
Designing Zero-Copy FTP Mechanisms to Achieve

High Performance Data-Transfer over InfiniBand WAN

SUNDEEP NARRAVULA, PING LAI, HARI SUBRAMONI,

AMITH MAMIDALA, DHABALESWAR K. PANDA

Technical Report

OSU-CISRC-4/08-TR18.



Designing Zero-Copy FTP Mechanisms to Achieve

High Performance Data-Transfer over InfiniBand

WAN

Sundeep Narravula, Ping Lai, Hari Subramoni, Amith Mamidala, Dhabaleswar K. Panda
Department of Computer Science and Engineering, The Ohio State University

{narravul, laipi, subramon, mamidala, panda}@cse.ohio-state.edu

Abstract—FTP has been the most popular method to transfer
large files for data-staging, replication, and the like. While
existing FTP mechanisms have improved gradually with newer
networks, they still inherit the fundamental limitations imposed
by the underlying networking protocols (TCP/UDP) they use.
These include limited network bandwidth utilization, high mem-
ory bandwidth and CPU utilization that TCP/UDP cause on
the end-nodes. Thus both the performance and scalability of
such systems is limited. The advent of InfiniBand (IB) WAN
has enabled the use of high performance transport protocols in
the WAN scenarios, which can be leveraged for designing FTP
mechanisms. Enabling IB-based FTP capabilities and providing
good efficiency for such transfers presents considerable challenge.

In this paper we present an Advanced Data Transfer Service
(ADTS) to enable efficient data transfers over WAN. We leverage
the ADTS’s capabilities to design high performance file transfer
mechanisms (FTP based on ADTS). Our ADTS layer improves
data transfer performance by optimizing several aspects includ-
ing efficient buffer management, memory registration cache,
pipelining of data transfers, reducing TCP/IP related data copies,
and maintaining persistent FTP data sessions. Further, we reduce
the CPU utilization required for the data-transfers (by up to a
factor of 6) and demonstrate a significantly higher FTP server
scalability. In our experimental results, we observe that our
FTP-ADTS design outperforms existing TCP and UDP based
approaches by more that 80% in transferring large volumes of
data. In addition, we utilize the WAN emulation capabilities of
Obsidian InfiniBand WAN routers to study the impact of our
designs in a wide range of WAN scenarios, leading to solutions
that enable the design of highly capable WAN communication
protocols required to power the next-generation high perfor-
mance parallel and distributed environments.

Keywords: FTP, RDMA, Zero-Copy, Cluster-of-Clusters, Infini-

Band, Obsidian Longbow XR, InfiniBand WAN, iWARP

I. INTRODUCTION

Ever increasing needs in High End Computing (HEC) and

cost effectiveness of high performance commodity systems

have led to massive deployments of highly capable systems

on a global scale. This tremendous increase in compute and

storage capabilities has necessitated bulk data transfers among

various storage systems and/or compute systems that are often

physically separated. Typical uses for such large scale data

transfers include distribution of scientific data-sets, content

replication, remote site backup, etc. Traditionally, File Transfer

Protocol (FTP) [19] has been used for handling such bulk data

transfers.

While FTP provides the basic data transfer functionality,

it also suffers from several critical performance overheads.

In particular, since FTP is based on TCP/IP, it inherits the

fundamental limitations imposed by TCP/IP itself, such as

high CPU utilization, multiple memory copies and limited

peak bandwidths achieved over high delay links. Researchers

in [3], [4] have looked at several improvements to FTP for

optimizing performance. Techniques such as TCP tuning,

striped access, persistent data connections, etc. have been

proposed for providing improved performance. However, these

approaches still bank on TCP/IP (along with its limitations)

for data-transfers and fail to achieve good performance for

high-delay, high-bandwidth links.

In order to drive higher bandwidth performance, ap-

proaches utilizing “TCP unfriendly” mechanisms such as

multi-streaming, FTP over UDP or SCTP, etc. [6], [20], [13],

[3] have recently gained prominence. Even though these ap-

proaches achieve better bandwidth as compared to TCP based

approaches, they still suffer from multiple memory copies and

high CPU overheads.

On the other hand, a rapid growth of modern high perfor-

mance networking interconnects, such as InfiniBand (IB) and

10 Gigabit Ethernet/iWARP, have revolutionized the communi-

cation capabilities of modern systems. In addition to providing

high bandwidth and low latency, these systems also provide

advanced features such as zero-copy data transfers and Re-

mote Direct Memory Access (RDMA) that enable the design

of novel communication protocols that can avoid the main

limitations in using TCP/IP (and UDP or SCTP). Industry

vendors [8], [17] have recently introduced IB WAN routers

that enable IB over WAN. With the advent of InfiniBand WAN

and iWARP, communication libraries are now capable of zero-

copy communication over WAN. This presents the scope for

designing high performance communication protocols in wide

area networks as well. However, in order to maximize the

possible benefits of the IB WAN capabilities, the data transfer

mechanisms required for FTP need to be designed carefully,

which presents a considerable challenge.

In this paper, we present a novel zero-copy approach for

bulk data transfers across WAN. In our approach, we design a

high performance Advanced Data Transfer Service (ADTS)

that utilizes zero-copy capabilities of modern networks to



achieve scalable and efficient data transfers. We leverage the

performance of the ADTS layer to design a high performance

FTP client/server library. We further investigate the issues

involved and study the benefits of our approach in various

IB WAN scenarios.

The following are the primary contributions of this paper:

• Design an Advanced Data Transfer Service (ADTS) that

leverages zero-copy capabilities of modern interconnects

to perform efficient bulk data transfers

• Explore optimizations such as memory registration

caches, persistent data connections and pipelined data

transfers to maximize the performance of the ADTS

• Leverage the ADTS capabilities to design a high perfor-

mance zero-copy FTP library

• Provide a robust and inter-operable mechanism to support

both the high performance zero-copy capable clients and

the traditional TCP/IP (or UDP/IP) clients

• Study and analyze the benefits of our design in the cur-

rent and emerging parallel and distributed environments

including both LAN and WAN scenarios

Our experimental results show an improvement of up to

80% in latency achieved for large files as compared to TCP

based approaches using GridFTP. Further, we demonstrate

that for WAN scenarios with high network delays, our ap-

proaches work significantly better than the TCP and UDP

based approaches. We also observe that our approach achieves

peak transfer rates at significantly lower (up to 6 times) CPU

utilization.

The remainder of this paper is organized as follows: Sec-

tion II gives a brief overview of the basic FTP protocol and

modern interconnects. We briefly discuss the communication

performance limitations in Section III. In Section IV we

present our RDMA based design of FTP. We evaluate and

analyze the performance of our design in various scenarios

in Section V. Section VI describes the related work. Finally,

we summarize our conclusions and possible future work in

Section VII.

II. BACKGROUND

In this section we briefly present the required background

on File Transfer Protocol (FTP), InfiniBand and InfiniBand

WAN.

User
Interface

User
DTP

User PI

Server
 DTP

Server PI

File System File System

FTP Commands

FTP Replies

Data

Connection

User−FTPServer−FTP

User

Fig. 1. Basic FTP Model (Courtesy: RFC 959 [19])

A. File Transfer Protocol

File Transfer Protocol (FTP) [19] was initially proposed to

promote file sharing and the implicit use of remote computers.

It is an application level protocol used to copy files between

the local machine (user) and the remote machine (server)

over the network, and fundamentally relies on the TCP/IP

protocol. The typical FTP model, as shown in Figure 1,

includes control connection and data connection between the

user and the server FTP processes for communicating the

control commands and the data (file) respectively. The FTP

server plays a passive role of listening on the specific port

when started, and the user initiates a connection which may

involve negotiation of authentication and certification with the

server. After that, control commands can be transferred over

the connection. The data connections are established as needed

for the data transfers.

Through the years since the release of the protocol, FTP has

seen a variety of extensions and improvements [1], [16], [15],

[3], [20], [6], [13], largely due to the explosive development of

Internet and data-intensive applications. This trend is expected

to grow with the availability of newer networking technologies

and other related approaches.

B. InfiniBand

InfiniBand Architecture (IBA) [5] defines a switched net-

work fabric for interconnecting processing nodes and I/O

nodes. It uses a queue-based model. A Queue Pair (QP)

consists of a send queue and a receive queue. The send queue

contains instructions for transmitting data and the receive

queue contains the instructions describing where the receive

buffer is. At the low level, InfiniBand supports different

transport services including Reliable Connection (RC) and

Unreliable Datagram (UD).

IBA supports two types of communication semantics: Chan-

nel Semantics (Send-Receive communication model) for RC

and UD, and Memory Semantics (RDMA communication

model) for RC. Remote Direct Memory Access (RDMA) [7]

operations allow processes to access the memory of a remote

process without the intervention of the remote node’s CPU.

Both the approaches can perform zero-copy data transfers.

i.e. the data can directly be transferred from the application

source buffers to the destination buffers without additional

host level memory copies. IBA also supports Shared Receive

Queue (SRQ) mechanism that enables high server scalability

while providing efficient flow control. With SRQ receive

buffers can be posted on a common receive queue for multiple

connections. Further, it also provides a feature which notifies

the application when the number of such receive buffers fall

below a threshold. The receiver can post additional buffers

upon getting the notification making sure that sufficient buffers

are always available for incoming data. Thus flow control

designs are significantly simplified.

InfiniBand Range Extension with Obsidian Longbows

Obsidian Longbows [8] primarily provide range extension

for InfiniBand fabrics over modern 10 Gigabit/s Wide Area

Networks (WAN). They communicate using IPv6 Packets over



Fig. 2. Cluster-of-Clusters Connected with Obsidian Longbow XRs

SONET, ATM, and 10 Gigabit Ethernet. The Longbows work

in pairs, establishing point-to-point links between two clusters

with one Longbow at each end of the link as shown in Figure

2. The Longbows unify both the networks into one InfiniBand

subnet which is transparent to the InfiniBand applications and

libraries, except for the increased latency added by the wire

delays.

Distance Emulation using Obsidian Longbows: Typically, a

delay of 5 us is expected per each km of wire length in WAN.

The Obsidian Longbow routers provides a web interface for

each to specify the delay. We leverage this feature to emulate

cluster-of-clusters with varying degrees of separation in our

experiment.

III. PERFORMANCE LIMITATIONS OF EXISTING FTP

MECHANISMS

In this section we briefly discuss the main limitations1 in

the communication performance of popular FTP designs: (i)

the standard FTP over TCP/IP, (ii) FTP over UDP and (iii)

FTP over SCTP.

FTP over TCP/IP: TCP/IP based data transport imposes

certain well known limitations on raw communication per-

formance. The fundamental limitations in the current context

are as follows: (i) TCP’s inability to achieve good bandwidth

for high-delay, high-bandwidth links, (ii) high CPU utilization

required for TCP processing and (iii) multiple memory copies

causing high memory bandwidth utilization and increased end

to end latency. These limitations are inherited by all FTP

transfers based on TCP as well.

In order to address the first limitation, researchers have

proposed a multi-stream approach. Such an approach requires

multiple TCP connections, requiring additional resources at

the server, thereby limiting the scalability of the server. Fur-

ther, multi-stream approaches (along with UDP based data

transfers) are considered ”TCP Unfriendly” [13]. The use of

TCP Offload Engines (TOE) have been proposed to alleviate

the second limitation. However, this approach still incurs

overheads including multiple memory copies and hence higher

end-to-end latencies.

1It is to be noted that researchers have identified certain limitations such as
having a separate control and data connection, sequential nature of command
exchanges, etc. in the FTP standard. These issues are orthogonal to our
approach and will not be addressed in this paper. The main focus of our
approach is to alleviate communication performance overheads.

FTP over UDP/IP: UDP based data transfers suffer from

both (i) high CPU utilization and (ii) high memory bandwidth

utilization due to multiple memory copies. However, UDP

based transfers are capable of achieving higher bandwidths as

compared to TCP due to lack of flow control and congestion

control for UDP transfers. FTP mechanisms based on UDP

inherit all its limitations.

FTP over SCTP/IP: Data transfers using SCTP (Stream

Control Transmission Protocol)[2] incur limitations similar to

the those mentioned above for TCP/IP. The primary benefit of

utilizing SCTP is the capability of managing multiple streams

without much of the overhead as seen for TCP. In particular,

high bandwidth through multiple streams can be achieved

with fewer connections. However, FTP based on SCTP also

suffers from the above mentioned CPU utilization overhead

and memory copy overheads.

In this work, we address these limitations by leveraging

the zero-copy capabilities of modern interconnects. Our design

alternatives and optimizations are presented in the following

section.

IV. HIGH PERFORMANCE ZERO-COPY FTP

In this section we describe the details of our zero-copy

design. In particular, we present our high performance data

transfer service layer that is used to provide FTP services to

the applications. In the following subsections we present the

main design alternatives followed by the design details of the

overall FTP library.

A. Design Alternatives

In order to enable zero-copy data-transfers, we consider

the following two alternatives: (i) Memory semantics using

RDMA and (ii) Channel semantics using Send and Receive.

RDMA based data-transfer requires allocating and register-

ing buffers on both the source and the destination nodes. The

data-transfer is initiated from the sender side by specifying

the precise destination target buffer address. It is known

that RDMA based approaches [14] achieve better latencies.

However, RDMA based approaches have two significant

drawbacks. Firstly, the target RDMA buffers need to pre-

allocated, registered and the information (including addresses

and memory registration keys) need to be communicated to

the source process before each buffer can be used. Further,

the flow control for the data-transfer using RDMA is very

explicit. i.e. the sender can initiate data-transfers only after



explicit notification of buffer availability on the remote target.

Secondly, since RDMA does not involve remote node CPU

in data-transfer, notifying the completion of each data-transfer

requires additional mechanisms. In particular, additional mes-

sages based on send-recv (or RDMA-write with immediate)

are needed for handling the remote notification, which adds

a further overhead. And finally, in the case of WAN links,

the latency benefits of RDMA seen for small messages are

dominated by the actual network delay. Hence RDMA does

not see any specific benefits over send-recv in WAN scenarios.

These issues present critical constraints for data-transfers over

WAN links.

On the other hand, send-recv based mechanisms show good

benefits. Firstly, zero copy benefits of send-recv mechanism

are identical to those seen with RDMA. i.e. the remote data

can be directly received in the FTP buffers, which can then be

written to the destination file. Secondly, send-recv mechanisms

present opportunities for enabling flow control mechanisms.

For example, with the use of SRQ [5], the receiver can

post buffers when needed automatically. Such a capability

eliminates the need for strict (or explicit) flow control for

the data-transfers. This benefit can be quite significant on

WAN links because the sender is not throttled due to lack

of buffers on the remote node. In addition, as mentioned in

Section II-B the InfiniBand’s send/recv communications can

be used over both the RC and UD transports. Due to these

benefits, we utilize channel semantics (send/recv) for all WAN

communication protocols2.

B. Advanced Data Transfer Service (ADTS)

In order to provide robust and efficient data transfers over

modern WAN interconnects, in this paper we propose the

Advanced Data Transfer Service (ADTS). Figure 3 shows the

main components of the ADTS layer.

As mentioned earlier, several high performance clients can

utilize zero-copy mechanisms for data transfers. Once the

type of channel to be used is negotiated by the client and

the server, the Data Connection Management component

shown in Figure 3, initiates a connection to the remote peer

(based on the negotiated PORT/PASV/TPRT commands) on

either the zero-copy channel, the TCP/IP channel or the

UDP/IP. Transport channels can dynamically be selected by

the ftp server processes on a per connection basis to handle

different kinds of clients. Thus improving robustness and

interoperability. In addition to zero-copy, TCP/IP and UDP/IP

channels, the Advanced Transport Interface provides scope for

enabling support for other emerging transport protocols for

next generation architectures.

We present our zero-copy channel design and the possible

optimizations in the following sections.

2It is to be noted that RDMA operations provide one-sided data-transfer
capabilities which can be highly beneficial for certain kinds of applications
even in WAN scenarios. However, in the context of this paper, zero-copy
send/recv based mechanisms are more beneficial

1) Zero-Copy Channel: Once the client and server negotiate

the use of zero-copy (detailed in Section IV-C1) and the

appropriate connections are setup by the Data Connection

Management component, the channel is marked for zero-

copy data transfers. However, in order to utilize zero-copy

operations (send/recv), the client and the server need to handle

flow control and buffer management.

Each buffer that the underlying layer (IB or iWARP) ac-

cesses needs to be registered and pinned in memory. This

requirement adds a significant overhead to the actual data

transfer. In order to alleviate this problem, the Buffer and File

Management component keeps a small set of pre-allocated

buffers. The data that needs to be transmitted is first read into

these buffers while additional buffers are being allocated and

registered as needed. Once the data is ready and the buffers are

registered, the data transfers are initiated from these buffers.

The buffers that are allocated on-demand are unregistered and

released on completion of the complete data transfer.

Unlike the sockets interface where the underlying kernel

TCP/IP stack performs the flow control, the ADTS needs

to perform flow control for the buffers being sent out. i.e.

data cannot be sent out unless the sender is assured of buffer

availability on the receiver. In our design, we perform our flow

control on the receiver side (using SRQ ) as mentioned earlier

in Sections II-B and IV-A. This enables the ADTS to push the

data out of the source node at a high rate.

In certain scenarios, the end nodes involved in the data trans-

fer might not be capable of processing/storing the incoming

data at a good rate3. In these scenarios, it is necessary to

throttle the sender. In order to deal with these cases, we include

a flow control fall back mechanism to explicitly throttle the

sender as needed.

2) Performance Optimizations: In order to optimize the

performance of data transfers over ADTS, we present the

following optimizations: Persistent Sessions and Memory Reg-

istration Cache, Pipelined Data Transfers.

Persistent Sessions and Memory Registration Cache: While

we utilize a set of pre-allocated buffers to speed up processing,

these buffers need to be registered for each use. This in turn

impacts the performance. Existing RDMA based libraries such

as MVAPICH [18], amortize the registration cost by avoiding

multiple registration/deregistration calls for multiple transfers

by using the same buffers. This technique of maintaining

registered buffers is popularly known as registration cache.

In typical FTP data transfers, each transferred file is trans-

mitted on a different data-connection. Due to this, memory

registration caching would not help significantly in our case.

Further, such an approach would also incur multiple data

connection setup costs as well.

In order to alleviate these multiple data-connection costs, in

our design we enable persistent data-sessions that keep data

connection and the related buffer associations alive during the

transfer of multiple files. The maximum number of files to

3Please note that in the context of high performance FTP transfers, it is
reasonable to assume that the end-nodes are capable of sustaining high IO
bandwidths.



Interconnects

ADTS

Flow Control

Interface

RegisterationMemory

User
Prefork 

Server

Control
Connection

Management

File SystemBuffer/File

Management

Persistent
Session

Management

Data
Connection

Management

Channel
UDP/IPTCP/IP

Channel

Network10GigE / iWARPInfiniBand

Data Transport Interface

Modern WAN

Channel
Zero Copy

Interface

UserFTP

Fig. 3. Overview of the Proposed ADTS Architecture

be transmitted on a given connection is negotiated in advance

and the connection is not closed until the specified number of

files are transferred or the connection becomes idle. This ap-

proach also allows for an efficient use of buffers and memory

registrations which boosts the performance significantly.

Pipelined Data Transfers: In order to maximize the utility of

both the network bandwidth and the local disk bandwidth (or

the bandwidth of the local file system being used), the ADTS

layer is designed with two threads. The network thread deals

with processing of network related work queues, completion

notifications, flow control and memory registrations while the

disk thread handles the reads and writes from the disk. With

this multi-threaded capability, all data transfers are packetized

and pipelined and hence increased performance is obtained.

C. Design of FTP-ADTS

Figure 3 shows the basic architecture of our FTP

client/server library (FTP-ADTS). In our approach we utilize

the low-overhead zero-copy ADTS layer to provide high

performance FTP transfers. The FTP Interface deals with the

rest of the features needed for the FTP library. This interface

provides a basic client user interface to enable all client

interactions. The other main components are described in the

following sections.

1) FTP Control Connection Management: Based on the

user information, the client FTP engine initiates a sockets

based control connection to the remote FTP server. This

connection is used to relay all control information such as

FTP commands and error messages. In addition, it is also used

to negotiate the transport protocols and modes to be used for

the data-transfers. In particular, the client negotiates with the

server on Active/Passive (PORT/PASV commands in the FTP

specifications [19]) mode connections.

Further, in our FTP client/server library we negotiate the

use of zero-copy channel (or TCP/UDP channels) as well.

Hence, clients that are capable of zero-copy transfers with the

servers can benefit from higher performance. To enable this

negotiation, we require the zero-copy enabled client to send an

additional command TPRT (Transport PRoTocol) advertising

its transport preference. Once this negotiation is complete, the

ATDS layer initiates the appropriate data connection.

2) Parallel Prefork Server: Multiple parallel accesses to

the FTP server is a common scenario in most large data-

centers. In order to efficiently support such parallelism, we

design our FTP server as a multi-process server. The main

FTP server daemon forks multiple processes that handle the

client requests. In order to handle bursts of requests, our server

maintains a small pool of pre-forked processes that handle

burst of requests efficiently.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results demon-

strating the capabilities of our design. We evaluate the perfor-

mance of our FTP designs in both LAN and WAN scenarios.

We further measure the overheads of our approach and com-

pare them with existing popular approaches to analyze the

performance and scalability aspects of our design.

In a typical scenario, the primary bottleneck for large file

transfer is disk I/O. In order to demonstrate the performance

benefits of our design, we use RAM disks for all data stor-

age purposes. Please note that modern HEC systems usually

employ the use of high performance parallel or distributed

file systems and advanced data storage technologies such as

RAID, to obtain improved I/O performance.

Experimental Setup: In our experiments we use a cluster

consisting of 64 Intel Xeon Quad dual-core processor nodes

with 6GB RAM. The nodes are equipped with IB DDR Con-

nectX HCAs with OFED 1.3 [10] drivers. The OS used was

RHEL4U4. These nodes are also equipped with Chelsio T3b

10 Gigabit Ethernet/iWARP adapters. We use the GridFTP and



Fig. 4. File Transfer Time in LAN: (a) FTP (get) and (b) FTP (put)

FTP-UDP (FTP using the UDP/IP channel in ADTS) as the

base case for our performance comparisons. The connectivity

for TCP and UDP are provided by IPoIB-RC and IPoIB-UD,

respectively. The nodes in the cluster are divided into Cluster

A and Cluster B and are connected with Obsidian InfiniBand

WAN routers as shown in Figure 2.

A. Performance of FTP in LAN Scenarios

This experiment shows the basic performance improvement

achieved by our FTP-ADTS as compared to FTP-UDP and

GridFTP in low-delay, high-bandwidth scenarios. We evaluate

the file transfer time of both file put and file get operations.

GridFTP and FTP-UDP are used for the TCP/IP and UDP/IP

cases, respectively, and FTP-ADTS is used for the zero-copy

cases (IB-DDR4 and iWARP).

Figure 4(a) compares the client-perceived file transfer time

of get operation with varying file sizes. We can see that our

design (FTP-ADTS) achieves significantly better performance

for larger file sizes. The FTP-ADTS over IB presents an im-

provement of by up to 95% and 181% as compared to GridFTP

and FTP-UDP, respectively. Similarly FTP-ADTS over iWARP

also outperforms these two cases by huge margins. This

is expected since the zero-copy operations that FTP-ADTS

employs has much lower latency than the IPoIB operations.

We also observe that GridFTP does not perform well for

small file sizes, but does better as the file sizes increase. This

confirms what has been indicated about GridFTP in [22]. We

can observe the similar trends for put operations as shown

in Figure 4(b). Also, note that the performance of IPoIB

itself limits the performance of the FTP operations using it.

GridFTP and FTP-UDP are capable of saturating the available

bandwidths in LAN scenarios, however, at the cost of high

CPU utilization and memory bandwidth usage. We study this

aspect further in the following sections.

B. Performance of FTP in WAN Scenarios

In order to study the impact of our design in WAN scenarios,

we evaluate the performance of basic FTP operations with

server and client running on a pair of nodes connected by a pair

4It should be noted that currently the Obsidian Longbows can only support
the packets at SDR rate, However, in LAN scenarios our cluster is capable
of DDR speeds.

of Obsidian routers. The distance between them is emulated

by varying the WAN delays (5us corresponds to one km of

wire length).

1) Basic Performance: We compare the performance of our

design, GridFTP and FTP-UDP with varying WAN delays

of 0 us (no delay), 10 us, 100 us, 1000 us and 10000us

(corresponding to the distance of 0 km, 2 km, 20 km, 200 km

and 2000 km). Figure 5 presents the time for transferring a 32

MByte file and a 256 MByte file. It is obvious that our FTP

outperforms the GridFTP and FTP-UDP especially for data

transfers over high delay networks. We observe that the FTP-

ADTS sustains performance for larger WAN delays quite well,

while the GridFTP shows a steep latency increase when the

WAN delay is 10000 us. In the high delay scenario, our FTP

delivers six times better performance, which shows significant

promise for our FTP-ADTS design. The improvement is not

only due to the underlying zero-copy operations being faster

than the TCP/UDP, but also because the network throughput

is the bottleneck for IPoIB over WAN, where issues such as

RTT time, MTU size and buffer size can severely impact the

performance. Another interesting observation is that here the

FTP-UDP performs better than GridFTP, which is contrary to

the results in the LAN scenario as shown earlier. This is due to

the well-known trait that UDP can achieve good performance

on high-bandwidth, high-latency networks in which TCP has

fundamental limitations [11]. Due to the space constraints in

the paper, we only show the performance of get operation.

FTP put operations also show similar performance.

2) Detailed Analysis: In order to demonstrate the funda-

mental reasons that explain the above observations, we further

carried out the following two experiments.

The first experiment is to measure the peak bandwidth of

the WAN link with different transmission protocols. Figure 6

shows the results of IPoIB (including TCP/IP and UDP/IP)

and verbs (including verbs-RC and verbs-UD) with increasing

network delays. We can see that the IB verbs achieves the

highest bandwidth and it sustains very well through the whole

range of delays (WAN distance), while the TCP/IP bandwidth

drops fast with the increasing delay, which in turn jeopardizes

the GridFTP performance. On the other hand, although the

UDP/IP bandwidth with smaller delays is lower than the

TCP/IP bandwidth, it shows no significant degradation as the



Fig. 5. File Transfer Time in WAN (get): (a) 32 MBytes and (b) 256 MBytes

delay increases, which even makes it better than TCP/IP when

the delay is high (> 10000 us). This is because that UDP can

swamp the network by firing many packets, but TCP is limited

by the congestion control and flow control that constrains it

from using the available bandwidth in high bandwidth, high

latency scenarios. (Please note that researchers have shown

that TCP bandwidth over longer pipes can be improved by

using techniques such as multiple parallel streams. While this

improves the bandwidth performance of the application, this

also needs additional resources at the end nodes. We intend

to study the impact of parallel zero-copy protocol and parallel

TCP/IP streams in future.)

The second experiment is to characterize the impact of

transmitted packet size on bandwidth performance. Usually,

larger packet sizes are preferred as they can make more use of

the available link bandwidth. We claim that one of the reasons

for the benefits of our design is that very large packet size (i.e.

1 MByte) can be used in the zero-copy send-recv (or RDMA)

based approaches. Comparatively, the largest packet size that

IP can use is 64 KByte (IPv4). In this experiment, we vary

the packet size of IB RC Verbs bandwidth test (which is used

in our design) with different WAN delays. From the results

shown in Figure 7, we observe that the bandwidth for small

and medium messages is progressively worse with increasing

network delays. i.e. in order to leverage the high bandwidth

capability of the IB WAN connectivity under higher network

delays, larger messages need to be used. This demonstrates

that some of the benefits of our design can be attributed to the

use of large packet sizes. Further, we also show that IB WAN

is currently not ideally suited for IP traffic (IPoIB), especially

over high delay links.

C. CPU Utilization

TCP and UDP based communication libraries often suffer

from the added CPU utilization for TCP(UDP)/IP stack pro-

cessing. In basic implementations the FTP sender reads the

data into its buffers and then sends this using the sockets

interface. This would then be copied into the kernel’s socket

buffer before being sent out to the network. Similarly, the

receiver would have to get this data into its kernel’s internal

socket buffers, then into its own buffers before it can be written

to the destination disk. While TCP-based FTP implementations

Fig. 6. Peak Network Bandwidth with Increasing WAN Delay

Fig. 7. InfiniBand RC Bandwidth with Increasing WAN Delay

optimize the sender side overhead by utilizing the sendfile

system call, the receiver side overhead is usually unavoidable.

Figures 8 (a) and (b) show the server and client CPU

utilization, respectively, of the FTP-ADTS, GridFTP and FTP-

UDP while performing multiple back-to-back large file put

operations. The y-axis shows a normalized CPU utilization

metric that represents the total percentage of CPU time being

used on our 8-core system.

As expected, the GridFTP and FTP-UDP utilizes a sig-

nificant amount of CPU on both the server and client for

performing the two copies. On the other hand, our ADTS

based approach has much lower CPU utilization, due to the use

of zero-copy protocol which eliminates the need for additional

copies on both the sender and the receiver. Further, we observe

that the CPU utilization of GridFTP client is significantly



Fig. 8. End Node CPU Utilization (a) Server; (b) Client

lower. This demonstrates the benefits of using sendfile to

reduce one memory copy on the client side. FTP-UDP does not

show such trends as it can not use this optimization in UDP.

Overall, our approach requires fairly smaller amounts of CPU

time for all file sizes on both the server and client. This shows

that our zero-copy ADTS design requires less CPU per request

even at very high data rates and hence is more scalable than

the corresponding IPoIB based designs.

D. Performance of Multiple File Transfers

In several scenarios such as site replication, mirroring, etc.

FTP is used to transfer multiple individual files. Such scenarios

present opportunities for several performance optimizations

(including ones presented in Section IV-B2). In this section, we

present the following two experiments: (i) FTP performance

for content replication and (ii) Analysis of performance ben-

efits due to ADTS optimizations.

FTP Performance for Content Replication: In order to demon-

strate the benefits of our design, we measure the performance

of FTP-ADTS and FTP-UDP using a zipf [23] trace. This

trace has a high α value with an average file size of about

66 MB. The average amount of time taken to replicate these

traces over WAN is shown in Figure 9. We can see that the

FTP-ADTS speeds up the data transfer by up to 65%. This

demonstrates that the FTP-ADTS is a promising candidate

for FTP design for the zero-copy-enabled networks especially

in the long-distance WAN scenarios. These benefits are in

addition to the CPU benefits mentioned earlier. We observe

that the total transfer time in both cases increases for very

large network delays. This is due to the fact that the zipf trace

used consists of a large number of requests for smaller sized

files.

Benefits of the Proposed Optimizations: In this experiment we

break up the performance of the FTP-ADTS while transferring

a set of small files into Connection time (Conn) and Data

Transfer time (Data). Figure 10 shows this breakup of the per

transfer performance for FTP-ADTS with the following two

cases: (i) Basic: with all optimizations disabled and (ii) Opt:

with all optimizations enabled.

Fig. 9. Site Content Replication using FTP

We clearly observe the following two trends: (i) pipelined

data transfers, buffer reuse and memory registration caches

improve the performance significantly (upto 55% improvement

for the transfer of 16 files of size 1MB) and (ii) the use

of persistent sessions improves the connection setup time

considerably. i.e. the cost of initiating the connections is

incurred only once instead of incurring on a per transfer basis.

VI. RELATED WORK

Researchers have investigated FTP from multiple angles

including security, performance, designing distributed anony-

mous FTP and extendibility [12], [16]. The extension of

supporting IPv6 address and transfer files traversing Network

Address Translators (NATs) is introduced in [15]. In [3], the

authors have proposed GridFTP which performs efficient TCP

based transfers including the use of multiple streams for each

transfer. Also, scientists aimed to improve the multiple file

transfers using SCTP multistreaming, parallel transfers, [13]

etc. The use of UDP based transfers has been explored in [20],

[6], in order to overcome some of the limitations in TCP.

On the other hand, researchers have explored the use of the

advanced features of modern interconnects. In [9], the authors



Fig. 10. Benefits of ADTS Optimizations

have designed a dynamic Apache module enabling RDMA

based transfers to accelerate the web protocols and improve

the throughput and CPU utilization of the server. Recent work

on NFS over RDMA demonstrates better performance [21]

due to the benefits of RDMA in several scenarios.

Encouraged by these successful trials, we investigate the

current FTP design and propose the use the new features

such as zero-copy data transfer operations for improving FTP

capabilities as well. In this paper, we address the performance

limitations of existing TCP/UDP/SCTP-based communication

protocols in high-end WAN scenarios, by leveraging these

features of modern WAN interconnects to enable efficient FTP

operations.

VII. CONCLUSIONS

FTP has been the most popular method to transfer large

files for data-staging, replication, and the like. While existing

FTP mechanisms have improved gradually with newer net-

works, they still inherit the fundamental limitations imposed

by the underlying networking protocol TCP/IP. This includes

limitations on the achievable bandwidth and the amount of

CPU utilization that TCP/IP causes on the end-nodes, thereby

limiting both the performance and scalability of such systems.

On the other hand modern WAN capable interconnects such

as InfiniBand WAN and 10 Gigabit Ethernet/iWARP have

enabled the use of high performance RDMA capabilities in

these scenarios. In this paper we have presented an efficient

zero-copy Advanced Data Transfer Service (ADTS) that has

enabled a high performance FTP design (FTP-ADTS) capable

of efficiently transferring data across WANs. Further, we

reduced the CPU utilization required for the data-transfers and

demonstrated significantly higher FTP server scalability.

In our experimental results, we have observed that our FTP-

ADTS design outperforms existing approaches by more that

80% in transferring large amounts of data. In addition, we

have utilized the WAN emulation capabilities of Obsidian

InfiniBand WAN routers to study the impact of our designs in

a wide range of WAN scenarios. We also observed that our

approach achieves peak transfer rates at significantly lower (up

to 6 times) CPU utilization.

Our studies have demonstrated that the IB WAN-based

solutions are highly beneficial in WAN scenarios as well and

can enable designing of next generation high performance

parallel and distributed environments in a radically different

manner. As future work we intend to explore network re-

lated performance challenges in other parallel and distributed

computing middleware and study the impact of modern WAN

interconnects in those scenarios.

VIII. ACKNOWLEDGMENTS

This research is supported in part by DOE grants #DE-

FC02-06ER25749 and #DE-FC02-06ER25755; NSF grants

#CNS-0403342 and #CCF-0702675; and equipment donations

from Intel, Mellanox and Obsidian.

REFERENCES

[1] Secure File Transfer Protocol (SFTP). www.openssh.com.
[2] Stream Control Transmission Protocol (SCTP). www.sctp.com.
[3] W Allcock. GridFTP: Protocol Extensions to FTP for the Grid. Global

Grid ForumGFD-R-P.020,2003.
[4] M. Allman and S. Ostermann. Multiple Data Connection FTP Exten-

sions. Technical report, Ohio University, 1996.
[5] Infiniband Trade Association. http://www.infinibandta.org.
[6] Dennis Bush. UFTP. http://www.tcnj.edu/ bush/uftp.html.
[7] RDMA Consortium. http://www.rdmaconsortium.org/home/draft-recio-

iwarp-rdmap-v1.0.pdf.
[8] Obsidian Research Corp. http://www.obsidianresearch.com/.
[9] D. Dalessandro and P. Wyckoff. Accelerating web protocols using rdma.

In Sixth IEEE International Symposium on Network Computing and

Applications (NCA). IEEE Press, 2007.
[10] Open Fabrics Enterprise Distribution. http://www.openfabrics.org/.
[11] Phil Dykstra. Gigabit Ethernet Jumbo Frames.

http://sd.wareonearth.com/ phil/jumbo.html.
[12] F. Anklesaria et.al. The Internet Gopher Protocol (a document search

and retrieval protocolf). RFC 1436. Network Working Group, Mar. 1993.
[13] Sourabh Ladha and Paul D. Amer. Improving Multiple File Transfers

Using SCTP Multistreaming. In IEEE International on Performance,

Computing, and Communications Conference, April 2004.
[14] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and Dha-

baleswar K. Panda. High Performance RDMA-Based MPI Implemen-
tation over InfiniBand. In 17th Annual ACM International Conference

on Supercomputing, June 2003.
[15] S. Ostermann M. Allman and C. Metz. FTP Extensions for IPv6 and

NATs. RFC 2428. Network Working Group, Sep. 1998.
[16] C. Solutions M. Horowitz and S. Lunt. FTP Security Extensions. RFC

228. Network Working Grou, Oct., 1997.
[17] Net NX 5010 High Speed Exchange. http://www.net.

com/products/products-nx.shtml.
[18] MVAPICH2: High Performance MPI over InfiniBand and iWARP.

http://mvapich.cse.ohio-state.edu/.
[19] J. Postel and J Reynolds. File Transfer Protocol. RFC 959. Internet

Engineering Task Force. 1985.
[20] Karen R. Sollins. The Trivial File Transfer Protocol – TFTP 2 RFC

1350. July, 1992.
[21] Inc. Sun Microsystems and The Ohio State University. NFS over RDMA

Design, Version 1.1. Aug, 2007.
[22] W. Allock, J. Bresnahan, R. Kettimuthu, and M. Link. The Globus

Striped GridFTP Framework and Server. In Super Computing, ACM

Press, 2005.
[23] George Kingsley Zipf. Human Behavior and the Principle of Least

Effort. Addison-Wesley Press, 1949.


