype.

 0

 20

 40

 60

 80

 100

 120

64k 16k 4k 1k 256 64 16 4 1

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

GET

Figure 5. Bandwidth of getoperation

4.3 Registration Cost

In this experiment, we measure the registration and de-
registration cost in JBMT. This registration is different from
the VNIC-layer registration which pins/locks the memory
pages. JBMT registrations do not pin any pages. It only
creates a local handle which can be used by peer nodes for
a future JBMT operation. We perform several JBMT regis-
trations of a particular message size and report the average
latency in performing the JBMT registration. The JBMT
de-registration cost is measured in a similar way. Table 1 re-
ports the cost of registration and de-registration operations
in JBMT. Both registration and de-registration costs remain
constant irrespective of the message size of less than 2µs.
Due to the fact that pages are not pinned and no page trans-
lations are maintained in the NIC, the registration and de-
registration operations remain constant and inexpensive.

6



VNIC VNIC
VNIC
Helper

Register
Source
Buffer

create new finish

release
pages

section

(target)

create new finish

release
pages

sectionRS LS

RS Progress

Request
GET

JBMT portJBMT port

Total Thread
Switch TimeRDMA

Helper

Processing Time

Page Releasing
Time (source)

Processing Time
JBMT Completion

Page Pinning
Time (target)

Processing Time
JBMT Remote

progress
make

progress
make

pin pages
(source)

pin pages

Send JBMT Handle
ClientServer

JBMT Request

LS Progress

Page Pinning
Time (source)

VNIC Control
LS Request

RS Complete

Message Time

VNIC−VNIC Data Transfer Time

Figure 6. Timing Measurements of JBMT get

Table 1. Registration Cost
Registration De-Registration

(usecs) (usecs)
Any Msg. Size 1.32 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

64K32K16K8K4K2K1K

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

VNIC-VNIC Data Transfer Time
VNIC Control Message Time

JBMT Completion Processing Time
JBMT Remote Processing Time

Page Releasing Time
Page Pinning Time (source + target)

JBMT Request Processing Time
Total Thread Switch Time

Figure 7. Cost Breakdown of JBMT get

4.4 Cost breakdown of JBMT

To further analyze the JBMTgetoperation in detail, we
measure the cost of several steps involved in JBMTgetop-
eration and report its overhead in Figures 6 and 7. The
detailed tasks during agetoperation (shown in red color) is
shown in Figure 6. TheTotal Thread Switch Timeindicates
the time taken to switch from the application that initiates
thegetoperation to the JBMT kernel helper thread that lis-
tens for such requests. TheJBMT Request Processing Time
refers to the time spent before initiating a local section re-
quest and theJBMT Completion Processing Timerefers to
the time spent after receiving all the remote frames and the
post processing of a local section. ThePage Pinning Time
andPage Release Timerefer to the time spent in kernel for
locking and releasing the user pages. TheVNIC Control
Message Timerefers to the time spent for sending a local
section request to the remote side. TheJBMT Remote Pro-
cessing Timerefers to the time spent by the remote side in
initiating the remote section frames. TheVNIC-VNIC Data
Transfer Timeindicates the time spent in sending the data
using the underlying VNIC layer.

In Figure 7, we observe the time spent by each of these
operations for various message sizes. We see that the time
spent byTotal Thread Switch Time, JBMT Request, Remote
and Completion Processing Timeis much less when com-
pared to other components in a JBMTgetoperation. How-
ever, as mentioned earlier, due to our prototype hardware,
the time spent by these operations is still considered quite
high and there is room for improving this further. Further,
we see thatPage Pinning Time, Page Release Timeand
VNIC-VNIC Data Transfer Timeincreases with increasing
message sizes. As message size increases, the buffers span

7



multiple pages which automatically increases the page pin-
ning/unpinning costs. Also, since the message sizes are less
than the maximum allowed local and remote section sizes
(1 MB), we observe that the overhead ofJBMT Request
Processing Time, JBMT Completion Processing Timeand
JBMT Remote Processing Timedoes not increase with in-
creasing message size. The overhead of these operations is
expected to increase as the number of local/remote sections
increases. However, this overhead will be significantly less
than the overall time taken to perform thegetoperation.

5 Related Work

Modern processors are seeing a steep increase in the
number of cores available in the system [9]. As the number
of cores increases, the choice to dedicate one or more cores
to perform specialized functions will become more com-
mon. In this paper, we proposed a mechanism to onload the
RDMA tasks to a dedicated kernel helper thread for such
systems. Researchers [5, 16, 1, 15, 10, 17] have proposed
several mechanisms in designing RDMA operations and on-
loading techniques. In this work, we combined the existing
dynamic page pinning and onloading technique to perform
RDMA related tasks. Unlike conventional RDMA, buffer
pinning is kernel-managed to allow the system to have bet-
ter control over critical resources in our proposed design.
Our architecture preserves the benefits of virtual memory in
a robust and well controlled environment. Further, the pres-
ence of a kernel helper thread avoids replication of page
table entries and provides faster access to kernel page ta-
bles and page pinning, and simplifies the NIC hardware as
compared to existing approaches.

6 Conclusions and Future Work

While existing RDMA implementations do provide ef-
ficient one-sided, inter-node remote memory access, they
do not preserve all of the benefits of virtual memory. Fur-
ther, RDMA memory regions are either managed directly
by users (requiring user control over system critical re-
sources) or by using complex NIC hardware. In this paper,
we addressed these limitations by using a software-centric
onloading approach to perform tasks such as page pinning,
DMA startup/completion, page releasing, flow control and
page fault handling. Our architecture provides access to
objects in unpinned virtual memory, simplifies the NIC
hardware, and ensures robust system behavior by manag-
ing memory within trusted kernel code. As a part of future
work, we propose to perform application-driven evaluations
and further enhance the performance of get and put opera-
tions.

This paper is based on research carried out by
Karthikeyan Vaidyanathan during his summer intern-
ship at HP. The OSU part of the research is supported
in part by NSF grants #CNS-0403342 and #CCF-
0702675.

References

[1] 10 Gigabit Ethernet Alliance. http://www.ethernetalliance.
org/.

[2] Berkeley UPC project home page. http://upc.lbl.gov.

[3] RDMA Consortium. http://www.rdmaconsortium.org/home.

[4] M. K. Aguilera, C. Karamanolis, A. Merchant, M. Shah,
A. Veitch, and C. Karamanolis. Sinfonia: a new paradigm
for building scalable distributed systems. InSOSP, 2007.

[5] Infiniband Trade Association. http://www.infinibandta.org.

[6] C. Bell and D. Bonachea. A New DMA Registration Strategy
for Pinning-Based High Performance Networks. InCAC,
2003.

[7] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. K. Su. Myrinet: A Gigabit-
per-Second Local Area Network. http://www.myricom.com.

[8] J. Carter, A. Ranganathan, and S. Susarla. Khazana: An
Infrastructure for Building Distributed Services. InICDCS,
May.

[9] Intel Corporation. http://www.vnunet.com/vnunet/news/
2165072/intel-unveils-tera-scale, Sep 2006.

[10] Jochen Liedtke, Volkmar Uhlig, Kevin Elphinstone, Trent
Jaeger, and Yoonho Park. How to schedule unlimited mem-
ory pinning of untrusted processes or provisional ideas about
service-neutrality. InWorkshop on Hot Topics in Operating
Systems, 1999.

[11] J. Liu, W. Huang, B. Abali, and D. K. Panda. High per-
formance vmm-bypass i/o in virtual machines. InUSENIX
Annual Technical Conference, 2006.

[12] Network-Based Computing Laboratory. MVAPICH: MPI
over InfiniBand and iWARP. http://mvapich.cse.ohio-
state.edu/.

[13] J. Nieplocha and J. Ju. ARMCI: A Portable Aggregate Re-
mote Memory Copy Interface. InIPDPS, 1999.

[14] R. Numrich and J. Reid. Co-array fortran for parallel pro-
gramming, 1998.

[15] Joon Suan Ong. Network Virtual Memory. PhD. Thesis, The
University of British Columbia, 2003.

[16] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and E. Frachten-
berg. The Quadrics Network (QsNet): High-Performance
Clustering Technology. InHot Interconnects, 2001.

[17] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn,
R. Huggahalli, D. Newell, L. Cline, and A. Foong. TCP
Onloading for Data Center Servers. InIEEE Computer, Nov
2004.

8



[18] M. Schlansker, N. Chitlur, E. Oertli, P. M. Stillwell,
L. Rankin, D. Bradford, R. J. Carter, J. Mudigonda,
N. Binkert, and N. P. Jouppi. High-performance ethernet-
based communications for future multi-core processors. In
Super Computing, November 2007.

[19] H. V. Shah, D. B. Minturn, A. Foong, G. L. McAlpine, R. S.
Madukkarumukumana, and G. J. Regnier. CSP: A Novel
System Architecture for Scalable Internet and Communica-
tion Services. Inthe Proceedings of the 3rd USENIX Sympo-
sium on Internet Technologies and Systems, 2001.

[20] K. Vaidyanathan, P. Balaji, S. Narravula, and H. W. Jinand
D. K. Panda. Designing Efficient Systems Services and
Primitives for Next-Generation Data-Centers. InNSF Next
Generation Software(NGS) Program;, 2007.

[21] K. Vaidyanathan, S. Narravula, and D. K. Panda. DDSS:
A Low-Overhead Distributed Data Sharing Substrate for
Cluster-Based Data-Centers over Modern Interconnects. In
HiPC, 2006.

[22] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda.
PVFS over InfiniBand: Design and Performance Evaluation.
In the 2003 International Conference on Parallel Processing
(ICPP 03), Oct. 2003.

[23] Pete Wyckoff. Memory Registration Caching Correctness.
In CCGrid, 2005.

9


