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Abstract—An architecture for distributed and collaborative visualization is presented. The design goals of the system are to 
create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both 
single user and collaborative distributed environment. System architecture employs a client-server model. Visualization 
projects can be synchronously accessed and modified from different client machines. We present a set of visualization use 
cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new 
applications. These components make heavy use of leading design patterns. All components are based on the functionality of 
a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and 
higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These 
light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user’s cell 
phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier 
manages any communication and synchronization with the proxy objects. In addition to the data components, we have 
developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable 
shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. 
Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the 
registered proxies and responds to queries on the overall system. This allows all user components to be populated 
automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in 
the various GUI components that work with this interface. One of the main features is an interactive shader designer. This 
allows rapid prototyping of new visualization renderings that are shader-based and greatly accelerates the development and 
debug cycle. 

Index Terms— Distributed Systems, collaborative visualization, Visualization, interaction, volume rendering.

 

1 INTRODUCTION

We present a distributed visualization framework. The goal in 
creating the framework was two-fold: first, create a system that can 
reduce the time for implementing new visualization algorithms and 
thus reduce the time for verifying research ideas, and second, make 
sure that the system is easily extensible. In brief, we tried to create a 
system that can be used as a test bench for research in visualization. 

Our open source framework can be used for creating both single 
user and collaborative visualization applications. To demonstrate the 
potential of the system, we have developed several applications 
using this system, such as the Volume Compositor. Volume 
Compositor is a volume rendering application providing shader 
program support, layer support and a high quality user interface. In 
volume rendering and scientific visualization, the majority of the 
algorithm implementations are using new hardware capabilities for 
maximum performance. Shader programs are used to employ 
programming capabilities of modern graphics hardware. That led us 
to including a shader editor to the Volume Compositor’s user 
interface. This allows faster shader development for shader-based 
algorithm implementations. Instead of recompiling and executing a 
program, the developer can see the results of modification 
immediately as s/he commits the changes in the shader editor. 

Another goal was to make the design flexible, both for 
developing standalone as well as distributed applications and 
algorithms. We decided to split the system into a set of components 
that allow the system to be distributed and allow easy code 
maintenance. Major criterion in splitting was to keep the components 
loosely coupled. Compared to monolithic systems, separate 
components may require a large number of interconnections between 
them and thus make the system overly complex, directly violating 
our design goal. By keeping coupling low, we achieve easier system 
modification and make the system distributed. 

2 RELATED WORK 
There are different dimensions in collaborative visualization. 
Roughly collaborative visualization systems can be subdivided by 
several criteria:  

Type of visualization: 
• synchronous  
• asynchronous 

Kind of display systems that are utilized: 
• Standard displays 
• Large Displays 
• Immersive systems 
• Handheld devices 

Location: 
• Same location 
• Different locations  

We should emphasize that distributed visualization does not 
automatically mean collaborative. Making the system distributed in 
many cases only implies improving the performance by utilizing 
resources of more than a single machine. For a detailed coverage of 
the field we suggest the following excellent review by Brodlie et al. 
[3]. 

Historically, a number of well-known visualization frameworks 
have been made distributed. Usually, as in case with AVS [19] this 
includes execution of some parts of the system on remote machines. 
Later on, support for collaboration has been added. VTK was 
extended to provide support for collaboration in CAVE-type 
environments [4][11]. IBM Data Explorer [1] and later OpenDX[13], 
supports execution of some of its modules on the remote machines. 
Collaborative capabilities were added to Iris Explorer [7] with 
modules from the COVISA [21] project. Another well-known 
visualization system with support for collaborative and distributed 
visualization is VisTrails [2]. 

Recently, research in developing web-based collaboration tools 
includes Many Eyes [20] and Swivel [17]. They employ an 
asynchronous collaboration model. Typical collaboration sessions 
consist of creating/modifying visualization, uploading them to the 
website such that later users can modify the visualization, or discuss 
it and leave comments and annotations. Other systems, such as [22] 
are utilizing new web2.0 technologies (for example, AJAX [8]) 
without altering the interactive visualization paradigm. 
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The term grid computing has become increasingly popular 
recently. It refers to the use of multiple interconnected computers for 
computation as opposed to performing the same tasks on a single 
supercomputer. The gViz project [5] is aimed towards adding grid-
enabled collaboration support to Iris Explorer and pV3 [14]. 
OptIPuter [18] provides collaboration for multi-gigabyte earth 
science datasets. RAVE [9] is another grid based visualization 
system. 

Our system can be described primarily as a synchronous 
distributed collaboration one; however, we also show how we can 
employ asynchronous scenarios for our system. 

The rest of the paper is organized as follows: in section 3 we 
describe system architecture, in section 4 we talk about Volume 
Compositor, application built on top of the framework. Section 5 
covers additional use cases for the framework. Section 6 covers 
details on incorporating VTK plug-ins and Python scripts into the 
system. Section 7 describes layers, and section 8 provides additional 
implementation details. 

3 SYSTEM ARCHITECTURE 
The system consists of three kinds of concrete entities, a light-weight 
object definition (proxies), communication and synchronization 
mediators, and implementation objects, such as OpenGL drawables. 
Figure 1 shows a rough view of the interrelationships between these 
entities. 

Figure 1. Main entity types in the system.  

The proxy objects are shared among different machines, different 
software architecture configurations and with the user-interface 
components. Any entity that the developer/researcher would like to 
share is a proxy, including cameras, drawables, transfer functions 
and lights. As such, we call these entities Assets. Distribution of the 
proxies is done with the aid of an AssetManager class which is an 
object pool for all the shared proxies in the system. If a particular 
remote machine needs an instance of a proxy, it gets the (remote) 
reference from the AssetManager. Synchronization, in case of object 
modification (for example, changing camera parameters), is done by 
subscribing to change events associated with each proxy. In this 
regard, each proxy object can be viewed as a publisher to which 
interested parties can subscribe. 

The Mediator entities provide a clean separation of concerns from 
the underlying graphical elements and the communication and 
synchronization with the proxy objects. They reside on the remote 
machines and each remote client will have its own instance. This 
differs from the proxy instances which (logically) are global across 
all machines. Mediators are implemented using a decorator pattern, 
where each graphic entity is wrapped with a mediator and mediators 
communicate among themselves to determine the amount of 
synchronization that is needed. Synchronization with the proxy 
objects is done lazily. 

The graphics entities, like the mediator entities, reside on each 
remote machine. Classes at this level deal directly with graphics 
library, for example VTK, OpenGL or DirectX by providing the 
necessary graphics library calls. 

The architecture provides a clear separation of responsibilities 
between different parts of the system, similar to a model-view-
controller (MVC) architecture – with proxies being the model, 
mediators being the controller, and the graphics tier being the view. 

4 VOLUME COMPOSITOR 
Using the framework mentioned in the previous section, we 
developed the Volume Compositor, a multilayer volume rendering 
application. It contains a 3D rendering and a 2.5D compositing 
engine, flexible user interface, and distribution capabilities. By 
referring to the compositing engine as 2.5D we emphasize the use of 
layers and layer compositing. Such use can be thought of as an 
extension to the concept of compositing, from the general meaning 
associated with Porter and Duff composing operators, to a more 
general and more flexible set of functions. 

The concept of layer is central to this application. By using the 
term layer, we refer to a 2D container for storing an image, on which 
a general compositing operator is defined. All drawables are 
rendered to one or more layers. The composition order can be 
changed and the layers can be exported and imported in a format 
readily utilized in a 2D paint package. A number of tasks for volume 
exploration are performed by processing the layers instead of 
applying more expensive 3D rendering techniques, thus combining 
the aspects of image-based rendering. Examples include two level 
volume rendering, masking and magnification. 

4.1 User Interface 
In this section, we describe Volume Compositor’s user interface. 
Before proceeding, a quick overview of visualization workflow in 
the system is necessary. Visualization session usually consists of the 
following steps. First, the user loads the datasets s/he is interested in. 
Next, the appropriate drawables (geometric primitives) are created – 
these could be boxes or planes. Then, region(s) of interest (ROI) are 
selected; in most cases ROI is a rectangular box. Then, the user 
creates a set of layers. A drawable can be rendered to multiple layers. 
Finally, the user specifies which material is applied to which of the 
drawables and layers. The complexity of the process is minimized by 
a number of predefined templates that the user can select from. The 
user interface gives full control of all the elements described above. 

Figure 2. Volume Compositor interface screenshot. 

Anything that can be rendered in our system is a drawable. 
Currently, we have the following types of drawables: volumetric 
regions, boundaries, outlines, and planes. Depending on the selected 
geometric primitive, the user can modify the size and orientation of a 
drawable. All the above transformations can be done both via 
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changing the properties in the corresponding properties tab, or by 
direct manipulation with mouse and keyboard. 

Each drawable has a Material property. Material specifies how 
the drawable is rendered. Material has a shader or a color and 
blending properties. We have implemented a set of predefined 
materials and corresponding shaders in our system. Material editor is 
used for material creation and editing. Material assignments are done 
with the Drawable UI component. Material assignment sets up the 
correspondence between the materials and drawables, and materials 
and shaders. A material can be shared across any number of 
drawables. Material editor also allows the user to assign uniform 
variables for the shaders. 

The shader editor allows the user to modify and compile shaders 
on the fly. The results of the modification of a shader program are 
presented right after the user commits any changes. This makes 
shader development interactive, thus greatly increasing developer’s 
productivity. The key benefit of adding shader control to the system 
is that it breaks the standard rewrite/recompile cycle, when any 
change to a shader program requires restarting the system. Currently, 
shader development in our system is similar to other shader 
development tools, like Shader Designer [16] or Render Monkey 
[15]. 

Layers are one of the key elements of the system. The layers and 
the user interface for layer manipulations resemble that of 
Photoshop. Layers can be turned on/off, created and deleted. The 
user can change the order in which the layers are composited, as well 
as the opacity of each layer. Each layer is also a drawable, which 
allows applying of materials (and thus shaders) to it. 

Fugure 3. Distributed clients access the proxies remotely. 

Development within our system can be also described in terms of 
declarative programming. Certain properties are exposed in the IDE 
and can be modified without writing the code. 

OpenGL lights are used in a number of shaders. The light control 
allows the user to create and manipulate lights. The user can turn the 
lights on and off and change light direction. Same light can be used 
in several shaders. The user can also create light collections with any 
number of lights as well as modify each light’s individual 
parameters. Transfer function interface allows creating and 
modifying 1D and 2D transfer functions. 

5 USE CASES 
In this section we describe different types of use cases that can be 
solved by our system. We explain the versatility of the architecture 
and show how it gives the researchers necessary flexibility in 
developing new applications. 

5.1 Single User Visualization 
We concentrate on the description of our system as a framework for 
distributed collaborative visualization research. However, it is 
important to keep in mind that the framework can also be 
successfully employed in single user scenarios for visualization 
research and development. The Volume Compositor, briefly 
described in previous section, is an example of this. 

Development of new visualization algorithms is aided by 
providing feature-rich and easy to use interfaces as well as giving the 

user freedom to develop new algorithms at different levels. For 
example, one can use our API in C# or Python for fast prototyping of 
new applications, rapidly develop shaders with the shader editor, and 
create libraries of materials and shaders. The user can also save 
different visualization states to be loaded at a later time. 

5.2 Collaborative Visualization 
In collaborative visualization, several users work on the same 
visualization. There are different dimensions of collaboration. The 
users may simultaneously interpret the visualization; they may 
simultaneously modify and tune visualization parameters. They may 
work in the same room or in different cities. In some cases, there is 
no need for collaboration to happen at the same time. How do all 
these issues impact the collaboration process? What are the exact 
needs of the users to maximize the efficiency? We explore these 
questions in the next paragraphs, highlighting different scenarios and 
showing how our system is utilized in these cases. We also provide 
an analysis of the architectural and implementation trade-offs. 

Our system provides basic synchronization and distributed 
functionality. The system currently provides synchronous display 
and control on any number of remote clients. The maximum number 
of clients is bounded only by the performance of the hardware and 
network connection properties. The system supports either a client-
server model or peer-to-peer communication. Either of these can be 
extended to some sort of a mixed communication or hierarchical 
control. 

There are several scenarios for collaborative visualization with 
our system; we start from the very simple and obvious ones, and 
continue with more advanced examples. System architecture gives us 
enough flexibility to allow easy implementation of the scenarios 
described below. In all examples we assume that there is only one 
copy of each proxy object in the system. When this is not the case, 
we specifically mention this. 

5.3 Real-Time Collaboration 
In our first scenario single workstation and one or more PDAs are 
utilized. This scenario is particularly useful when the workstation 
provides output to a big tiled display or other immersive 
environment such as a CAVE. Each collaborator has a PDA. The 
PDA is a Windows CE device and is used to control input 
parameters and perform user interaction, while the workstation is 
used as a major graphics rendering back-bone and is a high end 
graphics system. The PDA has two user interface components: 
camera controller and a transfer function editor. Camera control UI 
component allows zooming, panning and rotation. The transfer 
function editor allows use and modification of 1D or 2D transfer 
functions. Both UI components can be interacted with either PDA 
keys or with a stylus. The visualization changes interactively as the 
user modifies camera or transfer function parameters at the PDA. 
The PDA does not require high-end graphics capabilities. 

 Visualization systems are increasingly used for teaching in 
different areas. One such area is medical education. For example, 
volume rendering system can provide initial training for medical 
students. Instead of using real cadavers, the students explore the 
volumetric datasets interactively on the computer. 

Our scenario is an interactive learning session, when a group of 
students is working on the sample visualization project. There is a 
single instructor’s workstation and up to 20 students’ machines. The 
instructor acts as an administrator, having full control over the 
visualizations produced by the students. Instructor sees every 
student’s visualization in a separate window and uses the full set of 
UI components to control materials, shaders, cameras and layers of 
each of the projects. The user interface allows instructor either to 
modify the student’s project concurrently or to lock it to prevent 
possible collisions. The visualization session consists of the set of 
assignments that students should complete. For the first one the 
students produce a rendering of the particular bone. While exploring 
the dataset, the instructor views all of the projects that the students 
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are working on, and can modify them, if necessary. The next task is 
more complex – the students are asked to modify the visualization in 
a way that the soft tissue around the bone is also visible. Finally, the 
students create the volumetric cut. Instructor has control not only of 
individual machines but can also perform group tasks, such as saving 
the snapshots of all the students’ projects. 

5.4 Asynchronous Collaboration 
We have described the cases when the users are working 
synchronously. However, this is not always necessary. Moreover, 
there are cases when asynchronous collaboration may be preferable 
over synchronous one. An example of such a case is collaborative 
work on medical or technical illustration. An example is shown in 
Figure 4. The first user have rendered the foot and committed the 
changes. The second user exported the layers to Photoshop and 
added the labels to create an illustration. 

One more application is segmentation – several researchers may 
work together to segment a dataset. It is not always necessary for 
their collaboration to happen in real time. Assume the following 
scenario. A researcher in New York is working on segmentation with 
his or her colleague in LA. Researcher in New York provides initial 
segmentation and notifies researcher in LA. Researcher in LA checks 
the results, modifies the visualization project and notifies researcher 
in New York of the change. The process is iterative: they keep 
working on the project until they achieve the final segmentation. 

Figure 4. Medical illustration created with our framework. Foot and the 
drop shadow are rendered to the different layers. Blur operator was 
applied to the shadow to make it look soft. The layers were exported 
to Photoshop where labels were added. 

5.5 Implementation Details 
Our typical approach to ensure real-time synchronization currently 
implemented in the system is to keep only one copy of each proxy 
object in a global AssetManager residing only at one machine and 
allow all other machines to access proxies remotely. This ensures 
that all the machines see the same state of the proxy objects. 
Asynchronous collaboration is supported in the following way. A 
new instance of AssetManager is created at each of the machines. 
The proxies for these machines are created by cloning corresponding 
objects from the original AssetManager. This is illustrated in Figures 
5a and 5b. Originally machine A’s AssetManager was used by both 
machine A and remotely by machine B. Asynchronous collaboration 
is supported by creating an additional AssetManager residing on 
machine B. Machine B starts listening only to updating events 
generated locally. Machine B, however, still can access proxies 
residing in A’s AssetManager and vice versa. Switching back to 
synchronized collaboration is done by substituting the local 
AssetManager by the original remote one from machine A. This 
example is a special case of a general m-n relationship with m 
AssetManagers and n machines that use them. In this general case 
AssetManagers may be organized in a hierarchy, such as in Figure 

5d. In the figure AssetManagers at the bottom are synchronized 
through the topmost AssetManager. 

The sets of proxy objects when there are multiple AssetManagers 
may be either disjoint or overlapping. Disjoint AssetManagers can 
keep different types of proxies, for example a separate one may be 
designated to manage volume proxies, while another is used for 
materials and shaders. Case when the AssetManagers contain copies 
of the same objects is shown in Figures 5a and 5b. 

Figure 5. AssetManagers in distributed scenarios. 

Up to this point we haven’t discussed where the datasets are 
being stored. In case of very large datasets this becomes an important 
question. Traditional solution to this problem is creating some sort of 
a centralized data server. Main advantage of using centralized data 
server is the achieved flexibility. With the data server there is no 
need to send the whole dataset over the network; this may be 
beneficial when dataset is very large, for example in the case of 
seismic data. We achieve this by implementing a volume handler 
(mediator) with this functionality. The object of the handler class 
resides on the data server machine. The proxy objects and 
AssetManager don’t have to be modified. When the dataset is 
rendered on the client machine, the request for data goes from the 
graphics level to the local mediator object, which, in turn, gets it 
from the handler on the server. The connections between data server 
and clients are managed by the handler and proxies and 
AssetManager are not involved. The handler supports data 
compression and level-of-detail data processing. 

One of the issues that arise when talking about distributed 
applications is robustness, i.e. the ability of the application to 
perform properly if one or more of the clients crashes. In case of a 
single AssetManager such as in Figure 5a), non responsive clients do 
not affect the rest of the clients. For example, if machine B in Figure 
5a) froze, application at the machine A would still run. This is 
accomplished by using a one-way asynchronous communication 
from the proxies to the mediator level (as shown in Figure 1), thus 
non responsive clients don’t bring the system to a halt. 

With multiple AssetManagers the scenarios become slightly more 
complicated; however in such cases we also have more flexibility – a 
machine that has its own AssetManager may remain active when 
other stop their execution. The following example shows in detail 
one of the “crashing” scenarios. Consider two systems, A and B, as 
shown in figure 5c). There are some proxies in A’s AssetManager 
that are used by B, and there are some proxies in B’s AssetManager 
that are used by A; the sets of proxies are disjoint. Whenever one of 
A or B terminates or freezes, the other one has to terminate, because 
the remote proxies are no longer available. Straightforward solution 
is achieved by enforcing proxies’ overlap, i.e. for any remote proxy a 
local copy should be created. 



Figure 6. Examples of the use of layers. a) Skull rendering. b) Skull rendered with a halo. Skull and halo are rendered to separate layers. Halo is 
produced by blurring a 2D shadow. c) and d) 2D-drop shadows.  Right: kidney magnification. Right top: torso dataset with a non-magnified 
kidney. Right bottom: kidney is rendered to a separate layer, thus when it is magnified, the ribs are not distorted.

EXTENSIONS 
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5.6 VTK-ITK Plugins 
VTK is well known system for scientific visualization. It consists of 
a set of core libraries written in C++ and a number of higher level 
libraries, written in Tcl/Tk and Python. The VTK operates in terms 
of a pipeline. The users create modules that are used for processing 
data as it goes down the pipeline. In our framework, we include VTK 
and ITK [10] functionality at the graphics entity level, instead of 
using directly OpenGL or Direct3D. Proxy objects for those are 
pipeline scripts or programs, for instance in Python. 

5.7 Scripting, Python and Animation 
One of the big issues in current visualization toolkits is the 
complexity of setting up the system parameters. To get a 
visualization that suits the user, sometimes hours of tedious 
parameter-tweaking is necessary. Saving visualization projects is not 
the best solution, because in this case we save just the current state of 
the system. It’s preferable to be able to somehow record the way the 
project was created and modified. One way to tackle this problem is 
to record the steps necessary to create a particular visualization, so 
that later it can either be easily redone or modified. To save a series 
of steps that lead to the particular state, we use Python scripts. This 
solution has the major advantage. Clear, intuitive and concise syntax 
of Python commands allows its use by non-programmers. Python 

commands are converted to the corresponding API calls through a 
simple wrapper class. 

Animations may greatly increase the expressiveness of 
visualization. There are two ways of creating animations in our 
system. The first involves creating images of different time steps and 
then merging them into the single animation in a way similar to 
Adobe Image Ready; the other involves using Python scripts. With 
scripts, the user is able to specify what and how specific parameters 
change, as well as the appropriate timing. We prefer the second way, 
because for long animations it is much less time consuming. 
Moreover, when scripting is used, any new user interface can access 
the system through scripts. Scripts have access to all data in the 
AssetManager and the core interface types. Notice that one can still 
use system’s C# API for this purpose. 

6 LAYERS 
The use of layers is an important feature of our system. The layers 
employ the same idea as the layers in Photoshop. Thorough coverage 
of the layers is beyond the scope of the paper, thus in this section we 
show some results done with the use of layers. In Figure 6 on the left 
the skull is rendered without and with the drop shadows and a halo. 
On the right we demonstrate the use of a layer based magnification. 
Kidney is rendered to a separate layer and thus is 
magnifiedbwithoutbdistortingtthetribs.
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7 SYSTEM IMPLEMENTATION 

7.1 .NET Platform 
Our implementation is based upon the C# programming language 
and the .NET framework [12]. First introduced in 2000, .NET 
provides the following features to the applications: interoperability, 
language independence, common language runtime and a rich set of 
standard libraries. The Common Language Runtime (CLR) allows 
code written in different .NET languages to be compiled to an 
intermediate language that is interpreted by the platform. Just-in-time 
compilation is used to improve performance. 

.NET Remoting is a technology that allows distributed 
applications to communicate by using the references to so-called 
remote objects. .NET hides from the developer the complexity of the 
underlying network protocols. The framework automatically 
generates object stubs and provides communication mechanisms. 
From a developer’s standpoint, the use of remoting is quite 
straightforward: after proper initialization, remote objects can be 
used as if they were local. All the proxies in our system support 
remoting. This allows distributed applications to operate with the 
same proxies, thus achieving synchronization. 

Some care needs be taken when making proxies remote. For 
example, making a volumetric dataset a proxy, we may force one or 
more copies of the dataset across the network, which in case of large 
datasets is not desirable. As discussed in the Use Cases section, one 
solution is to create a separate data server. The proxy merely 
indicates the basic properties of the dataset. The underlying 
mediators can then reference data from a local store or stream it from 
the data server. 

Performance is always an issue in graphics and visualization. 
When designing the system, performance was not the major concern, 
however. The design goals were to create scalable, easy to distribute, 
maintain and modify visualization system with extensive use of 
shaders and convenient user interfaces. Still, we achieve good 
performance results. These are due not to a set of optimizations, for 
example, but to overall system architecture which ensures such 
things as lazy initialization, minimizing the number of events thrown 
and processed, updating objects only when necessary (lazy updates). 
Some of the performance benefits come from the fact that we use 
layers and perform image manipulation instead of more 
computationally expensive volume rendering in a number of cases. 
In total, for many test cases the overall performance was better with 
our new system. 

7.2 System Design 
There are a number of key classes and interfaces that we will 
describe in detail to provide a better understanding on how the 
system operates. As mentioned in the “Architecture” section, the 
system has three different kinds of entities. The top proxy tier 
provides object sharing and remoting functionality, the mediator tier 
works with local copies of the proxies, and the graphics tier provides 
the necessary graphics library calls. Major classes and relationships 
between them are shown in Figure 7. The relationship between 
various classes is the same across the three tiers; at each tier they 
implement the same interfaces. For example, IMaterial is 
implemented by MaterialProxy, MaterialHandler and MaterialGL. 
Class diagrams for the key interfaces and proxy classes are shown in 
Figure 8. For example, at the proxies’ tier, ViewProxy contains one 
or more LayerProxies; each LayerProxy has a collection of drawable 
proxies, each of them, in turn, has a MaterialProxy. The same 
relationship is followed by mediators’ tier (handler classes), as well 
as by the graphics tier. 

7.3 Classes and Interfaces 
Every object that should eventually be rendered to the framebuffer 
implements an IDrawable interface. The key method in the 

 

 
Figure 7. Relationships between classes in the three tiers are the 

same. 
 

interface is Render(). Examples of drawables are volumetric regions, 
slice planes and outlines. In the corresponding proxies these methods 
are stubbed, however; the real rendering happens in the graphics tier. 

All the proxies in our system are called assets and implement 
IAssetManaged interface. The AssetManager class stores references 
to every proxy. The AssetManager acts as a server, and thus at any 
time the necessary proxy can be accessed by calling 
AssetManager.Instance.getItem(). Each asset is referenced by its 
type and string id. For example, the main camera may be retrieved 
with the code: 
AssetManager.Instance.GetItem(typeof(Camera), “Main Camera”). 

MaterialProxy, MaterialHandler and MaterialGL classes 
implement the IMaterial interface. The methods of IMaterial include 
MakeActive() and Deactivate() for enabling the material just before 
rendering, and disabling it after rendering has been completed. Each 
material has a corresponding shader that is used to render the 
material. The system provides a lengthy set of predefined shaders 
and materials. Shader program contains a set of vertex, fragment and 
geometry routines. We associate uniform variables with a material, 
not a shader. This means that the same shader for volume rendering, 
for example, may be used to render two different volumes with 
different transfer functions. The volume rendering shader is the 
same, while the uniform variables (volumes and transfer functions) 
are different. 

A view contains any number of layers. Each view has its own 
collection of references to the layers and includes a camera for 
compositing. A layer can be thought of as compositing container of 
drawables as well as IBR-like image. From an implementation 
standpoint, a layer produces a 2D texture. LayerProxy contains a list 
of drawables to be rendered, a material for the layer and a texture 
proxy to render into. Layer is a 2D texture and can be used in any 
material requiring a texture. 

Textures are employed extensively in the system. They are used 
for representing transfer functions, layers and volumes. Transfer 
functions may be one or two-dimensional. Layers are represented as 
two-dimensional textures, and volumes as three-dimensional 
textures. Texture proxies keep information about texture format and 
size. A texture handler takes care of binding/unbinding of textures to 
texture units. TextureGL provides simple enable/disable 
functionality. The mediator (handler) in this case provides both the 
synchronization as well as pushes the data into OpenGL. 

There are a number of classes that represent basic mathematical 
and geometric objects: regions of interest, planes, points, scalars, etc.  
These provide a consistent framework for user manipulation and are 
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the building blocks of most drawables. A volumetric drawable 
contains a region of interest. A slice plane contains a plane as well as 
the region of interest. If two drawables share the same mathematical 
entity, any change in this entity is reflected in both drawables. 

Lights are used in a variety of shaders. Though it is possible to set 
up light parameters directly in every shader, it is much more 
convenient to create a light or light collection, and use gl_Light[] 
references in the shader to get the corresponding light parameter. We 
use slice-based volume rendering in the system, employing 3D 
textures. We also have implemented a one-pass raycaster.  

7.4 Remoting 
The following classes are used to provide remoting functionality. 
MarshalByRefObject is a .NET framework class that enables access 
to remote objects in applications that support remoting. SharedObject 
is the base class for all the proxies in the system. Each shared object 
extends MarshalByRefObject class and implements the 
IAssetManaged interface. Thus, each shared object can be accessed 
remotely as an asset in the AssetManager. 

We describe the use of remoting in our system with the following 
scenario. There are two machines, A and B. Machine A is being used 
as a remote display. It displays whatever is being rendered at the 
machine B. The machine A does not need any user interface, except 
for selecting the network address of the machine B to setup 
connection. When the application at the machine A is started, it gets 
the remote reference of the AssetManager. Once this is done, a local 
view is created using remote ViewProxy object returned by the 
AssetManager. Then machine A subscribes to the view changing 
events of the ViewProxy on machine B. The first time the view is 
processed on machine A, it creates any necessary mediators for its 
components (for example, layers) recursively. These are then 
associated with their corresponding proxies. Subsequently, any 
changes to one of these proxies notifies its mediator, which sets a 
dirty bit. It also notifies its proxy container which will eventually 
instruct the view to re-render. During the rendering any mediator 
whose dirty bit is set will re-sync with its proxy. Thus a minimal set 
of objects must be synchronized and rendered. Each of the local 
mediators on machine A (the objects from the middle tier) is created 
automatically via lazy initialization from the corresponding proxies. 
This example shows how our system’s architecture provides a 
straightforward and concise way of building distributed visualization 
applications, minimizing programmer’s efforts. 

7.5 Graphics tier 
Our system architecture allows a developer to switch from current 
implementation with OpenGL to any other graphics library, for 
example Direct3D. This can be done by substituting OpenGL calls 
with corresponding Direct3D ones. The number of GL classes is 
small and the functionality is very well encapsulated and modular. 
Since the three entities have a low coupling, the transition from one 
graphics library to another can be done easily. This allowed us to add 
high level drawables with VTK to our lower-level OpenGL 
drawables. Likewise, we have experimented with migrating the 
graphics tier to a Linux cluster controlling a power-wall. 

8 CONCLUSION 
We presented a new framework for single-user and collaborative 
visualization. The major design goals were providing an easy to use, 
scalable, distributed system that can be used for visualization 
research. We showed how the system can be used for a variety of 
visualization scenarios. The system is designed in a way that allows 
researchers to easily add new functionality, either by directly 
implementing new classes in C#, or by using a scripting language 

like Python. We hope that our system will become a standard 
workbench for research in scientific visualization. 
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Figure 8. Major interfaces and proxy classes of our system. 
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