
Optimizing Latency and Throughput of Application Workflows on
Clusters

N. VYDYANATHAN, U. CATALYUREK, T. KURC, P. SADAYAPPAN AND J. SALTZ

Technical Report
OSU-CISRC-4/08-TR17



Optimizing Latency and Throughput of Application Workflows on
Clusters.∗

N. Vydyanathan†, U. Catalyurek‡, T. Kurc‡, P. Sadayappan†, J. Saltz‡
† Dept. of Computer Science and Engineering, ‡ Dept. of Biomedical Informatics

The Ohio State University

Abstract

Scheduling, in many application domains, involves the optimization of multiple performance metrics.
For example, application workflows with real-time constraints have strict throughput requirements and
also desire a low latency or response time. In this paper, we present a novel algorithm for the multi-
objective scheduling of workflows that act on a stream of input data. Our algorithm focuses on the two
performance metrics: latency and throughput, and minimizes the latency of workflows while satisfying
strict throughput requirements. We also describe steps to use the above approach to solve the problem of
meeting latency requirements while maximizing throughput. We leverage pipelined, task and data par-
allelism in a coordinated manner to meet these objectives and investigate the benefit of task duplication
in alleviating communication overheads in the pipelined schedule for different workflow characteristics.
The proposed algorithm is designed for a realistic k-port communication model, where each processor
can simultaneously communicate with at most k distinct processors. Evaluation using synthetic bench-
marks as well as those derived from real applications shows that our algorithm consistently produces
lower-latency schedules that meets throughput requirements, even when previously proposed schemes
fail.

1 Introduction

Data analysis steps in a wide range of applications [14, 22, 34] can be expressed as workflows that
operate on a stream of input data. Efficient scheduling of these workflows often involves optimizing
several performance metrics. Scheduling with the goal of optimizing more than one performance crite-
ria is termed as multi-objective scheduling. In this paper, we present approaches for the multi-objective
scheduling of data analysis workflows that analyze a stream of data, where tasks in the workflow repeat-
edly receive input data items from their predecessors, compute on them, and write the output to their
successors.

Efficient execution of these workflows is gauged by two metrics: latency and throughput. Latency is
the time to process an individual data item through all the components of the workflow, while throughput

∗This research was supported in part by the National Science Foundation under Grants #CCF-0342615 and #CNS-
0403342.



is a measure of the aggregate rate of processing of data. It is often desirable or necessary to meet a
user-defined requirement in one metric, while achieving higher performance value in the other metric
and minimizing resource usage. Applications with real-time constraints, for example, can have strict
throughput requirements and desire low latency, whereas interactive query processing may have strict
latency constraints and desire a high aggregate query processing rate. To be able to meet requirements
and minimize resource usage is also important especially in settings such as Supercomputer centers
where resources (e.g., a compute cluster) have an associated cost and are contended for by multiple
clients.

This paper presents a novel approach for the scheduling streaming workflows on a cluster machine
such that the resulting schedule meets throughput and latency requirements. In multi-objective schedul-
ing with two performance criteria or metrics, one metric is optimized, keeping the other a constraint.
Our algorithm optimizes latency of streaming workflows while meeting throughput requirements. We
also describe steps to use the above approach to solve the problem of meeting latency requirements while
maximizing throughput.

Our algorithm employs pipelined-, task- and data-parallelism in an integrated manner to meet the
above described performance goals. The algorithm is designed to satisfy the throughput requirements
by leveraging pipelined parallelism and through intelligent clustering, duplication and/or replication of
tasks. Pipelined-parallelism is the concurrent execution of dependent tasks that operate on different
instances of the input data stream, while data-parallelism is the concurrent processing of multiple data
items by replicas of a task. Latency is minimized by exploiting task-parallelism, which is the concurrent
execution of independent tasks on the same instance of the data stream, and minimizing communication
costs along the critical path of the task graph through duplication and clustering. We employ a flexible
k-port communication model, where each processor can communicate with at most k distinct processors
simultaneously. The value of k is determined by the ratio of the network-card capacity on a processor
and the link capacity.

We compare the proposed approach against two previously proposed schemes: Filter Copy Pipeline
(FCP) [28] and EXPERT (EXploiting Pipeline Execution undeR Time constraints) [18]. Evaluations
are done using synthetic benchmarks and task graphs derived from real applications in the domains of
Image Analysis, Video Processing and Computer Vision [2, 18, 27, 1]. We show that our algorithm
is able to generate low latency schedules that meet throughput requirements, even when previously
proposed approaches fail.

2 Related Work

Several algorithms for scheduling streaming workflows focus on maximizing the throughput. These
algorithms leverage pipelined-parallelism between dependent tasks to improve the throughput. Lee
et al. [24] propose a three-step mapping methodology for maximizing the throughput of applications
comprising of a sequence of computation stages, each consisting of a set of identical sequential tasks.
Jonsson et al. [20] and Hary and Ozguner [19] discuss heuristics for maximizing the throughput of di-
rected acyclic task graphs on multiprocessor systems using point-to-point networks, while Yang [35] has
presented an approach for resource optimization under throughput constraints. Benoit and Robert [8]
have addressed the problem of mapping pipeline skeletons of linear chains of tasks on heterogeneous
systems and Suhendra et al. [30] have proposed an integrated approach for task scheduling and scratch-
pad memory allocation based on integer linear programming for multiprocessor system-on-chip archi-



tectures. Agarwalla et al. [2, 3] propose an adaptive scheduler for maximizing throughput of streaming
applications on the Grid. All of these techniques optimize the throughput metric under the assumption
that tasks cannot be replicated. Another work by Chen et al. [12, 13] presents a resource allocation algo-
rithm based on minimum spanning trees, that maps the stages of a communication intensive distributed
data stream processing application to processing nodes along high bandwith paths in a Grid environment.
This method, however assumes that the computation is not a bottleneck and that the data arrival rates
significantly decrease as they pass through multiple processing stages, which is true for applications that
filter data while processing.

Though many papers focus on optimizing latency or throughput in isolation, very few address both.
Subhlok and Vondran [29] have proposed a dynamic programming solution for optimizing latency under
throughput constraints for applications composed of a chain of data-parallel tasks. Choudhary et al. [15]
address the optimal processor assignment for pipelined computations of non-replicable parallel tasks
with series-parallel dependences, that minimizes latency under throughput constraints. Benoit and
Robert [9] study the theoretical complexity of latency and throughput optimization of pipeline and fork
graphs with replication and data-parallelism under the assumptions of linear clustering and round-robin
processing of input data items. They also propose heuristics for optimizing latency and throughput of
linear chain workflows without replication [7, 5]. They also address optimizing latency and reliabil-
ity (through redundancy) of linear chain workflows [6]. The above algorithms are however, specific to
certain task graph topologies.

Spencer et al. [28] present the Filter Copy Pipeline (FCP) scheduling algorithm for optimizing latency
and throughput of arbitrary application DAGs on heterogeneous resources. FCP computes the number
of copies of each task that is necessary to meet the aggregate production rate of its predecessors and
maps the copies to processors that yield their least completion time. Another closely related work is
by Guirado et al. [18], which proposes a task mapping algorithm called EXPERT (EXploiting Pipeline
Execution undeR Time constraints) that minimizes latency of streaming applications, while satisfying a
given throughput constraint. EXPERT identifies maximal clusters of tasks that can form synchronous
stages that meet the throughput constraint and maps tasks in each cluster to the same processor so as
to reduce communication overheads and minimize latency. Our proposed algorithms aims to generate
lower latency schedules that meet the throughput requirement and use fewer resources than the schedules
generated by FCP and EXPERT.

3 Task Graph and System Model

An application workflow can be represented as a connected, weighted directed acyclic graph (DAG),
G = (V, E), where V , the set of vertices, represents non-homogeneous sequential application compo-
nents (tasks) and E, the set of edges, represents precedence constraints and data dependences. There are
two distinguished vertices (tasks) in the task graph: the source task which precedes all other tasks and
the sink task which succeeds all other tasks.

The task graph G acts on a stream of data, where each task in G repeatedly receives input data items
from its predecessors, computes on them, and writes the output to its successors. If G acts on a stream
of independent data items, i.e., the processing of each data item through the workflow is independent
of the processing of other data items, multiple data items can be processed concurrently by replicas of
tasks.

The weight of a vertex (task), ti ∈ V , is its execution time to process a single data item, et(ti). The



weight of an edge ei,j ∈ E, wt(ei,j) is the communication cost measured as the time taken to transfer
a single data item of size di,j between ti and tj . wt(ei,j) = di,j

bwi,j
, where bwi,j is the minimum of disk

or memory bandwidth of the system depending on the location of data and the network bandwidth. The
length of a path in a DAG G is the sum of the weights of the tasks and edges along that path. The critical
path of G, denoted by CP (G), is defined as the longest path in G. The top level of a task t in G, denoted
by topL(t), is defined as the length of the longest path from the source task to t, excluding the weight of
t. The bottom level of a task t in G, denoted by bottomL(t), is defined as the length of the longest path
from t to the sink, including the weight of t. Any task t with maximum value of the sum of topL(t) and
bottomL(t) belongs to a critical path in G.

The task graph is assumed to be executed on a homogeneous fully connected compute cluster, with
each compute node having local disks. The scheduling algorithm assumes a k-port communication
model; each processor can send data to or receive data from at most k distinct processors at the same
time. The value of k is determined as the ratio of the network card capacity and the link capacity.
Multiple messages between any pair of processors are transferred serially, i.e., in a time step there can
be at most one message in transit on a link between a pair of processors. The system model assumes
overlap of computation and communication, as most clusters today are equipped with high performance
interconnects which provide asynchronous communication calls.

It is assumed that the execution behavior of the tasks in the workflow is not strongly dependent on
the properties of the input data items. Hence, profiling the workflow on a few sample data items, gives
a reasonable measure of the execution times of the constituent tasks. This is true for many pipelined
applications like image processing [22] where there is not a significant variation in runtime/size across
different images. However, in the presence of significant fluctuations, the latency and throughput of our
schedules would also fluctuate. We expect the impact on latency to be more pronounced as fluctuations in
runtimes and communication costs along the critical path have an additive effect on latency. In contrast,
as throughput depends only on the bottleneck task or communication, there is a greater chance for
masking fluctuations.

4 Multi-objective Scheduling Heuristic

Given a workflow-DAG G, P homogeneous processors and a throughput constraint T , our multi-
objective scheduling heuristic (MOS) generates a mapping and schedule of G on P that minimizes
the latency while satisfying the throughput constraint. MOS is designed for a k-port communication
model and takes into account communication contention and its impact, if it is on the critical path, while
deriving low latency schedules that meet the throughput requirement. Consider the workflow DAG in
Figure 1(a). All tasks take 10 time units to process a data item and all edges have a cost of 8 time units to
transfer a data item. For simplicity, assume a negligible throughput constraint. Figure 1(b) and (c) depict
two possible mappings/schedules with a latency of 48 time units if we assume k to be very large. Here, ti′
and ti′′ are duplicates of ti, for i = 1, 3. Mapping B is obtained assuming a fully multi-port model, which
corresponds to the algorithm presented in our previous work [33, 32] along with duplication. When k is
2, mapping A has a latency of 48 time units, while mapping B has a longer latency of 56 time units. As
a processor can communicate with at most 2 distinct processors simultaneously, communications along
edges e4,7 and e6,7 are serialized for mapping B, resulting in a longest path through t1′ , t3′ , t4, e4,7, e6,7

and t7 of length 56. Though communications are also serialized in mapping A, these do not lie on the
critical path and hence latency is not increased. MOS accurately models the impact of communication



(a) (b) (c)

Figure 1. (a) Sample workflow DAG, (b) Mapping A and (c) Mapping B.

contention on the latency and throughput of pipelined schedules and hence derives schedules that meet
the performance criteria (in this case, mapping A) in the presence of contention, while algorithms that
assume a fully multi-port model fail.

MOS generates two schedules: a non-pipelined schedule and a pipelined schedule, and chooses the
one that yields lower latency while meeting the throughput requirement. The non-pipelined schedule
is generated using a priority-based list-scheduling heuristic [23], where the tasks are scheduled in the
decreasing order of their bottom-levels, to processors that yield their least completion time. If L is the
latency of this schedule, the throughput achieved is 1

L
.

The pipelined schedule is generated in three phases. In the first phase, a schedule that meets the
throughput requirement is obtained, assuming an unbounded number of processors, using the Satisfy
Throughput Heuristic (STH). The second phase uses the Processor Reduction Heuristic (PRH) to limit
the number of processors used in the schedule to what is available. The third phase focuses on minimiz-
ing the latency of the pipelined schedule through the Latency Minimization Heuristic (LMH). Though
the primary objective of the first two phases is not latency optimization, preference is given to scheduling
decisions that minimize latency. The following sub-sections describe these three phases in greater detail.

4.1 Phase 1: Satisfying the Throughput Constraint

Theorem 1 Given a workflow-DAG G = (V, E) that acts on a stream of independent data items, the
maximum achievable throughput Tmax, on P homogeneous processors is given by P∑

t∈V
(et(t))

, where

et(t) is the time taken by task t to process a single data item.

Proof The minimum amount of work to be done to process one data item through G is given by∑
t∈V (et(t)). The minimum work to be done per unit time to process Tmax data items is Tmax ×



∑
t∈V (et(t)). Since, we have atmost P processors in the system and all the tasks can be replicated

as they process a stream of independent data items, P = Tmax ×
∑

t∈V (et(t)), which implies that Tmax,
the maximum achievable throughput is P∑

t∈V
(et(t))

.

Tmax can be achieved by grouping together all tasks in G to form a task-cluster and executing P repli-
cas of this task-cluster, each replica mapped to a unique processor and processing a different input data
item. However, this mapping suffers from a large latency as it fails to exploit parallelism between con-
current tasks in G. Concurrent tasks refers to independent tasks in G that can be executed concurrently.
For the sake of presentation, the rest of this section assumes that G acts on a stream of independent data
items and hence all tasks can be replicated. However, the heuristics described here can be applied when
processing of a data item is dependent on the processing of certain other data items (i.e replication of
tasks is not allowed), by enforcing the weight of every task-cluster to be ≤ 1

T
, for a given throughput

constraint T ≤ Tmax. Tmax in this case, is the reciprocal of the weight of the largest task in G.
Given a throughput constraint T ≤ Tmax, the Satisfy Throughput Heuristic (STH) meets the through-

put constraint by replicating, clustering and duplicating tasks. Algorithm 1 illustrates STH. Each task
ti ∈ V is initially mapped to a separate task-cluster Ci. M denotes the unordered list of all the task-
clusters. The time taken by a task-cluster to process one data item is given by the sum of the execu-
tion times of its constituent tasks to process a data item, i.e., et(Ci) =

∑
∀t∈Ci

et(t). Initially, et(Ci)
is the same as et(ti). The number of replicas of Ci, nr(Ci), required to satisfy T is computed as
nr(Ci) = T × et(Ci). When there is no throughput constraint only one replica is created, nr(Ci) = 1.

Given the initial mapping M , the corresponding pipelined schedule is obtained by running each replica
of a task-cluster in M on a unique virtual processor. Tasks within a task-cluster are executed in the
decreasing order of their bottom-levels and iterate over the instances of the input stream. For example,
if tasks t1 and t2 are mapped to task-cluster C where bottomL(t1) > bottomL(t2), and nr(C) is 2,
each replica of C is mapped to a unique virtual processor and t1 processes a data item followed by t2 in
the steady state on each processor. If the throughput of the pipelined schedule computed as described
in Section 4.1.1 (step 7) is less than the required throughput, the mapping M is refined repeatedly (by
replicating, duplicating or clustering) (step 9-18), until the throughput requirement is satisfied. The
details of the refinement process is explained in Section 4.1.3.

4.1.1 Estimating Throughput of a Pipelined Schedule

In this section, we outline an approach to estimate the throughput of a pipelined schedule, while mod-
eling communication contention in good detail. The throughput of a pipelined schedule involves two
components: the processing or computation rate and the data transfer or communication rate. Given a
mapping M comprising of a set of task-clusters, the processing or computation rate, pr(M), is deter-
mined by the slowest task-cluster, i.e., pr = min∀Ci∈M

dnr(Ci)e
et(Ci)

.
To estimate the data transfer rate, the edges in the workflow DAG G are considered as special types of

tasks (communication tasks) and are scheduled under a k-port communication model as illustrated below.
Figure 2(a) represents an example DAG with two types of tasks - computation tasks and communication
tasks. Let each task be mapped to a separate task-cluster with one replica each, i.e let t1, t2, t3 and t4
be mapped to P1, P2, P3 and P4 respectively. Each task takes 10 time units to process a data item.
Edges e1,2, e1,3, e2,4 and e3,4 have weights 8, 5, 9 and 9 respectively. In the steady state, each edge is
ready to transfer a data item. To schedule these transfers under the k-port model, the communication



Algorithm 1 STH: Satisfy Throughput Heuristic
1: function STH(G, T ) . G: workflow DAG, T : throughput constraint ≤ Tmax

2: M ←< Ci | Ci = {ti} for all ti ∈ V > . M is an unordered list of task-clusters, initially each task ti is
a separate task-cluster Ci

3: if T > 0 then
4: For all Ci, nr(Ci)← T × et(Ci)
5: else
6: For all Ci, nr(Ci)← 1
7: Tcurr ← getThroughput(M)
8: if Tcurr < T then
9: for all edges ei,j with min(nr(ti),nr(tj))

wt(ei,j)
< T do

10: Evaluate the possibility of duplication, clustering and replication and perform the one that yields
the least increase in latency. To break ties choose the one that uses least number of extra
processors.

11: Update M
12: Tcurr ← getThroughput(M)
13: while Tcurr < T do
14: For all edges that are scheduled on the channel with the maximum cycle time, evaluate the possibility

of duplication and clustering.
15: Pick the edge that yields the least increase in latency (break tie by choosing the largest weighted one)

with the above techniques.
16: Evaluate the possibility of replicating edges to meet the throughput constraint.
17: Perform duplication, clustering or replication, whichever yields the least increase in latency.
18: Update M
19: Tcurr ← getThroughput(M)
20: return M

tasks are prioritized in the decreasing order of their bottom-levels and scheduled in priority order to
the k communication channels in the earliest available idle slot. Such a schedule takes into account
the contention between communications scheduled on the same channel between overlapping groups of
processors. Figure 2(b) illustrates the communication schedule assuming a one-port model, i.e., k = 1.
This schedule is repeated periodically and each schedule instance is denoted as a cycle. The instance of
data item transferred along an edge for a given cycle is also shown. For example, in cycle n, edges e1,2

and e1,3 transfer the n-th item while, edges e2,4 and e3,4 transfer the (n− 1)-th item.
Once the communications are scheduled, the communication throughput is computed as follows. For

every edge ei,j the number of parallel transfers pt(ei,j) is computed as min(nr(ti), nr(tj)). In the ex-
ample, as each task has one replica, for all edges ei,j , pt(ei,j) is 1. On every communication channel
ki, the minimum time after which the periodic schedule can repeat (also called minimum cycle time),
minCT (ki) can be estimated as the difference between the completion time of the last transfer and
the start time of the first transfer in a cycle. In the example, if we term the communication channel
on processor P1 as k1 and so on, minCT (k1) is 13, minCT (k2) is 17, minCT (k3) and minCT (k4)
is 18. However, as every communication involves a pair of processors, it may not be possible to start
the transfers for the next cycle after the minimum cycle time due to contention. In the worst case,
this periodic schedule can repeat after all the contending transfers for the current cycle are completed.
To compute the set of contending transfers, we construct an undirected graph (called the contention



(a) (b) (c)

Figure 2. (a) Workflow DAG G, (b) Communication schedule on a 1-port system and (c) Schedule DAG
G′.

graph, say Gc) with processors as vertices and edges between pairs of processors that are involved in
a data transfer. The connected components of Gc identifies the group of processors involved in con-
tending transfers. For each of these connected components, (let Conn(Gc) denote a connected com-
ponent in Gc), we compute the time taken to complete the corresponding set of data transfers as the
maximum of the minimum cycle times of the communication channels of the processors in the con-
nected component, i.e max∀ki∈Conn(Gc) minCT (ki). In the example, all four processors belong to one
connected component. Hence the time taken to complete the corresponding transfers for one cycle is
max(minCT (k1), minCT (k2), minCT (k3), minCT (k4)) which is 18. The data transfer rate for a con-
nected component, Conn(Gc) is given by

min∀ki∈Conn(Gc)
min∀ei,j∈ki

pt(ei,j)

max∀k∈Conn(Gc) minCT (k)
, which is 1

18
for the given example. The overall data transfer rate

dr(M) is the minimum of the data transfer rates of the connected components of Gc. As we assume that
computations and communications can overlap, the overall throughput of the mapping M is given by
min(pr(M), dr(M)). Please note that edges within a task-cluster incur zero transfer costs and hence are
not scheduled.

4.1.2 Estimating Latency of a Pipelined Schedule

Given a mapping M , the latency of the corresponding pipelined schedule is estimated by the critical
path length of the DAG G′ that represents all dependences in the schedule. To generate G′ from G,
for every pair of concurrent tasks that are mapped to the same task-cluster, a zero weight pseudo-edge
originating from the task with the larger bottom level is added in G′. Communication edges between
tasks mapped to the same task-cluster have zero weight in G′. In addition, zero weight pseudo-edges are
added between communication edges that have a dependency in the communication schedule under the
k-port model. For the schedule in Figure 2(b), the schedule DAG G′ is given in Figure 2(c). The latency
of the pipelined schedule, which is given by the length of the critical path (t1, e1,2, t2, e2,4, e3,4, t4), is 56
time units.



(a) (b) (c)

Figure 3. (a) Sample application DAG and Schedule (b) without duplication (c) with duplication.

4.1.3 Refining Task Mapping to Improve Throughput

The initial mapping of each task to a separate task-cluster is repeatedly refined by STH until the through-
put requirement is met. As As the number of replicas required is computed based on the throughput
constraint, the bottleneck is the data transfer rate, i.e the communication throughput. To improve the
communication throughput, our scheduling heuristic alleviates communication overheads by techniques
like task duplication and clustering. In addition, the communication throughput can be increased by
improving the degree of parallel transfers by adding replicas to tasks. Each of these three techniques:
duplication, clustering and replication, is described below.

Task duplication is a technique used in DAG scheduling to alleviate communication costs through
the redundant allocation of tasks to multiple processors [21, 25, 17, 16, 26, 4, 11, 10]. Figure 3 illustrates
how duplication can be beneficial in minimizing the parallel completion time (latency). The execution
times of the tasks in the example is given by the vertex weights and the communication costs are denoted
by the edge weights (Figure 3(a)). The DAG is assumed to be scheduled on 2 homogeneous processors.
A scheduling algorithm without task duplication can achieve a minimum latency of 19 (Figure 3(b)). A
duplication-based scheme can execute a redundant copy of task t1 on processor P2, and thereby avoid
communication between tasks t1 and t3. This results in a lower latency of 17 (Figure 3(c)).

Duplication involves broadcasting input data from predecessors to all the duplicates of a task. If
any these extra communications violates the throughput requirement, STH investigates the possibility
of duplicating the parent task and its ancestors. As duplication involves redundant processing, extra
processors may be required to meet the throughput requirement. STH performs task duplication, only if
it does not require more processors than available and does not involve expensive communications that
violate the throughput constraint. Due to the extra communications involved in broadcasting input data
to task duplicates, duplication may increase the latency.

Clustering is a technique to avoid expensive communications by mapping the communicating tasks
to the same processor (task-cluster). Clustering does not require extra processors but can increase the
latency. In workflow DAGs, where a parent task has multiple children and communicates large amounts
of data to each of them, avoiding the communications by clustering can neglect the task-parallelism in
the DAG, leading to large latencies.



Replication can be used to improve communication throughput by increasing the degree of parallel
transfers by adding replicas to the tasks involved in the bottleneck communications. For example, con-
sider the transfer of data between tasks t1 and t2, whose execution times to process a single data item
is 10 units of time each. Let the time taken to transfer a data item between these tasks be 50 time units
over a free channel. In a pipelined execution of t1 and t2 on two processors, the throughput, which is
limited by the data transfer rate, is 1 data item processed every 50 units of time. If we had 2 additional
processors, we could replicate t1 and t2 to one extra processor each.This would double the aggregate
transfer rate, if there were distinct paths between every pair of processors in the system. Please note that
replication does not affect the workflow latency and is different from duplication. In duplication, redun-
dant copies of a task are allocated to multiple processors, where each copy does the same computation
on the same data item. In contrast, replicas of a task process different data items. STH replicates tasks
only if there are enough available processors.

4.2 Phase 2: Adjusting Number of Processors

Once a mapping that meets the throughput constraint is obtained in Phase 1, Phase 2 limits the number
of processors used to what is available. The total number of processors required to execute nr(Ci) copies
of each task-cluster Ci, where each copy is mapped to a unique processor, is P ′ =

∑
Ci∈M dnr(Ci)e. If

P ′ > P , we use the Processor Reduction Heuristic, PRH, described in this section, to recursively merge
certain task-clusters to obtain a schedule that uses as many processors as available.

Proposition 1 If task-clusters Ci and Cj are merged and Pi and Pj are the number of processors re-
quired to run the replicas of Ci and Cj respectively, i.e Pi = dnr(Ci)e and Pj = dnr(Cj)e, the number
of processors required to run the replicas of the new task-cluster formed that meets the throughput con-
straint is either Pi + Pj or Pi + Pj − 1.

Definition 1 Task-clusters Ci and Cj are “connected” if there exists some task ta in Ci and some task
tb in Cj such that ea,b is an edge in G.

Definition 2 Task-clusters Ci and Cj are “not concurrent” if for all pairs of tasks (ta, tb), ta ∈ Ci and
tb ∈ Cj , ta is not concurrent to tb in G.

Definition 3 Resource wastage of a task-cluster C is defined as dnr(C)e − nr(C).

The pseudo code of PRH is illustrated in Algorithm 2. Step 4 of the algorithm considers all pairs
of task-clusters that when merged would reduce the number of processors used by 1. Among these,
PRH picks the task-cluster pair that yields the largest decrease in latency when merged. To break ties,
preference is given to task-clusters that are connected, not concurrent, and which produce the largest
resource wastage, in that order (step 6). Merging connected task-clusters helps in avoiding some of
the communication costs and merging task-clusters that are not concurrent avoids serializing concurrent
tasks in G. Giving preference to task-cluster pairs that yield a larger resource wastage reduces the
possibility of fragmentation. Steps 5-9 are repeated as long as there are task-cluster pairs that reduce
the processor count and P ′ > P . After all possible task clusterings, if the resource usage is still greater
than P at step 10, defragmentation is done in steps 11-12 where the task-clusters that produce the largest
resource wastage are merged. To break ties, the one that causes the largest decrease in latency is chosen.
The outer-loop (steps 3-13) are repeated until the resource usage is lesser than or equal to P . At the end
of the processor reduction phase, a mapping M is obtained that meets the throughput constraint and uses
≤ P processors.



Algorithm 2 PRH: Processor Reduction Heuristic
1: function PRH(M ) . M ← mapping returned by STH
2: P ′ =

∑
Ci∈M (dnr(Ci)e)

3: repeat
4: C′ ← {(Ci, Cj) | Ci ∈M ∧ Cj ∈M ∧ dnr(Ci) + nr(Cj)e < (dnr(Ci)e+ dnr(Cj)e)}
5: while C′ not empty ∧(P ′ > P ) do
6: Pick the task-cluster pair (Ci, Cj) from C′ that yields the largest decrease in latency when merged.

Preference is given to task-clusters that are connected, not concurrent and which produce the
largest resource wastage when merged.

7: Merge Ci and Cj and update M
8: P ′ ← P ′ − 1
9: Update C′ the task with the larger bottom-level.

10: if P ′ > P then
11: Pick the task-cluster pair (Ci, Cj) that yields the maximum value of d(nr(Ci) + nr(Cj))e −

(nr(Ci) + nr(Cj)) and the largest decrease in latency when Ci and Cj are merged.
12: Merge Ci and Cj and update M
13: until P ′ ≤ P
14: return M

4.3 Phase 3: Minimizing Latency

The Latency Minimization Heuristic (LMH) is called to refine the mapping obtained by PRH to further
optimize the latency. Given a mapping M that meets the throughput constraint and uses fewer than or
equal to P processors, LMH minimizes latency by reducing communication overheads along the critical
path.

The task-clusters in M are considered by LMH as indivisible macro-tasks. A macro-task therefore,
may contain one or more tasks. The incoming and outgoing edges of a macro-task is the union of
the incoming and outgoing edges, respectively, of the tasks that it contains, without considering edges
between tasks belonging to the macro-task. Hence, the term task in Theorem 2 is the same as macro-task
in the case where multiple tasks are mapped to same task-cluster by PRH.

Theorem 2 Let G′ and M denote a schedule and mapping of G that meets the throughput constraint
and uses≤ P processors (For a given mapping M , please note that G′ , the schedule DAG, is generated
from G through the steps described in Section 4.1.2). Let ei,j be an edge in G′ from task/macro-task ti
to tj such that the in-degree(ti) = in-degree(tj) = 1 and the out-degree(ti) = out-degree(tj) = 1 (i.e. ti
and tj are connected along a linear chain in that order). Let tk be the parent of ti and tl be the child of
tj . If wt(ei,j) > wt(ek,i)+wt(ej,l), it is optimal to merge ti and tj to a single task-cluster, assuming that
all tasks can be replicated. If replication is not allowed, ti and tj can be merged to a single task-cluster
only if et(ti) + et(tj) ≤ 1

T
and ei,j satisfies the above condition.

Proof Let us assume that in the optimal mapping Mopt that minimizes the latency while meeting the
throughput constraint, ti and tj are mapped to different task-clusters. Consider an alternative mapping
M ′, where ti and tj are pulled out from their respective task-clusters and mapped to a new one. Replica-
tion ensures that the mapping M ′ meets the throughput constraint. For the case when replication is not
allowed, as et(ti)+et(tj) ≤ 1

T
, throughput constraint is satisfied. As the replicas of each task/macro-task



Algorithm 3 LMH: Latency Minimization Heuristic
1: function LMH(M ) . M ← mapping returned by PRH.
2: repeat
3: < G′, L >← getLatency(M ) . G′ is DAG with all dependences in the pipelined schedule, and L is

latency
4: Collapse edges in G′ that satisfy Theorem 2 by merging the incident task-clusters
5: For every edge ei,j in CP (G′), evaluate the decrease in latency due to clustering and duplication
6: Pick edge ei,j in CP (G′) that does not increase the latency and has maximum value of

min (wt(ei,j), CPL(G′)− LBL(G)) . CPL(G′) is Critical Path Length of G′, LBL(G) is
Lower Bound on Latency of G.

7: Perform clustering or duplication, whichever yields the maximum decrease in latency
8: Update M
9: < G′, L >← getLatency(M )

10: until For all edges ei,j in CP (G′), both duplication and clustering cause an increase in latency
11: return M,L

in M , the mapping generated by PRH (the number of replicas of a task/macro-task is 1 when replica-
tion is not allowed) could be run on disjoint subsets of processors using ≤ P processors, by applying
theorem 1, any clustering among the tasks/macro-tasks in M will use ≤ P processors and will meet the
throughput constraint. Therefore, M ′ uses ≤ P processors and meets the throughput constraint. As ti
and tj are mapped to the same task-cluster in M ′, the length of the longest path through them is reduced
by atleast wt(ei,j)−(wt(ek,i)+wt(ej,l)). Thus, M ′ always yields lower latency (if ei,j lies on the critical
path) or same latency (if ei,j does not lie on the critical path) as Mopt, which contradicts our assumption
that Mopt was optimal. Hence, merging ti and tj to a single task-cluster is optimal.

Definition 4 The lower bound on the latency of a DAG G is the length of the critical path in G, assuming
all edges have zero weights.

Algorithm 3 describes LMH. In steps 3-6, the DAG G′, representing the dependences in the pipelined
schedule is constructed and for all edges along CP (G′), the decrease in latency due to duplication
and clustering is evaluated. Among edges in CP (G′), LMH picks the edge with the largest maximum
possible decrease in latency. For this edge, clustering or duplication, whichever yields the maximum
decrease in latency is performed and the mapping M is accordingly updated. The outer-loop of steps 2-
10 is repeated until for all edges in CP (G′), both clustering and duplication increase the latency.

5 Performance Analysis

This section evaluates the performance of our multi-objective scheduling heuristic (MOS) against pre-
viously proposed schemes: Filter Copy Pipeline (FCP) [28] and EXploiting Pipeline Execution undeR
Time constraints (EXPERT, abbreviated as EXP in this section) [18], and FCP-e and EXP-e, modified
versions of the above schemes. When FCP and EXP fail to utilize all processors and do not meet the
throughput requirement T , FCP-e recursively calls FCP on the remaining processors until T is satisfied
or all processors are used, while EXP-e replicates the task-clusters by dividing the remaining processors
among them in the ratio of their weights. Evaluations are done using both synthetic task graphs and
those derived from real applications, using simulations.



T MOS FCP FCP-e EXP EXP-e
Tmax 1 - - - -

0.75*Tmax 0.96 0.97 0.97 1 1
0.5*Tmax 0.82 0.89 0.89 0.72 0.94

0.25*Tmax 0.70 0.79 0.79 0.42 0.98
≈ 0 0.36 0.71 0.71 0.03 1

(a) (b)

Figure 4. Performance on synthetic graphs on 32 processors for k=2, CCR=0.1 (a) Avg. Latency
Ratio and (b) Avg. Utilization Ratio. (The missing values indicate that the corresponding algorithm could not meet the throughput
requirement.)

5.1 Synthetic Task Graphs

For applications that are linear chains of tasks, MOS generates schedules with optimal latency and
throughput by replicating the chain of tasks on every processor. However, on arbitrary DAGs, the be-
havior is non-trivial. To study this, a set of 30 synthetic graphs were generated using a DAG generation
tool [31], with number of tasks per task graph varying from 10 to 50. The average out-degree and in-
degree per task was 4. The computation time of each task was generated as a uniform random variable
with mean equal to 30. The communication to computation ratio (CCR) was varied as 0.1, 1 and 10 and
the communication cost of an edge was randomly selected from a uniform distribution with mean equal
to 30 (the average computation time) times the specified value of CCR. The value of k was varied as 2,
4 and 8.

Figure 4 shows the relative performance of the algorithms on 32 processors when k is 2 and CCR is
0.1. Figure 4(a) plots the average latency ratio. Latency ratio is the ratio of the latency of the schedule
generated by an algorithm to that of MOS. The x-axis is the throughput constraint, which is decreased
from the maximum achievable throughput (Tmax) in steps of 0.25. ≈ 0 refers to the case when there is no
throughput constraint (or negligibly small). The missing bars in the graph indicates that the correspond-
ing algorithm could not meet the throughput requirement. Figure 4(b) shows the average utilization ratio.
The utilization ratio is given by the ratio of the number of processors used by an algorithm to the total
number of available processors. Though FCP and EXP assume a fully multi-port communication model,
i.e., k = ∞, for EXP, we estimate the latency and throughput of its schedules under the constraint of
a k-port model. However, as FCP independently assigns replicas of a task to different processors and
does not form task-clusters, estimating the latency and throughput of its schedules under a k-port model
becomes complex. Hence, for FCP, we estimate the latency and throughput assuming a fully multi-port
model. Therefore, the actual benefit seen with respect to FCP and FCP-e on a k-port model could be
more than what is reported in this section.

We find that MOS is consistently able to generate schedules that meet the throughput constraint,
while FCP and EXP fail at large throughput requirements. Though FCP replicates tasks, it computes the
number of replicas independent of the number of processors and fails to refine the number of replicas
when it maps multiple tasks to the same processor. EXP does not replicate tasks. The modified versions



(a) (b)

Figure 5. Performance on synthetic graphs on 32 processors for CCR=1 (a)k=4 (b)k=8. (The missing bars
indicate that the corresponding algorithm could not meet the throughput requirement.)

are designed to overcome some of these limitations and hence, meet the constraint in some of the cases
where FCP or EXP fail as seen in some following results.

We also note that MOS generates lower latency schedules than the other schemes. FCP generates
up to 7% longer latencies than MOS, while EXP generates up to 16% longer latencies when through-
put constraint is 0.25*Tmax. As EXP creates maximal task-clusters with weights ≤ 1

T
, for negligible

throughput constraint, it groups all tasks to a single task-cluster and hence generates large latency sched-
ules. For FCP-e, we used the smallest of the latencies of all the workflow instances it creates and hence
it is similar to that of FCP. Latency in EXP-e is similar to EXP, since EXP-e only replicates tasks; this
improves the throughput but does not alter the latency. Though the performance benefit of our algorithm
is limited when CCR is 0.1, as CCR is increased we record greater improvements over existing schemes.

With respect to utilization ratios, we find that MOS uses fewer resources than FCP and generates
lower latency schedules. Though resource utilization of EXP is lower, it generates much larger latencies
than MOS. When CCR is 0.1, we found that increasing k did not change the performance results. Also,
task duplication did not show a significant benefit. This is expected as the communication values are an
order of magnitude smaller than computation for CCR=0.1.

Figure 5 shows the relative performance of the schemes on 32 processors with CCR set to 1 and k set
to 4 and 8. We find that as CCR increases, there are more instances (Tmax and 0.75*Tmax) where FCP,
EXP and their modified versions do not meet the throughput constraint, while MOS always does. In
addition, the performance benefit of MOS over FCP and EXP is more. At T = 0.25 ∗ Tmax and k = 4,
FCP and EXP generate latencies that are 30% and 37% longer than that of MOS respectively, on the
average. This is because, MOS intelligently avoids heavy communication costs through techniques like
duplication and clustering. Though FCP minimizes communication costs in some capacity by mapping
copies of tasks to processors that yield their least completion time, it would still incur the cost when the
processor to which the parent task is mapped is heavily loaded (as mapping the task to this processor
would cause a larger completion time). EXP does not replicate and cannot cluster heavy tasks that also
have a huge communication cost. The modified versions of the schemes also cannot completely avoid
the communication overheads as they only replicate tasks. Please note that the average latency ratios of
the modified versions is different from that of the original schemes, since there are some cases where the



(a) (b)

Figure 6. Performance on synthetic graphs on 32 processors for CCR=10 (a)k=4 (b)k=8. (The missing bars
indicate that the corresponding algorithm could not meet the throughput requirement.)

original schemes do not meet the throughput constraint while the modified versions do. As k increases,
we find a slight increase in the performance benefit of MOS over other schemes. This is probably due
to a greater chance for useful task duplication, as the broadcasting of input data to the duplicates is less
expensive, since a processor can communicate with more neighbors simultaneously. When CCR is 10,
we see similar trends (Figure 6).

Figure 7 studies the benefit of duplication in yielding lower latency schedules. When CCR=1, du-
plication is able to achieve up to 13% lower latencies. Since Tmax is achieved when every every single
processor is fully utilized by non-duplicate copies of the tasks, for this value of throughput requirement,
the version of the algorithm that allows duplication gives the same result as the one without duplication.
With decreasing values of throughput requirement, improvement of duplication increases making a peak
around 0.50*Tmax. When T is further relaxed, not many edges need to be zeroed-in (i.e the incident tasks
clustered together) to meet the constraint. Hence clustering does not have as much of an adverse effect
in increasing the latency (due to reduced task-parallelism) as for larger throughput requirements. Hence
the relative improvement of duplication diminishes. As explained above, as k increases, the possibility
of useful duplication increases.

As stated in Section 4, MOS generates a pipelined and a non-pipelined schedule, and chooses the
one that yields the lower latency while meeting the throughput requirement. In all our experiments, we
found that a non-pipelined schedule proves beneficial in only a few cases when the throughput constraint
is negligible.

5.2 Application Task Graphs

We evaluated the schemes using application task graphs in the domains of computer vision, multime-
dia and medical imaging. Due to space constraints, we present results for only two applications. We
assumed the target system to be a cluster of 2.4 GHz machines connected by a 10 GigE network.

Tables 1 and 2 shows the performance for the Darpa Vision Benchmark (DVB) [27], which contains
20 tasks in 8 levels, with upto 4 tasks per level. The communication costs are about 1 to 3 times the
computation costs. For T < 0.25 ∗ Tmax, FCP, FCP-e, EXP and EXP-e do not meet the constraint and
hence we do not show the values. Further, when FCP and EXP do not meet the throughput requirement,



(a) (b)

(c) (d)

Figure 7. Benefit of task duplication for (a)CCR=1, k=4 (b) CCR=1, k=8 (c) CCR=10, k=4 (d) CCR=10,
k=8.

they generate schedules with throughput atleast 50% less than the constraint. In cases where they satisfy
T , MOS produces schedules with shorter latencies and lower resource utilization than FCP. When T is
negligible and k is 8, FCP not only uses 25% more processors than MOS but also generates schedule that
has 11% longer latency. EXP also produces longer latencies than MOS, up to 22% longer for negligible
T and k = 8. The increased performance benefit of MOS with larger k is due to greater possibility of
duplication. In DVB, as communication costs are significant and the task graph is wide (the source task
has multiple children), duplication is effective.

The second application is a video-based surveillance application [2] that analyzes multiple camera
feeds from a region to extract information to detect suspicious activity. This task graph contains 16 tasks
and is compute intensive with CCR ≈ 0.01. Tables 3 and 4 show the latency ratio and utilization ratio
respectively on 32 processors for this application. When the throughput requirement is large, only MOS
meets the requirement. In cases where FCP and FCP-e meet the constraint, they generate schedules with
similar latency as MOS. As described earlier, when the throughput constraint is negligible, EXP and
EXP-e map all tasks to the same task-cluster and hence show a larger latency. With respect to resource
utilization, the resource usage of MOS is up to 13% less than the other approaches. We found that
varying k did not have an impact on the performance results and task duplication did not help in further
latency minimization as this application is compute intensive. Moreover, this application’s latency is



k T MOS FCP FCP-e EXP EXP-e

2
0.25*Tmax 1 - 1.02 - -
≈0 1 1.04 1.04 1.14 1.14

4
0.25*Tmax 1 - 1 - -
≈0 1 1.08 1.08 1.20 1.20

8
0.25*Tmax 1 - 1 - -
≈0 1 1.11 1.11 1.22 1.22

Table 1. Performance of Darpa Vision Benchmark on 32 processors for k = 2, 4, 8: Latency Ratio. (The
missing values indicate that the corresponding algorithm could not meet the throughput requirement.)

k T MOS FCP FCP-e EXP EXP-e

2
0.25*Tmax 0.34 - 1 - -
≈0 0.09 0.47 0.47 0.03 1

4
0.25*Tmax 0.5 - 1 - -
≈0 0.25 0.47 0.47 0.03 1

8
0.25*Tmax 0.41 - 1 - -
≈0 0.22 0.47 0.47 0.03 1

Table 2. Performance of Darpa Vision Benchmark on 32 processors for k = 2, 4, 8: Utilization Ratio.
(The missing values indicate that the corresponding algorithm could not meet the throughput requirement.)

bounded by a heavy task and hence there is not much scope for latency improvement.
The second application is an MPEG video compression application [18]. Due to frame encoding

dependences, the MPEG frames have to processed in order of arrival. Hence, replication is not possible.
We assumed the throughput constraint to be the reciprocal of the weight of the largest task. Though
replication is not possible, the input frames can be divided into N segments, that can be processed in
parallel. Figure 8 shows the latency and utilization ratio of the MPEG application on 32 processors, as we
vary the number of divisions from 2 to 16. We find that FCP and MOS generate schedules with similar
latencies, but MOS has up to 28% lower resource utilization. Though EXP shows lower utilization, it
generates schedules with 12%-36% longer latencies than MOS or FCP. The MPEG application is also
compute intensive (CCR less than 0.001) and hence did not show variations in performance results with
k, or a benefit of task duplication.

T MOS FCP FCP-e EXP EXP-e
Tmax 1 - - - -

0.75*Tmax 1 - - - 1.01
0.5*Tmax 1 1 1 - 1.01

0.25*Tmax 1 1 1 - 1.01
≈0 1 1 1 2 2

Table 3. Performance of Video-Based Surveillance application on 32 processors when k = 4: Latency
Ratio. (The missing values indicate that the algorithm could not meet the throughput requirement).



T MOS FCP FCP-e EXP EXP-e
Tmax 1 - - - -

0.75*Tmax 0.94 - - - 1
0.5*Tmax 0.78 0.91 0.91 - 1

0.25*Tmax 0.53 0.66 0.66 - 1
≈0 0.35 0.47 0.47 0.03 1

Table 4. Performance of Video-Based Surveillance application on 32 processors when k = 4: Uti-
lization Ratio. (The missing values indicate that the algorithm could not meet the throughput requirement).

Divisions MOS FCP EXP
2 1 1 1.21
4 1 1 1.36
8 1 1 1.35
16 1 1 1.12

Divisions MOS FCP EXP
2 0.13 0.22 0.09
4 0.25 0.41 0.22
8 0.5 0.78 0.47

16 1 1 1

(a) (b)

Figure 8. Performance of MPEG video compression on 32 processors when k = 4 (a) Latency Ratio,
(b) Utilization Ratio.

We also evaluated the schemes using a workflow from medical imaging - Placenta Workflow. The
stages in this workflow are described in [1]. The execution times of the tasks in this workflow was ob-
tained by profiling them on a dual processor Opteron 250 (single core) with 8GB of RAM and 2x250GB
SATA disk. The network bandwidth was assumed to be 10 Gbps Ethernet. Tables 5 and 6 show the
performance results. We find similar trends in the performance as for the other applications. FCP and
MOS generated similar latencies, while EXP created longer schedules. MOS uses less resources than
FCP. Again variation with k or benefit of duplication was not observed as the latency is bounded by
heavy stages like NPoint Correlation and Slide Registration that took almost three orders of magnitude
longer execution times than other stages.

T MOS FCP FCP-e EXP EXP-e
Tmax 1 - - - -

0.75*Tmax 1 1 1 - 1
0.5*Tmax 1 1 1 - 1

0.25*Tmax 1 1 1 - 1
≈0 1 1 1 1.69 1.69

Table 5. Performance of Placenta workflow on 32 processors: Latency Ratio. (The missing values indicate that
the corresponding algorithm could not meet the throughput requirement).



T MOS FCP FCP-e EXP EXP-e
Tmax 1 - - - -

0.75*Tmax 0.91 1 1 - 1
0.5*Tmax 0.66 0.75 0.75 - 1

0.25*Tmax 0.41 0.5 0.5 - 1
≈0 0.13 0.28 0.28 0.03 1

Table 6. Performance of Placenta workflow on 32 processors: Utilization Ratio. (The missing values indicate
that the corresponding algorithm could not meet the throughput requirement).

6 Optimizing Throughput under Latency Constraint

The solution described in Section 4 for generating schedules that optimize latency while meeting
throughput requirements, can be used to solve the inverse problem of optimizing throughput while meet-
ing latency constraints. In this section, we describe an approach that applies binary search techniques
combined with a bounded look-ahead using the algorithm proposed in Section 4 to generate schedules
that optimize throughput under latency constraints.

Proposition 2 For a given workflow and a fixed number of processors, the optimal latency achieved,
follows a monotonically increasing relation with the throughput constraint, i.e if La is the optimal latency
given a throughput constraint Ta, 0 < Ta ≤ Tmax, and Lb is the optimal latency for a throughput
constraint Tb, 0 < Tb ≤ Tmax, then Tb ≥ Ta ⇐⇒ Lb ≥ La. Tmax, the theoretical maximum throughput
achievable can be computed by applying theorem 1.

The proof for the above proposition is quite straightforward and the monotonic relationship between
latency and throughput justifies the application of binary search algorithm. Hence, starting with the inter-
val [≈ 0−Tmax] and the corresponding latencies generated by our heuristics, based on the given latency
constraint, we can do a recursive binary search to obtain the maximal throughput schedule that satisfies
a given latency constraint. However, as the latency corresponding to a given throughput constraint is
obtained based on a heuristic (and may not the optimal latency), the function between the throughput
constraint and latency is not guaranteed to be monotonically increasing. Hence, it is possible that the
binary search may be trapped in a local optima. To avoid this, we incorporate a bounded look-ahead
mechanism into our search technique.

Algorithm 4 describes our approach to optimize throughput under latency constraints. We call this
algorithm MOS−1 to denote that this focuses on the inverse of the problem addressed by MOS. Given a
latency constraint, MOS−1 outputs a schedule that maximizes the throughput while meeting the given
latency constraint. If the input latency constraint is less than the minimum latency achieved by MOS,
the algorithm outputs that it cannot meet the given constraint (Steps 6-8). If the latency constraint is
greater that that returned by MOS when given a throughput constraint of Tmax, MOS−1 returns this task
mapping (Steps 13-14). Otherwise, MOS−1 does a binary search starting with the interval [≈ 0, Tmax]
(Steps 15, 25). Bounded look-aheads are introduced as needed in the search technique to avoid local op-
tima. BoundedLAthr(T, L) is a function that searches upto a limited number of tries, for the maximum
throughput in the interval [T, 2×T ] that satisfies the latency constraint L (by applying MOS) and returns
this throughput and the corresponding task mapping. BoundedLAlat(T, L) is a function that searches



Algorithm 4 Algorithm for Throughput Optimization under Latency Constraint
1: function MOS−1(G, L) . G: workflow DAG, L: latency constraint
2: Ta ←≈ 0; < Ma, La >←MOS(G, Ta)
3: Tb ← Tmax; < Mb, Lb >←MOS(G, Tb)
4: if L ≤ La then
5: < Ma, La >← BoundedLAlat(Ta, La) . BoundedLAlat searches upto a limited number

of tries, for the minimum latency returned by MOS given throughput constraints in the interval
[Ta, 2× Ta] and returns this minimum latency and the corresponding task mapping.

6: if L < La then
7: Cannot meet latency constraint
8: return
9: else

10: < M, T >← BoundedLAthr(Ta, L) . BoundedLAthr searches upto a limited number of tries,
for the maximum throughput in the interval [Ta, 2× Ta] that satisfies the latency constraint L
(by applying MOS) and returns this throughput and the corresponding task mapping.

11: return M,T
12: else
13: if L ≥ Lb then
14: return Mb, Tb

15: while Ta < Tb do
16: T ′ ← (Ta+Tb)

2
17: < M ′, L′ >←MOS(G, T ′)
18: if L ≥ L′ then
19: Ta ← T ′; La ← L′

20: else
21: < M ′, L′ >← BoundedLAlat(T ′, L′)
22: if L < L′ then
23: Tb ← T ′; Lb ← L′

24: else
25: Ta ← T ′; La ← L′

26: < M, T >← BoundedLAthr(
(Ta+Tb)

2 , L)
27: return M,T



(a) (b)

(c) (d)

Figure 9. Performance on synthetic graphs for MOS−1 on 32 processors (a)CCR=0.1, k=4 (b)
CCR=0.1, k=8 (c) CCR=1, k=4 (d) CCR=1, k=8.

upto a limited number of tries, for the minimum latency returned by MOS given throughput constraints
in the interval [T, 2× T ] and returns this minimum latency and the corresponding task mapping.

Figure 9 evaluates our algorithm for optimizing throughput given latency constraints. The lower
bound on latency is taken as the critical path length of the given task graph assuming that all edges have
zero weight 4. We assume the upper bound on latency to be the sum of all task weights. This would be
the latency achieved by mapping all tasks in G to a processor and replicating as many times as number
of processors available. This task mapping achieves the maximum possible throughput Tmax 1. We vary
the latency constraint in steps of 0.25 between the lower and upper bounds. To obtain solutions using
FCP and EXP and their modified versions, we applied the same binary search algorithm as described
in MOS−1, but used FCP and EXP respectively to obtain the schedules with minimal latency given a
throughput constraint, instead of MOS. However as EXP has the tendency to map all tasks to the same
task-cluster when given negligible throughput constraints (as described in Section 5), we had to have
larger look-aheads to avoid local optima.

As seen in Figure 9, our algorithm, MOS−1 generates schedules with larger throughputs (upto 60%
larger) than other schemes while meeting the latency constraints. In addition, there are cases where
MOS−1 meets the latency constraints, while the other schemes fail. Please note that when the latency



constraint is equal to the lower bound on the latency, it may not always be feasible to obtain schedules
that meet this constraint. Hence, in such cases, MOS−1 will fail to meet the latency constraint.

For CCR=0.1, we find that varying k does not alter the trends. This is similar to what is observed in
Section 5. For larger communication costs, i.e CCR=1, we find that increasing k improves the relative
performance of MOS−1 with respect to FCP and FCP-e. This is because, while MOS−1 is able to
generate schedules with greater throughput as a larger k implies more parallel communications, the
performance of FCP and FCP-e remains the same, as we compute these, always assuming a fully multi-
port model (explained in detail in Section 5). On the other hand, EXP and EXP-e is able to take advantage
of the larger k value and hence their relative performance improves.

7 Conclusions

This work presents heuristics for scheduling application workflows with stringent performance re-
quirements. Through co-ordinated leveraging of pipelined, task and data parallelism and use of tech-
niques like task duplication, the proposed algorithm, MOS, minimizes the latency of streaming work-
flows, while satisfying strict throughput requirements. We also describe a binary search based algorithm
using MOS, that optimizes throughput of streaming workflows while meeting latency constraints. Eval-
uation using synthetic and application task graphs indicate that our heuristic is always guaranteed to
meet the throughput requirement and generates schedules with lower latencies than existing approaches,
while using lesser resources. When applied to optimize throughput given latency constraints, our al-
gorithm generates schedules with larger throughput than existing approaches. Our experimental results
also provide the following insights regarding the benefit of task duplication: a) Duplication is beneficial
(generates up to 18% lower latency schedules) for workflows that are wide (large number of concur-
rent tasks and high average out-degree) and have comparable communication and computation costs, b)
Communication system with larger value of k can see greater benefits of duplication, and c) Workflows
that are compute intensive and those that have communication costs at least one order of magnitude
greater than computation benefit less from task duplication.

References

[1] The placenta image analysis pipeline. http://bmi.osu.edu/∼vijayskumar/placenta1.htm.
[2] B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran. Streamline: A scheduling heuristic for stream-

ing application on the grid. In Proceedings of the 13th annual Multimedia Computing and Networking
Conference, San Jose, CA, Jan 2006.

[3] B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran. Streamline: scheduling streaming applications
in a wide area environment. Multimedia Syst., 13(1):69–85, 2007.

[4] I. Ahmad and Y.-K. Kwok. On exploiting task duplication in parallel program scheduling. IEEE Transactions
on Parallel and Distributed Systems, 9(9):872–892, September 1998.

[5] A. Benoit, H. Kosch, V. Rehn-Sonigo, and Y. Robert. Bi-criteria pipeline mappings for parallel image
processing. Technical Report LIP RR-2008-02, 2008.

[6] A. Benoit, H. Kosch, V. Rehn-Sonigo, and Y. Robert. Optimizing latency and reliability of pipeline workflow
applications. Technical Report LIP RR-2008-12, 2008.

[7] A. Benoit, V. Rehn-Sonigo, and Y. Robert. Multi-criteria scheduling of pipeline workflows. Technical
Report LIP RR-2007-32, 2007.



[8] A. Benoit and Y. Robert. Mapping pipeline skeletons onto heterogeneous platforms. Technical Report LIP
RR-2006-40, 2006.

[9] A. Benoit and Y. Robert. Complexity results for throughput and latency optimization of replicated and
data-parallel workflows. Technical Report LIP RR-2007-12, 2007.

[10] D. Bozdag, U. Catalyurek, and F. Ozguner. A task duplication based bottom-up scheduling algorithm for het-
erogeneous environments. In Proceedings of the 15th Heterogeneous Computing Workshop. IEEE Computer
Society, 2006.

[11] D. Bozdag, F. Ozguner, E. Ekici, and U. V. Catalyurek. A task duplication based scheduling algorithm
using partial schedules. In Proceedings of the 2005 International Conference on Parallel Processing, pages
630–637, 2005.

[12] L. Chen and G. Agrawal. Resource allocation in a middleware for streaming data. In MGC ’04: Proceedings
of the 2nd workshop on Middleware for grid computing, pages 5–10, New York, NY, USA, 2004. ACM.

[13] L. Chen and G. Agrawal. A static resource allocation framework for grid-based streaming applications:
Research articles. Concurr. Comput. : Pract. Exper., 18(6):653–666, 2006.

[14] A. Choudhary, W. Lio, D. Weiner, P. Varshney, R. Linderman, and M. Linderman. Design, implementation
and evaluation of parallel pipelined stap on parallel computers. In Proceedings of the 12th. International
Parallel Processing Symposium, page 220, Washington, DC, USA, 1998. IEEE Computer Society.

[15] A. N. Choudhary, B. Narahari, D. M. Nicol, and R. Simha. Optimal processor assignment for a class of
pipelined computations. IEEE Transactions on Parallel and Distributed Systems, 5(4):439–445, 1994.

[16] Y. Chung and S. Ranka. Application and performance analysis of a compile-time optimization approach for
list scheduling algorithms on distributed-memory multiprocessors. Proceedings of Supercomputing, pages
512–521, November 1992.

[17] J. Colin and P. Chretienne. C.p.m. scheduling with small computation delays and task duplication. Opera-
tions Research, pages 680–684, 1991.

[18] F. Guirado, A.Ripoll, C. Roig, and E. Luque. Optimizing latency under throughput requirements for stream-
ing applications on cluster execution. In Proceedings of the IEEE Intl. Conf. on Cluster Computing, 2005.

[19] S. L. Hary and F. Ozguner. Precedence-constrained task allocation onto point-to-point networks for pipelined
execution. IEEE Transactions on Parallel and Distributed Systems, 10(8):838–851, 1999.

[20] J. Jonsson and J. Vasell. Real-time scheduling for pipelined execution of data flow graphs on a realistic mul-
tiprocessor architecture. In Proceedings of the 1996 IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 6, pages 3314–3317, 1996.

[21] B. Kruatrachue and T. Lewis. Grain size determination for parallel processing. IEEE Software, 5(1):23–32,
January 1988.

[22] V. S. Kumar, B. Rutt, T. Kurc, U. Catalyurek, J. Saltz, S. Chow, S. Lamont, and M. Martone. Imaging and
visual analysis—large image correction and warping in a cluster environment. In Proceedings of the 2006
ACM/IEEE conf. on Supercomputing, page 79, 2006.

[23] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to multiproces-
sors. ACM Computing Surveys, 31(4):406–471, 1999.

[24] M. Lee, W. Liu, and V. K. Prasanna. A mapping methodology for designing software task pipelines for
embedded signal processing. In Proceedings of the Workshop on Embedded HPC Systems and Applications
of IPPS/SPDP, pages 937–944, 1998.

[25] C. Papadimitriou and M. Yannakakis. Towards an architecture independent analysis of parallel algorithms.
SIAM Journal of Computing, 19:322–328, April 1990.

[26] B. Shirazi, H. Chen, and J. Marquis. Comparative study of task duplication static scheduling versus cluster-
ing and non-clustering techniques. Concurrency: Practice and Experience, 7(5):371–390, August 1995.

[27] S. B. Shukla and D. P. Agrawal. Scheduling pipelined communication in distributed memory multiprocessors
for real-time applications. ACM SIGARCH Computer Architecture News, 19(3), 1991.



[28] M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek, A. Sussman, and J. Saltz. Executing multiple
pipelined data analysis operations in the grid. In Proceedings of the 2002 ACM/IEEE conf. on Supercomput-
ing, pages 1–18, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[29] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel pipelines. In Proceedings
of the 8th ACM Symposium on Parallel Algorithms and Architecture, pages 62–71, New York, NY, USA,
1996. ACM Press.

[30] V. Suhendra, C. Raghavan, and T. Mitra. Integrated scratchpad memory optimization and task scheduling
for mpsoc architectures. In ACM/IEEE International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, Oct 2005.

[31] K. Vallerio. Task graphs for free. http://ziyang.ece.northwestern.edu/tgff/maindoc.pdf (2003).
[32] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Sadayappan, and J. Saltz. An approach for optimizing latency

under throughput constraints for application workflows on clusters. Technical Report OSU-CISRC-1/07-
TR03, The Ohio State University, 2007.

[33] N. Vydyanathan, Ü. V. Çatalyürek, T. M. Kurç, P. Sadayappan, and J. H. Saltz. Toward optimizing latency
under throughput constraints for application workflows on clusters. In 13th Intl. Euro. Conf. on Par. and
Dist. Computing, pages 173–183, 2007.

[34] M. Yang, T. Gandhi, R. Kasturi, L. Coraror, O. Camps, and J. McCandless. Real-time obstacle detection
system for high speed civil transport supersonic aircraft. In Proceedings of the IEEE National Aerospace
and Electronics Conference, pages 595–601, 2000.

[35] M.-T. Yang, R. Kasturi, and A. Sivasubramaniam. A pipeline-based approach for scheduling video process-
ing algorithms on now. IEEE Transactions on Parallel and Distributed Systems, 14(2):119–130, 2003.


