
Submitted to IEEE Visualization 2008 Page 1

Distributed Visualization Framework Architecture
Oleg Mishchenko, Sundaresan Raman and Roger Crawfis, Member, IEEE

Abstract—An architecture for distributed and collaborative visualization is presented. The design goals of the system are to
create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both
single user and collaborative distributed environment. System architecture employs a client-server model. Visualization
projects can be synchronously accessed and modified from different client machines. We present a set of visualization use
cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new
applications. These components make heavy use of leading design patterns. All components are based on the functionality of
a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and
higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These
light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user’s cell
phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier
manages any communication and synchronization with the proxy objects. In addition to the data components, we have
developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable
shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces.
Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the
registered proxies and responds to queries on the overall system. This allows all user components to be populated
automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in
the various GUI components that work with this interface. One of the main features is an interactive shader designer. This
allows rapid prototyping of new visualization renderings that are shader-based and greatly accelerates the development and
debug cycle.

Index Terms— Distributed Systems, collaborative visualization, Visualization, interaction, volume rendering.

1 INTRODUCTION

We present a distributed visualization framework. The goal in
creating the framework was two-fold: first, create a system that can
reduce the time for implementing new visualization algorithms and
thus reduce the time for verifying research ideas, and second, make
sure that the system is easily extensible. In brief, we tried to create a
system that can be used as a test bench for research in visualization.

Our open source framework can be used for creating both single
user and collaborative visualization applications. To demonstrate the
potential of the system, we have developed several applications
using this system, such as the Volume Compositor. Volume
Compositor is a volume rendering application providing shader
program support, layer support and a high quality user interface. In
volume rendering and scientific visualization, the majority of the
algorithm implementations are using new hardware capabilities for
maximum performance. Shader programs are used to employ
programming capabilities of modern graphics hardware. That led us
to including a shader editor to the Volume Compositor’s user
interface. This allows faster shader development for shader-based
algorithm implementations. Instead of recompiling and executing a
program, the developer can see the results of modification
immediately as s/he commits the changes in the shader editor.

Another goal was to make the design flexible, both for
developing standalone as well as distributed applications and
algorithms. We decided to split the system into a set of components
that allow the system to be distributed and allow easy code
maintenance. Major criterion in splitting was to keep the components
loosely coupled. Compared to monolithic systems, separate
components may require a large number of interconnections between
them and thus make the system overly complex, directly violating
our design goal. By keeping coupling low, we achieve easier system
modification and make the system distributed.

2 RELATED WORK
There are different dimensions in collaborative visualization.
Roughly collaborative visualization systems can be subdivided by
several criteria:

Type of visualization:
• synchronous
• asynchronous

Kind of display systems that are utilized:
• Standard displays
• Large Displays
• Immersive systems
• Handheld devices

Location:
• Same location
• Different locations

We should emphasize that distributed visualization does not
automatically mean collaborative. Making the system distributed in
many cases only implies improving the performance by utilizing
resources of more than a single machine. For a detailed coverage of
the field we suggest the following excellent review by Brodlie et al.
[3].

Historically, a number of well-known visualization frameworks
have been made distributed. Usually, as in case with AVS [19] this
includes execution of some parts of the system on remote machines.
Later on, support for collaboration has been added. VTK was
extended to provide support for collaboration in CAVE-type
environments [4][11]. IBM Data Explorer [1] and later OpenDX[13],
supports execution of some of its modules on the remote machines.
Collaborative capabilities were added to Iris Explorer [7] with
modules from the COVISA [21] project. Another well-known
visualization system with support for collaborative and distributed
visualization is VisTrails [2].

Recently, research in developing web-based collaboration tools
includes Many Eyes [20] and Swivel [17]. They employ an
asynchronous collaboration model. Typical collaboration sessions
consist of creating/modifying visualization, uploading them to the
website such that later users can modify the visualization, or discuss
it and leave comments and annotations. Other systems, such as [22]
are utilizing new web2.0 technologies (for example, AJAX [8])
without altering the interactive visualization paradigm.

Submitted to IEEE Visualization 2008 Page 2

The term grid computing has become increasingly popular
recently. It refers to the use of multiple interconnected computers for
computation as opposed to performing the same tasks on a single
supercomputer. The gViz project [5] is aimed towards adding grid-
enabled collaboration support to Iris Explorer and pV3 [14].
OptIPuter [18] provides collaboration for multi-gigabyte earth
science datasets. RAVE [9] is another grid based visualization
system.

Our system can be described primarily as a synchronous
distributed collaboration one; however, we also show how we can
employ asynchronous scenarios for our system.

The rest of the paper is organized as follows: in section 3 we
describe system architecture, in section 4 we talk about Volume
Compositor, application built on top of the framework. Section 5
covers additional use cases for the framework. Section 6 covers
details on incorporating VTK plug-ins and Python scripts into the
system. Section 7 describes layers, and section 8 provides additional
implementation details.

3 SYSTEM ARCHITECTURE
The system consists of three kinds of concrete entities, a light-weight
object definition (proxies), communication and synchronization
mediators, and implementation objects, such as OpenGL drawables.
Figure 1 shows a rough view of the interrelationships between these
entities.

Figure 1. Main entity types in the system.

The proxy objects are shared among different machines, different
software architecture configurations and with the user-interface
components. Any entity that the developer/researcher would like to
share is a proxy, including cameras, drawables, transfer functions
and lights. As such, we call these entities Assets. Distribution of the
proxies is done with the aid of an AssetManager class which is an
object pool for all the shared proxies in the system. If a particular
remote machine needs an instance of a proxy, it gets the (remote)
reference from the AssetManager. Synchronization, in case of object
modification (for example, changing camera parameters), is done by
subscribing to change events associated with each proxy. In this
regard, each proxy object can be viewed as a publisher to which
interested parties can subscribe.

The Mediator entities provide a clean separation of concerns from
the underlying graphical elements and the communication and
synchronization with the proxy objects. They reside on the remote
machines and each remote client will have its own instance. This
differs from the proxy instances which (logically) are global across
all machines. Mediators are implemented using a decorator pattern,
where each graphic entity is wrapped with a mediator and mediators
communicate among themselves to determine the amount of
synchronization that is needed. Synchronization with the proxy
objects is done lazily.

The graphics entities, like the mediator entities, reside on each
remote machine. Classes at this level deal directly with graphics
library, for example VTK, OpenGL or DirectX by providing the
necessary graphics library calls.

The architecture provides a clear separation of responsibilities
between different parts of the system, similar to a model-view-
controller (MVC) architecture – with proxies being the model,
mediators being the controller, and the graphics tier being the view.

4 VOLUME COMPOSITOR
Using the framework mentioned in the previous section, we
developed the Volume Compositor, a multilayer volume rendering
application. It contains a 3D rendering and a 2.5D compositing
engine, flexible user interface, and distribution capabilities. By
referring to the compositing engine as 2.5D we emphasize the use of
layers and layer compositing. Such use can be thought of as an
extension to the concept of compositing, from the general meaning
associated with Porter and Duff composing operators, to a more
general and more flexible set of functions.

The concept of layer is central to this application. By using the
term layer, we refer to a 2D container for storing an image, on which
a general compositing operator is defined. All drawables are
rendered to one or more layers. The composition order can be
changed and the layers can be exported and imported in a format
readily utilized in a 2D paint package. A number of tasks for volume
exploration are performed by processing the layers instead of
applying more expensive 3D rendering techniques, thus combining
the aspects of image-based rendering. Examples include two level
volume rendering, masking and magnification.

4.1 User Interface
In this section, we describe Volume Compositor’s user interface.
Before proceeding, a quick overview of visualization workflow in
the system is necessary. Visualization session usually consists of the
following steps. First, the user loads the datasets s/he is interested in.
Next, the appropriate drawables (geometric primitives) are created –
these could be boxes or planes. Then, region(s) of interest (ROI) are
selected; in most cases ROI is a rectangular box. Then, the user
creates a set of layers. A drawable can be rendered to multiple layers.
Finally, the user specifies which material is applied to which of the
drawables and layers. The complexity of the process is minimized by
a number of predefined templates that the user can select from. The
user interface gives full control of all the elements described above.

Figure 2. Volume Compositor interface screenshot.

Anything that can be rendered in our system is a drawable.
Currently, we have the following types of drawables: volumetric
regions, boundaries, outlines, and planes. Depending on the selected
geometric primitive, the user can modify the size and orientation of a
drawable. All the above transformations can be done both via

Submitted to IEEE Visualization 2008 Page 3

changing the properties in the corresponding properties tab, or by
direct manipulation with mouse and keyboard.

Each drawable has a Material property. Material specifies how
the drawable is rendered. Material has a shader or a color and
blending properties. We have implemented a set of predefined
materials and corresponding shaders in our system. Material editor is
used for material creation and editing. Material assignments are done
with the Drawable UI component. Material assignment sets up the
correspondence between the materials and drawables, and materials
and shaders. A material can be shared across any number of
drawables. Material editor also allows the user to assign uniform
variables for the shaders.

The shader editor allows the user to modify and compile shaders
on the fly. The results of the modification of a shader program are
presented right after the user commits any changes. This makes
shader development interactive, thus greatly increasing developer’s
productivity. The key benefit of adding shader control to the system
is that it breaks the standard rewrite/recompile cycle, when any
change to a shader program requires restarting the system. Currently,
shader development in our system is similar to other shader
development tools, like Shader Designer [16] or Render Monkey
[15].

Layers are one of the key elements of the system. The layers and
the user interface for layer manipulations resemble that of
Photoshop. Layers can be turned on/off, created and deleted. The
user can change the order in which the layers are composited, as well
as the opacity of each layer. Each layer is also a drawable, which
allows applying of materials (and thus shaders) to it.

Fugure 3. Distributed clients access the proxies remotely.

Development within our system can be also described in terms of
declarative programming. Certain properties are exposed in the IDE
and can be modified without writing the code.

OpenGL lights are used in a number of shaders. The light control
allows the user to create and manipulate lights. The user can turn the
lights on and off and change light direction. Same light can be used
in several shaders. The user can also create light collections with any
number of lights as well as modify each light’s individual
parameters. Transfer function interface allows creating and
modifying 1D and 2D transfer functions.

5 USE CASES
In this section we describe different types of use cases that can be
solved by our system. We explain the versatility of the architecture
and show how it gives the researchers necessary flexibility in
developing new applications.

5.1 Single User Visualization
We concentrate on the description of our system as a framework for
distributed collaborative visualization research. However, it is
important to keep in mind that the framework can also be
successfully employed in single user scenarios for visualization
research and development. The Volume Compositor, briefly
described in previous section, is an example of this.

Development of new visualization algorithms is aided by
providing feature-rich and easy to use interfaces as well as giving the

user freedom to develop new algorithms at different levels. For
example, one can use our API in C# or Python for fast prototyping of
new applications, rapidly develop shaders with the shader editor, and
create libraries of materials and shaders. The user can also save
different visualization states to be loaded at a later time.

5.2 Collaborative Visualization
In collaborative visualization, several users work on the same
visualization. There are different dimensions of collaboration. The
users may simultaneously interpret the visualization; they may
simultaneously modify and tune visualization parameters. They may
work in the same room or in different cities. In some cases, there is
no need for collaboration to happen at the same time. How do all
these issues impact the collaboration process? What are the exact
needs of the users to maximize the efficiency? We explore these
questions in the next paragraphs, highlighting different scenarios and
showing how our system is utilized in these cases. We also provide
an analysis of the architectural and implementation trade-offs.

Our system provides basic synchronization and distributed
functionality. The system currently provides synchronous display
and control on any number of remote clients. The maximum number
of clients is bounded only by the performance of the hardware and
network connection properties. The system supports either a client-
server model or peer-to-peer communication. Either of these can be
extended to some sort of a mixed communication or hierarchical
control.

There are several scenarios for collaborative visualization with
our system; we start from the very simple and obvious ones, and
continue with more advanced examples. System architecture gives us
enough flexibility to allow easy implementation of the scenarios
described below. In all examples we assume that there is only one
copy of each proxy object in the system. When this is not the case,
we specifically mention this.

5.3 Real-Time Collaboration
In our first scenario single workstation and one or more PDAs are
utilized. This scenario is particularly useful when the workstation
provides output to a big tiled display or other immersive
environment such as a CAVE. Each collaborator has a PDA. The
PDA is a Windows CE device and is used to control input
parameters and perform user interaction, while the workstation is
used as a major graphics rendering back-bone and is a high end
graphics system. The PDA has two user interface components:
camera controller and a transfer function editor. Camera control UI
component allows zooming, panning and rotation. The transfer
function editor allows use and modification of 1D or 2D transfer
functions. Both UI components can be interacted with either PDA
keys or with a stylus. The visualization changes interactively as the
user modifies camera or transfer function parameters at the PDA.
The PDA does not require high-end graphics capabilities.

 Visualization systems are increasingly used for teaching in
different areas. One such area is medical education. For example,
volume rendering system can provide initial training for medical
students. Instead of using real cadavers, the students explore the
volumetric datasets interactively on the computer.

Our scenario is an interactive learning session, when a group of
students is working on the sample visualization project. There is a
single instructor’s workstation and up to 20 students’ machines. The
instructor acts as an administrator, having full control over the
visualizations produced by the students. Instructor sees every
student’s visualization in a separate window and uses the full set of
UI components to control materials, shaders, cameras and layers of
each of the projects. The user interface allows instructor either to
modify the student’s project concurrently or to lock it to prevent
possible collisions. The visualization session consists of the set of
assignments that students should complete. For the first one the
students produce a rendering of the particular bone. While exploring
the dataset, the instructor views all of the projects that the students

Submitted to IEEE Visualization 2008 Page 4

are working on, and can modify them, if necessary. The next task is
more complex – the students are asked to modify the visualization in
a way that the soft tissue around the bone is also visible. Finally, the
students create the volumetric cut. Instructor has control not only of
individual machines but can also perform group tasks, such as saving
the snapshots of all the students’ projects.

5.4 Asynchronous Collaboration
We have described the cases when the users are working
synchronously. However, this is not always necessary. Moreover,
there are cases when asynchronous collaboration may be preferable
over synchronous one. An example of such a case is collaborative
work on medical or technical illustration. An example is shown in
Figure 4. The first user have rendered the foot and committed the
changes. The second user exported the layers to Photoshop and
added the labels to create an illustration.

One more application is segmentation – several researchers may
work together to segment a dataset. It is not always necessary for
their collaboration to happen in real time. Assume the following
scenario. A researcher in New York is working on segmentation with
his or her colleague in LA. Researcher in New York provides initial
segmentation and notifies researcher in LA. Researcher in LA checks
the results, modifies the visualization project and notifies researcher
in New York of the change. The process is iterative: they keep
working on the project until they achieve the final segmentation.

Figure 4. Medical illustration created with our framework. Foot and the
drop shadow are rendered to the different layers. Blur operator was
applied to the shadow to make it look soft. The layers were exported
to Photoshop where labels were added.

5.5 Implementation Details
Our typical approach to ensure real-time synchronization currently
implemented in the system is to keep only one copy of each proxy
object in a global AssetManager residing only at one machine and
allow all other machines to access proxies remotely. This ensures
that all the machines see the same state of the proxy objects.
Asynchronous collaboration is supported in the following way. A
new instance of AssetManager is created at each of the machines.
The proxies for these machines are created by cloning corresponding
objects from the original AssetManager. This is illustrated in Figures
5a and 5b. Originally machine A’s AssetManager was used by both
machine A and remotely by machine B. Asynchronous collaboration
is supported by creating an additional AssetManager residing on
machine B. Machine B starts listening only to updating events
generated locally. Machine B, however, still can access proxies
residing in A’s AssetManager and vice versa. Switching back to
synchronized collaboration is done by substituting the local
AssetManager by the original remote one from machine A. This
example is a special case of a general m-n relationship with m
AssetManagers and n machines that use them. In this general case
AssetManagers may be organized in a hierarchy, such as in Figure

5d. In the figure AssetManagers at the bottom are synchronized
through the topmost AssetManager.

The sets of proxy objects when there are multiple AssetManagers
may be either disjoint or overlapping. Disjoint AssetManagers can
keep different types of proxies, for example a separate one may be
designated to manage volume proxies, while another is used for
materials and shaders. Case when the AssetManagers contain copies
of the same objects is shown in Figures 5a and 5b.

Figure 5. AssetManagers in distributed scenarios.

Up to this point we haven’t discussed where the datasets are
being stored. In case of very large datasets this becomes an important
question. Traditional solution to this problem is creating some sort of
a centralized data server. Main advantage of using centralized data
server is the achieved flexibility. With the data server there is no
need to send the whole dataset over the network; this may be
beneficial when dataset is very large, for example in the case of
seismic data. We achieve this by implementing a volume handler
(mediator) with this functionality. The object of the handler class
resides on the data server machine. The proxy objects and
AssetManager don’t have to be modified. When the dataset is
rendered on the client machine, the request for data goes from the
graphics level to the local mediator object, which, in turn, gets it
from the handler on the server. The connections between data server
and clients are managed by the handler and proxies and
AssetManager are not involved. The handler supports data
compression and level-of-detail data processing.

One of the issues that arise when talking about distributed
applications is robustness, i.e. the ability of the application to
perform properly if one or more of the clients crashes. In case of a
single AssetManager such as in Figure 5a), non responsive clients do
not affect the rest of the clients. For example, if machine B in Figure
5a) froze, application at the machine A would still run. This is
accomplished by using a one-way asynchronous communication
from the proxies to the mediator level (as shown in Figure 1), thus
non responsive clients don’t bring the system to a halt.

With multiple AssetManagers the scenarios become slightly more
complicated; however in such cases we also have more flexibility – a
machine that has its own AssetManager may remain active when
other stop their execution. The following example shows in detail
one of the “crashing” scenarios. Consider two systems, A and B, as
shown in figure 5c). There are some proxies in A’s AssetManager
that are used by B, and there are some proxies in B’s AssetManager
that are used by A; the sets of proxies are disjoint. Whenever one of
A or B terminates or freezes, the other one has to terminate, because
the remote proxies are no longer available. Straightforward solution
is achieved by enforcing proxies’ overlap, i.e. for any remote proxy a
local copy should be created.

Figure 6. Examples of the use of layers. a) Skull rendering. b) Skull rendered with a halo. Skull and halo are rendered to separate layers. Halo is
produced by blurring a 2D shadow. c) and d) 2D-drop shadows. Right: kidney magnification. Right top: torso dataset with a non-magnified
kidney. Right bottom: kidney is rendered to a separate layer, thus when it is magnified, the ribs are not distorted.

EXTENSIONS

Submitted to IEEE Visualization 2008 Page 5

5.6 VTK-ITK Plugins
VTK is well known system for scientific visualization. It consists of
a set of core libraries written in C++ and a number of higher level
libraries, written in Tcl/Tk and Python. The VTK operates in terms
of a pipeline. The users create modules that are used for processing
data as it goes down the pipeline. In our framework, we include VTK
and ITK [10] functionality at the graphics entity level, instead of
using directly OpenGL or Direct3D. Proxy objects for those are
pipeline scripts or programs, for instance in Python.

5.7 Scripting, Python and Animation
One of the big issues in current visualization toolkits is the
complexity of setting up the system parameters. To get a
visualization that suits the user, sometimes hours of tedious
parameter-tweaking is necessary. Saving visualization projects is not
the best solution, because in this case we save just the current state of
the system. It’s preferable to be able to somehow record the way the
project was created and modified. One way to tackle this problem is
to record the steps necessary to create a particular visualization, so
that later it can either be easily redone or modified. To save a series
of steps that lead to the particular state, we use Python scripts. This
solution has the major advantage. Clear, intuitive and concise syntax
of Python commands allows its use by non-programmers. Python

commands are converted to the corresponding API calls through a
simple wrapper class.

Animations may greatly increase the expressiveness of
visualization. There are two ways of creating animations in our
system. The first involves creating images of different time steps and
then merging them into the single animation in a way similar to
Adobe Image Ready; the other involves using Python scripts. With
scripts, the user is able to specify what and how specific parameters
change, as well as the appropriate timing. We prefer the second way,
because for long animations it is much less time consuming.
Moreover, when scripting is used, any new user interface can access
the system through scripts. Scripts have access to all data in the
AssetManager and the core interface types. Notice that one can still
use system’s C# API for this purpose.

6 LAYERS
The use of layers is an important feature of our system. The layers
employ the same idea as the layers in Photoshop. Thorough coverage
of the layers is beyond the scope of the paper, thus in this section we
show some results done with the use of layers. In Figure 6 on the left
the skull is rendered without and with the drop shadows and a halo.
On the right we demonstrate the use of a layer based magnification.
Kidney is rendered to a separate layer and thus is
magnifiedbwithoutbdistortingtthetribs.

Submitted to IEEE Visualization 2008 Page 6

7 SYSTEM IMPLEMENTATION

7.1 .NET Platform
Our implementation is based upon the C# programming language
and the .NET framework [12]. First introduced in 2000, .NET
provides the following features to the applications: interoperability,
language independence, common language runtime and a rich set of
standard libraries. The Common Language Runtime (CLR) allows
code written in different .NET languages to be compiled to an
intermediate language that is interpreted by the platform. Just-in-time
compilation is used to improve performance.

.NET Remoting is a technology that allows distributed
applications to communicate by using the references to so-called
remote objects. .NET hides from the developer the complexity of the
underlying network protocols. The framework automatically
generates object stubs and provides communication mechanisms.
From a developer’s standpoint, the use of remoting is quite
straightforward: after proper initialization, remote objects can be
used as if they were local. All the proxies in our system support
remoting. This allows distributed applications to operate with the
same proxies, thus achieving synchronization.

Some care needs be taken when making proxies remote. For
example, making a volumetric dataset a proxy, we may force one or
more copies of the dataset across the network, which in case of large
datasets is not desirable. As discussed in the Use Cases section, one
solution is to create a separate data server. The proxy merely
indicates the basic properties of the dataset. The underlying
mediators can then reference data from a local store or stream it from
the data server.

Performance is always an issue in graphics and visualization.
When designing the system, performance was not the major concern,
however. The design goals were to create scalable, easy to distribute,
maintain and modify visualization system with extensive use of
shaders and convenient user interfaces. Still, we achieve good
performance results. These are due not to a set of optimizations, for
example, but to overall system architecture which ensures such
things as lazy initialization, minimizing the number of events thrown
and processed, updating objects only when necessary (lazy updates).
Some of the performance benefits come from the fact that we use
layers and perform image manipulation instead of more
computationally expensive volume rendering in a number of cases.
In total, for many test cases the overall performance was better with
our new system.

7.2 System Design
There are a number of key classes and interfaces that we will
describe in detail to provide a better understanding on how the
system operates. As mentioned in the “Architecture” section, the
system has three different kinds of entities. The top proxy tier
provides object sharing and remoting functionality, the mediator tier
works with local copies of the proxies, and the graphics tier provides
the necessary graphics library calls. Major classes and relationships
between them are shown in Figure 7. The relationship between
various classes is the same across the three tiers; at each tier they
implement the same interfaces. For example, IMaterial is
implemented by MaterialProxy, MaterialHandler and MaterialGL.
Class diagrams for the key interfaces and proxy classes are shown in
Figure 8. For example, at the proxies’ tier, ViewProxy contains one
or more LayerProxies; each LayerProxy has a collection of drawable
proxies, each of them, in turn, has a MaterialProxy. The same
relationship is followed by mediators’ tier (handler classes), as well
as by the graphics tier.

7.3 Classes and Interfaces
Every object that should eventually be rendered to the framebuffer
implements an IDrawable interface. The key method in the

Figure 7. Relationships between classes in the three tiers are the

same.

interface is Render(). Examples of drawables are volumetric regions,
slice planes and outlines. In the corresponding proxies these methods
are stubbed, however; the real rendering happens in the graphics tier.

All the proxies in our system are called assets and implement
IAssetManaged interface. The AssetManager class stores references
to every proxy. The AssetManager acts as a server, and thus at any
time the necessary proxy can be accessed by calling
AssetManager.Instance.getItem(). Each asset is referenced by its
type and string id. For example, the main camera may be retrieved
with the code:
AssetManager.Instance.GetItem(typeof(Camera), “Main Camera”).

MaterialProxy, MaterialHandler and MaterialGL classes
implement the IMaterial interface. The methods of IMaterial include
MakeActive() and Deactivate() for enabling the material just before
rendering, and disabling it after rendering has been completed. Each
material has a corresponding shader that is used to render the
material. The system provides a lengthy set of predefined shaders
and materials. Shader program contains a set of vertex, fragment and
geometry routines. We associate uniform variables with a material,
not a shader. This means that the same shader for volume rendering,
for example, may be used to render two different volumes with
different transfer functions. The volume rendering shader is the
same, while the uniform variables (volumes and transfer functions)
are different.

A view contains any number of layers. Each view has its own
collection of references to the layers and includes a camera for
compositing. A layer can be thought of as compositing container of
drawables as well as IBR-like image. From an implementation
standpoint, a layer produces a 2D texture. LayerProxy contains a list
of drawables to be rendered, a material for the layer and a texture
proxy to render into. Layer is a 2D texture and can be used in any
material requiring a texture.

Textures are employed extensively in the system. They are used
for representing transfer functions, layers and volumes. Transfer
functions may be one or two-dimensional. Layers are represented as
two-dimensional textures, and volumes as three-dimensional
textures. Texture proxies keep information about texture format and
size. A texture handler takes care of binding/unbinding of textures to
texture units. TextureGL provides simple enable/disable
functionality. The mediator (handler) in this case provides both the
synchronization as well as pushes the data into OpenGL.

There are a number of classes that represent basic mathematical
and geometric objects: regions of interest, planes, points, scalars, etc.
These provide a consistent framework for user manipulation and are

Submitted to IEEE Visualization 2008 Page 7

the building blocks of most drawables. A volumetric drawable
contains a region of interest. A slice plane contains a plane as well as
the region of interest. If two drawables share the same mathematical
entity, any change in this entity is reflected in both drawables.

Lights are used in a variety of shaders. Though it is possible to set
up light parameters directly in every shader, it is much more
convenient to create a light or light collection, and use gl_Light[]
references in the shader to get the corresponding light parameter. We
use slice-based volume rendering in the system, employing 3D
textures. We also have implemented a one-pass raycaster.

7.4 Remoting
The following classes are used to provide remoting functionality.
MarshalByRefObject is a .NET framework class that enables access
to remote objects in applications that support remoting. SharedObject
is the base class for all the proxies in the system. Each shared object
extends MarshalByRefObject class and implements the
IAssetManaged interface. Thus, each shared object can be accessed
remotely as an asset in the AssetManager.

We describe the use of remoting in our system with the following
scenario. There are two machines, A and B. Machine A is being used
as a remote display. It displays whatever is being rendered at the
machine B. The machine A does not need any user interface, except
for selecting the network address of the machine B to setup
connection. When the application at the machine A is started, it gets
the remote reference of the AssetManager. Once this is done, a local
view is created using remote ViewProxy object returned by the
AssetManager. Then machine A subscribes to the view changing
events of the ViewProxy on machine B. The first time the view is
processed on machine A, it creates any necessary mediators for its
components (for example, layers) recursively. These are then
associated with their corresponding proxies. Subsequently, any
changes to one of these proxies notifies its mediator, which sets a
dirty bit. It also notifies its proxy container which will eventually
instruct the view to re-render. During the rendering any mediator
whose dirty bit is set will re-sync with its proxy. Thus a minimal set
of objects must be synchronized and rendered. Each of the local
mediators on machine A (the objects from the middle tier) is created
automatically via lazy initialization from the corresponding proxies.
This example shows how our system’s architecture provides a
straightforward and concise way of building distributed visualization
applications, minimizing programmer’s efforts.

7.5 Graphics tier
Our system architecture allows a developer to switch from current
implementation with OpenGL to any other graphics library, for
example Direct3D. This can be done by substituting OpenGL calls
with corresponding Direct3D ones. The number of GL classes is
small and the functionality is very well encapsulated and modular.
Since the three entities have a low coupling, the transition from one
graphics library to another can be done easily. This allowed us to add
high level drawables with VTK to our lower-level OpenGL
drawables. Likewise, we have experimented with migrating the
graphics tier to a Linux cluster controlling a power-wall.

8 CONCLUSION
We presented a new framework for single-user and collaborative
visualization. The major design goals were providing an easy to use,
scalable, distributed system that can be used for visualization
research. We showed how the system can be used for a variety of
visualization scenarios. The system is designed in a way that allows
researchers to easily add new functionality, either by directly
implementing new classes in C#, or by using a scripting language

like Python. We hope that our system will become a standard
workbench for research in scientific visualization.

REFERENCES
[1] G. Abrams and L. Trenish, “An Extended Data-Flow Architecture for

Data Analysis and Visualization,” Proc. IEEE Visualization 1995, IEEE
CS Press, Los Alamitos, Calif., 1995, pp. 263-270.

[2] L.Bavoil, S.P. Callahan, P.J.Crossno, J. Freire, C. E. Scheidegger, C.T.
Silva, and H. T. Vo. VisTrails: enabling interactive multiple-view
visualizations In Proceedings of IEEE Visualization, 2005, Vis'05, 135-
142.

[3] K. W. Brodlie, D. A. Duce, J. R. Gallop, J. P. R. B. Walton, J. D. Wood
(2004) Distributed and Collaborative Visualization
Computer Graphics Forum 23 (2) , 223–251

[4] Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., and Hart,
J. C. 1992. The CAVE: audio visual experience automatic virtual
environment. Commun. ACM 35, 6 (Jun. 1992), 64-72.

[5] gViz http://www.comp.leeds.ac.uk/vvr/gViz/
[6] Steven P. Callahan, Juliana Freire, Emmanuele Santos, Carlos

Scheidegger, Claudio Silva, Huy T. Vo, VisTrails: Visualization Meets
Data Management. SIGMOD 2006, June 27-29, 2006, Chicago, IL

[7] Foulser, D. 1995. IRIS Explorer: a framework for investigation.
SIGGRAPH Comput. Graph. 29, 2 (May. 1995), 13-16.

[8] Garrett J.J. Ajax: A New Approach to Web Applications. 2005
http://www.adaptivepath.com/ideas/essays/archives/000385.php

[9] Grimstead, I. J., Avis, N. J., and Walker, D. W. 2004. Automatic
Distribution of Rendering Workloads in a Grid Enabled Collaborative
Visualization Environment. In Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing (Nov.06-12, 2004). Conference on High
Performance Networking and Computing. IEEE Computer Society,
Washington, DC

[10] ITK Toolkit http://www.itk.org/
[11] Leigh J., Rajlich P., Stein R., Johnson A., DeFanti T. LIMBO/VTK: A

Tool for Rapid Tele-Immersive Visualization, CDROM proc. Of IEEE
Visualization ’98, Research Triangle Park, NC, October 18-23, 1998.

[12] .NET Framework http://msdn2.microsoft.com/en-
us/netframework/default.aspx

[13] OpenDX. http://www.opendx.org/
[14] pV3 http://raphael.mit.edu/pv3/pv3.html
[15] Render Monkey http://ati.amd.com/developer/rendermonkey/index.html
[16] Shader Designer http://www.typhoonlabs.com/
[17] Swivel http://www.swivel.com/
[18] Taesombut, N., Wu, X., Chien, A. A., Nayak, A., Smith, B., Kilb, D.,

Im, T., Samilo, D., Kent, G., and Orcutt, J. 2006. Collaborative data
visualization for earth sciences with the OptIPuter. Future Gener.
Comput. Syst. 22, 8 (Oct. 2006), 955-963.

[19] Upson, C., Faulhaber, T., Kamins, D., Laidlaw, D. H., Schlegel, D.,
Vroom, J., Gurwitz, R., and van Dam, A. 1989. The Application
Visualization System: A Computational Environment for Scientific
Visualization. IEEE Comput. Graph. Appl. 9, 4 (Jul. 1989), 30-42.

[20] Viegas, F.B., Wattenberg, M. , van Ham, F., Kriss, J., McKeon, M.
2007. ManyEyes: a Site for Visualization at Internet Scale. IEEE
Transactions on Visualization and Computer Graphics, 13 (6), pp 1121-
1128.

[21] Wood, J., H. Wright, and K. Brodlie. 1997. Collaborative Visualization.
Proceedings, IEEE Information Visualization '97, Pheoniz, Oct. 19-24,
1997, pp. 253-260.

[22] Zhao Y., Hu C., Huang Y., Ma D. "Collaborative Visualization of Large
Scale Datasets Using Web Services," p. 62, Second International
Conference on Internet and Web Applications and Services
(ICIW'07), 2007.

http://www.pablolfc.com.ar/leer/Ajax.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28viegas%20%20f.%20b.%3CIN%3Eau%29&valnm=Viegas%2C+F.B.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20wattenberg%20%20m.%3CIN%3Eau%29&valnm=+Wattenberg%2C+M.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20van%20ham%20%20f.%3CIN%3Eau%29&valnm=+van+Ham%2C+F.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20kriss%20%20j.%3CIN%3Eau%29&valnm=+Kriss%2C+J.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20mckeon%20%20m.%3CIN%3Eau%29&valnm=+McKeon%2C+M.&reqloc%20=others&history=yes

Submitted to IEEE Visualization 2008 Page 8

Figure 8. Major interfaces and proxy classes of our system.

	1 Introduction
	2 Related Work
	3 System Architecture
	4 Volume Compositor
	User Interface

	5 Use Cases
	5.1 Single User Visualization
	5.2 Collaborative Visualization
	5.3 Real-Time Collaboration
	5.4 Asynchronous Collaboration
	5.5 Implementation Details

	Extensions
	5.6 VTK-ITK Plugins
	5.7 Scripting, Python and Animation

	6 Layers
	System Implementation
	7.1 .NET Platform
	7.2 System Design
	7.4 Remoting
	7.5 Graphics tier

	8 Conclusion

