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Abstract

This paper addresses the problem of market-based batch
scheduling for parallel jobs running on supercomputer cen-
ters, with a view to revenue maximization. We adopt a user-
centric value based approach, where in, users can specify
the maximum price that they are willing to pay and a lin-
early decaying cost function over time. We propose a new
value based scheduling heuristic which is shown to be op-
timal under restricted versions of the scheduling problem.
We evaluate our proposed heuristic with trace-based sim-
ulation and compare it with existing heuristics, and show
that our heuristic significantly outperforms them in terms
of maximizing the revenue, while achieving better perfor-
mance with respect to standard performance metrics such
as slowdown and utilization.

1 Introduction

Recent emerging architectural breakthroughs coupled
with the acceptance of parallel concepts in general pur-
pose computing revolutionize the importance of parallel
systems in numerous ways. Effective resource management
of such huge and demanding systems, as well as satisfy-
ing both the resource provider and the user with diversified
objectives, is a very challenging problem. Considerable re-
search [12, 18, 17, 20, 22, 15] has already focused on these
seemingly orthogonal aspects of parallel job scheduling.

In general, a job scheduler determines when and where
to execute a job, given a set of resources and a stream of
jobs. In a typical model, when a job arrives in the system,
the scheduler tries to allocate the required resources to start
the job immediately, if the specified resources are available.
Otherwise, the job is queued and scheduled to start at a later
time. User satisfaction is often evaluated by response time
which is the sum of the waiting time in the job queue (for
resources to be available) and the actual runtime after the
job starts running. In contrast, a supercomputer center is
usually interested in the overall system utilization that de-
termines what fraction of the resources is actually utilized
and what fraction remains idle.

While shorter response time and larger utilization are
very appealing features from the supercomputing commu-

nity, overall revenue maximization with the optimal man-
agement of resources is the key motivational factor from a
resource provider’s perspective. Revenue computation pri-
marily requires a suitable charging or cost model. There
are two different charging models available in literature. In
the provider-centric model, the supercomputer center deter-
mines the charge required to execute a job. This widely used
model is based on the resources utilized and is usually com-
puted by employing the product, number of processors×

runtime . On the other hand, in the user-centric model, the
user, instead of the system provider, offers the price for run-
ning a job. According to the adopted model, user specifies
the value of a job depending on the importance of timely
delivery. Basically, each user defines a piece-wise linear
value or utility function whereupon the charge is calculated
as function of completion time of a job.

In this paper, we adopt the user-centric approach on the
lines of the market-based charging model originally pro-
posed by Culler et. al. [10] and Chase et al [13] for se-
quential jobs. Both papers proposed various heuristics to
maximize the revenue based on expected unit yields and
other risk and reward related parameters. However, they
do not provide any theoretical backing of the heuristics they
employ and their work lacks any impact analysis on widely
used performance metrics. In this paper, we propose a new
scheduling heuristic which aims at revenue maximization
in a online multi-processor system. More significantly, we
prove the optimality of our approach in a simplified sce-
nario involving a uni-processor system and an offline batch
of jobs. Then, we propose sufficient conditions which when
true, guarantee optimality, for an online stream of jobs on
a uni-processor system. Finally, we apply our proposed
scheduling scheme in a generic multiprocessor system with
parallel jobs.

We present the detailed analysis of the schemes with
trace-based simulation using different real workloads of
jobs from Feitelson’s archive [11] . Our results demonstrate
that the proposed scheme provides significantly higher rev-
enue as compared to existing schemes while achieving the
better performance with respect to standard performance
metrics such as slowdown and utilization.
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2 Related Work

Several job schedulers such as Portable Batch System
(PBS) [6], Moab [4], Load Sharing Facility (LSF) [3],
Sun Grid Engine (SGE) [8], etc. have been deployed at
shared-resource supercomputer centers to schedule paral-
lel jobs. These schedulers primarily focus on performance
by improving utilization, throughput, average turnaround
time [12, 9], etc. Even though maximizing revenue is a
very desirable feature from a resource provider’s perspec-
tive, it has received very little attention from both the in-
dustry [7, 2, 5] and the research community [16]. In this
section, we review some of the existing work pertaining to
the concept of revenue in job scheduling.

Typically, the service provider calculates the revenue
by using either the provider-selected charging model or
the user-specific charging model. Most supercomputer
centers [7, 1, 2] adopt the provider-centric approach, in
which a user is charged in proportion to its resource us-
age. In most of the cases, the basic resource is a proces-
sor; the charge is proportional to the product of the re-
quired number of processors and the run time of a job.
Some supercomputer centers [7, 2] that provide multiple
queues for different levels of services determine the charges
depending on the resource used and quality of services
sought. In this model, the charge is generally proportional
to (number of processors×runtime×queuecharge). In
addition, we propose a new charging model for QoS-aware
scheduling in our recent work [16]. The proposed charg-
ing model is based on the notion that quicker the response
time sought, the larger the charge should be. In particu-
lar, there are two separate charging components associated
with resource usage and QoS guarantees respectively. The
resource usage component relies mainly on the amount of
resources used and the duration of the service. The QoS
component of the charge essentially depends on the flexi-
bility of the requested deadline.

Alternatively, there has been some work done to provide
user-centric market-based approaches for revenue-aware
scheduling [10, 13, 19]. In the user-centric approach, dif-
ferent users with varied goals and preferences express their
desire for service in a common way (e.g., through currency).
The most common market-based model follows a auction-
based resource allocation mechanism that has three major
entities: users or buyers, system providers or sellers and the
resources to be sold [23, 21]. A user wants to allocate a pro-
cessor(s) for a specific duration and is willing to pay a cer-
tain value for the execution of the job. The system provider
is interested in selling the resources to the user with an in-
tent to maximize its overall profit. The auction process,
which is generally proposed by the system provider, consid-
ers the value or bid of all contending users and ultimately
awards it to the highest bidder.

Wladspurger et. al., [23] proposes a market-based mi-
croeconomic approach to batch scheduling. They utilize the
auction process to choose the winner from the bids of differ-
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Figure 1. Utility function used in Value-Based
Job Scheduling.

ent users. Stoics et. al. [21] also propose an auction-based
microeconomic approach for parallel job scheduling. In this
scheme, every user has a savings account where he or she
receives funds for buying resources for jobs. Also, the user
creates an independent expense account for every job and
starts transferring funds from his or her savings to a job’s
expense account. The rate of this fund transfer determines
the priority of the job that ultimately plays a vital role in the
auction process.

Two recent works [10, 13] have also looked at a market-
based approach to value-based parallel job scheduling. Both
studies rely on a per-job specific utility or value function
that provides an explicit mapping of service quality to value.
Generally, the value function is a piece-wise linear func-
tion that decays as a function of the job completion time.
The rate of decay reflects the urgency or sensitivity to de-
lay. The fundamental idea of this model is that the user
submits the job with a value function along with other job
characteristics. Then, the scheduler decides how to sched-
ule the job using the job information and current state of
the system. Culler et. al. [10] adopts user-centric perfor-
mance metrics instead of system-centric metrics to evaluate
the overall system performance. They recommend an ag-
gregate utility function to measure the satisfaction of users
with the resource allocation process. For job selection, the
proposed scheme implements a heuristic approach where
the job with highest value per unit running time gets the
preference. Chase et. al. [13] proposes an enhancement
to this approach by considering the risk of accepting or re-
jecting a job due to future uncertainty. Islam at. el. [14] ad-
dressed the issue of providing deadline guarantees as well as
achieving maximum revenue using a user-centric approach.
Their work focused on analyzing the opportunity cost in a
QoS-aware scheduler and proposed a history-based predic-
tive technique to estimate the opportunity cost and increase
the overall system revenue.

3 Value-based Scheduling

In this section, we examine FirstPrice [10], Present-
Value, OpportunityCost, FirstReward approaches [13] pro-
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posed in the context of value-based scheduling. The key
aspect of the job model is that a user specifies the value of
a job depending on the importance of timely delivery. Ba-
sically, each user defines a piece-wise linear value or util-
ity function (shown in Figure 1) whereupon the charge is
calculated as a function of the completion time of a job.
The value function reflects the urgency of the job as a time-
dependent function. For simplicity, the value function has
two linear pieces. The first part indicates the maximum
value that a user is willing to pay if it is completed in its
earliest possible time, which in turn expresses the impor-
tance of the job. Likewise, the second part denotes decay
or down-slope of the value and shows the sensitivity of the
job to further delay in the job’s completion time. It is ex-
pected that users with tight deadline jobs will offer a high
initial value and steeper slope for the job. Eventually, the
aggregate utility, which is calculated by summing up the in-
dividual value earned for all the jobs in the system, can be
used to estimate the overall system performance.

Formally, let S =< j1, j2, . . . , jn > be a set of jobs. Let
ESTi be earliest start time of job ji , Pi be the processing
time of job ji , and Slopei be the slope of the linearly de-
creasing value for the job ji over time. Each job ji earns a
maximum value MaxRevi if it completes at its minimum
completion time ESTi + Pi . If the job is delayed, then
the value decays linearly at the rate slopei . Since the value
starts deteriorating only once the job completion time ex-
ceeds the earliest completion time, therefore we focus our
analysis on the decreasing portion of the curve. The time
varying value V alueit in the decreasing portion of the in-
terval is of the form

V alueit = MaxRevi − Slopei ∗ t (1)

3.1 FirstPrice.

Jobs are ordered for execution in the decreasing order of
their expected yield per unit of resource per unit of process-
ing time. In other words, FirstPrice orders the jobs based
on the unit gains they offer.

FirstPricei =
V alueit

Pi

(2)

3.2 PresentValue.

This approach builds upon the idea proposed in the
FirstPrice scheduling criterion. It is based on the concept
of present value in finance. The key idea is that, if there are
two jobs with the same unit gains and slopes, then its prefer-
able to run the shorter job first. This is because a shorter job
reduces the risk of delaying a highly urgent or highly valu-
able job which arrives later. In other words, executing the
shorter job first makes the scheduling more risk-aware. The
present value of a job PVi is defined as follows.

PVi =
V alueit

1 + DiscountRate× Pi

(3)

Here, DiscountRate is a parameter which is used to
decide the weightage to be given for future gains.

3.3 OpportunityCost.

The OpportunityCost models the loss incurred by a
job jk whose execution is delayed in order to execute an-
other queued job ji . A job’s urgency cost depends upon the
urgency of other queued jobs. The opportunity cost OCi to
start a job at some point is equal to the aggregate decline in
the yield of all other competing jobs. Formally, it is defined
as follows.

OCi =
∑

∀k,k 6=i

slopek × Pi (4)

3.4 FirstReward.

The FirstReward heuristic tries to balance the com-
peting effects of a job’s present value as well as its oppor-
tunity cost. It does so by introducing a tunable parameter
alpha as follows.

FirstRewardi =
alpha × PVi − (1 − alpha) × OCi

Pi

(5)

4 Normalized Urgency

In this section, we present a new approach, namely,
NormalizedUrgency , to solve the aforesaid problem.
The objective function is to maximize the total value earned
by the jobs. The problem is how to schedule the jobs so as
to maximize the overall value earned. In other words, the
goal is to maximize Rev which is defined as follows.

Rev =

i=n∑

i=1

V alueit (6)

For each job, we define an ordering function
NormalizedUrgencyi defined as follows:

NormalizedUrgencyi =
slopei

Pi

(7)

Jobs are ordered for execution in the decreasing order of
their NormalizedUrgencyi values. In order to provide an
intuition for our approach, we first look at certain restricted
versions of the general problem and propose optimal so-
lutions or sufficient conditions to guarantee optimality for
them.
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4.1 Batch of jobs: Offline scenario

In this section, we look at the following restricted ver-
sion of the problem. All jobs are associated with the same
earliest start times. In other words, we are focusing on an
offline version of the problem where all jobs are available
to be executed at time t=0. The problem is how to sched-
ule these jobs on a uniprocessor system to achieve our goal
function as mentioned in (Eq. 6).

Theorem 1 An optimal sequence can be obtained by or-
dering the jobs in non-increasing order of their respective
NormalizedUrgency values.

Proof Consider two jobs ji and jk such that the op-
timal sequence is to execute job ji before job jk

and let us consider that NormalizedUrgencyi <

NormalizedUrgencyk . The total revenue attributed to
these jobs, Revik is:

Revik = MaxRevi − slopei ∗ Pi +

MaxRevk − slopek ∗ (Pi + Pk) (8)

Now swap the two jobs so that job jk now executes be-
fore job ji . The revenue attributed to the two jobs in this
case, Rev(ki) is:

Revki = MaxRevk − slopek ∗ Pk +

MaxRevi − slopei ∗ (Pk + Pi) (9)

The difference in the overall revenue earned is:

Revki − Revik = slopek ∗ Pi

−slopei ∗ Pk (10)

The right hand side in (Eq. 10) is positive since
NormalizedUrgencyi < NormalizedUrgencyk .
Therefore, swapping the two jobs to obey a non-increasing
order of the NormalizedUrgency values leads to an in-
crease in the overall revenue earned. Therefore, the former
solution is not optimal. A sequence of such interchanges
yields a sequence which satisfies the order specified in the
claim and is optimal.

4.2 A dynamically arriving stream of jobs
(with same slope): Online scenario

In this section, we look at a more relaxed version of the
problem discussed in section 4.1. All jobs are associated
with the possibly different earliest start times EST . In
other words, we are focusing on an online version of the
problem where all jobs arrive over time. However, we as-
sume the knowledge of earliest start times for jobs arriving
in future. The optimal solution for such a problem can act

as an upper bound on the total revenue earned in a truly on-
line scenario where jobs arrive over time and the scheduler
does not have any knowledge of the arrival times of future
arriving jobs. For simplicity sake, we assume that all the
jobs have the same decay rate slope .

The earliest completion times ECTi of each job is
calculated dynamically based on the previously scheduled
jobs. In the initial state, when no job has been scheduled,
the earliest completion time ECTi of each job is defined as
follows:

ECTi = ESTi + Pi (11)

Theorem 2 Two conditions, which when true together,
guarantee optimality. Condition 1 states that jobs should be
scheduled in a non-decreasing order of their earliest start
times. Condition 2 says that the jobs should be scheduled
in a non-decreasing order of earliest completion times. If
a schedule obeys both these conditions, it is guaranteed to
give an optimal solution.

Proof We first prove this in the context of a two job sce-
nario where in there are only two competing jobs in the sys-
tem.

Consider two jobs ji and jk . Without loss of general-
ity, Let us consider that ECTi < ECTk . There are three
possible scenarios.

1. Scenario 1: ESTi < ESTk < ESTi+Pi < ESTk+
Pk

If job ji executes before job jk , The total revenue
earned , Revik is computed as follows:

Revik = MaxRevi − slope ∗ (ESTi + Pi)

+MaxRevk − slope(ECTi + Pk) (12)

If job jk executes before job ji , The revenue Pki

earned is:

Revki = MaxRevk − slope ∗ (ESTk + Pk)

+MaxRevi − slope ∗ (ECTk + Pi) (13)

The difference in the overall revenue earned is:

Revki − Revik = slope ∗ (ESTi + ECTi

−ESTk − ECTk) (14)

In this scenario, ESTi < ESTk < ECTi < ECTk ,
therefore the right hand side in (Eq. 14) is negative.
Therefore, the overall value decreases if job jk exe-
cutes before job ji .
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2. Scenario 2: ESTk < ESTi < ESTi+Pi < ESTk+
Pk

If job ji executes before job jk , The revenue Pik

earned is:

Revik = MaxRevi − slope ∗ (ESTi + Pi)

+MaxRevk − slope(ECTi + Pk) (15)

If job jk executes before job ji , The revenue Pki

earned is:

Revki = MaxRevk − slope ∗ (ESTk + Pk)

+MaxRevi − slope ∗ (ECTk + Pi) (16)

The difference in the overall revenue earned is:

Revki − Revik = slope ∗ (ESTi + ECTi

−ESTk − ECTk) (17)

In this scenario, two conditions are sufficient to make
the right hand side of the (Eq. 17) negative. The two
conditions are: ESTi < ESTk and ECTi < ECTk .
If these two conditions are true, then the order ik is
certainly better than the order ki . However, the condi-
tion ESTi < ESTk violates the assumptions of Sce-
nario 2 that is ESTk < ESTi .

3. Scenario 3: ESTi < ESTi+Pi < ESTk < ESTk+
Pk

In this scenario, it is quite obvious that job ji should
be executed before job jk . This is also reflected by
the fact that both the two sufficient conditions for the
ordering ik to be better than the ordering ki : ESTi <

ESTk and ECTi < ECTk are true in this scenario.
From these three possible scenarios, we can safely
conclude that there are two conditions which are suf-
ficient to guarantee optimality. The conditions are
ESTi < ESTk and ECTi < ECTk . In other words,
a sequence which satisfies a non-decreasing order of
earliest start times as well as the earliest completion
times is optimal for a 2 job scenario.

4.3 A dynamically arriving stream of jobs
(different slopes): Online scenario

In this section, we look at an extended version of the
problem discussed in Section 4.2. All jobs are associated
with the possibly different earliest start times ESTi as in
Section 4.2. However, now we relax the assumption that all
jobs have same decay rates. Each job ji is associated with
a decay rate slopei .

Theorem 3 Two conditions, which when true together,
guarantee optimality. Condition 1 states that jobs should
be scheduled in a non-decreasing order of their respective
EST ×slope values . Condition 2 says that the jobs should
be scheduled in a non-decreasing order of their respective
ECT
slope

ratios. If a schedule obeys both these conditions, it is
guaranteed to give an optimal solution.

Consider two jobs ji and jk . Let us consider that
ECTi < ECTk . There are three possible scenarios, of
which we look at one in this section.

ESTi < ESTk < ESTi + Pi < ESTk + Pk

If job ji executes before job jk , The component of the
total revenue earned which is attributed to these two jobs,
Revik is computed as follows:

Revik = MaxRevi − slopei ∗ (ESTi + Pi)

+MaxRevk − slopek(ECTi + Pk) (18)

If job jk executes before job ji , The revenue earned is:

Revki = MaxRevk − slopek ∗ (ESTk + Pk)

+MaxRevi − slopei ∗ (ECTk + Pi) (19)

The difference in the overall revenue earned is:

Revki − Revik = slopei ∗ ESTi − slopek ∗ ESTk

+slopek ∗ ECTi − slopei ∗ ECTk (20)

In order for the right hand side in Equation 20 to be neg-
ative, there are two sufficient conditions: slopei ∗ ESTi <

slopek ∗ ESTk and slopek ∗ ECTi < slopei ∗ ECTk .
Therefore, we again have two possibly conflicting condi-
tions. Ordering the jobs according to one condition may
violate the another.

5 Experimental Results

In this section, we experimentally com-
pare the performance of our proposed scheme
NormalizedUrgency against the existing schemes such
as First Price [10], Present V alue , Opportunity Cost

and First Reward [13]. We employ an event-based sim-
ulator that essentially takes data in the standard workload
format version 2.0 [11], simulates the scheduling model
and creates an output trace containing data necessary to
gather metrics and perform post processing.

We primarily compare the overall revenue gained from
different schemes. In addition, other performance metrics
such as slowdown, response time and system utilization are
also evaluated to analyze the correlated impact of improving
the revenue. Moreover, since the parallel system with dy-
namically arriving parallel jobs could produce varied sce-
narios, we further study the robustness of the schemes by
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(a) 50% Urgency Job
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(b) 20% Urgency Job

Figure 2. Revenue improvement relative to FirstPrice assuming exact runtime estimate at different
offered loads
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Figure 3. Revenue improvement relative to FirstPrice assuming exact runtime estimate at different
offered loads with 80% urgent job

varying the offered loads and also looking at inexact user
estimates.

5.1 Evaluation Approach

The strategies evaluated in this paper are simulated us-
ing real workload traces, such as those available at the Par-
allel Workload Archive [11]. These traces include infor-
mation such as the jobs runtime, the number of nodes each
job used, the submission time, and a user estimated runtime
limit (wall-clock limit). In this work, we used two such real
workload trace of 10,000 jobs subset of the SDSC SP-2 and
CTC SP-2 workload trace.

Runtime Estimates: Runtime estimates are critical
when evaluating parallel job schedulers. Therefore, two sets
of simulations are performed. The first set of simulations
takes an idealistic view of the traces and assumes that users
are able to perfectly estimate their job’s runtime; this allows

us to concentrate on the capabilities of our algorithms with-
out being affected by other noise in the traces. The second
set of simulations uses the actual runtime estimates given in
the workload trace; this allows us to evaluate our algorithms
in more realistic environments.

Job Submission Load: As the demand for resources is
increasing, we need to investigate the effectiveness of our
scheme in various high load environments. This necessi-
tates the expansion of the real traces in a rational way. We
mainly use the duplication approach for varying the load on
the supercomputer center (number of jobs submitted). Jobs
are selected randomly and duplicated with the same arrival
time keeping other attributes value unchanged. For exam-
ple, we start with a trace and call this the base trace (load =
1.0). To generate a new trace with load = 1.2, we randomly
pick 20% of the jobs in the base trace and introduce extra
duplicate jobs at the same points in the trace. We also pay
special attention to maintain the subset relationship of jobs
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across the different loads. For example, the jobs selected for
load 1.2 are also selected for load 1.3 with additional 10%
new jobs. In summary, for CTC trace, we start with base
offer load of 74% and increased the load to 80% and 88%.
For SDSC trace, the offered loads are 82% (base trace), 90%
and 104%.

Urgency and Job Cost: None of the available work-
load traces contains any information about urgency require-
ments for the job or the amount the user is willing to pay
for the job, an aspect which is essential to our model. In
our model, we assume that each job specifies a maximum
cost the user is willing to pay for the job, and a linearly de-
caying cost function (as shown in figure 1). Hence, for our
evaluations, we randomly select a fraction U of the jobs as
urgent. The cost of non-urgent jobs is fixed at 0.1 units per
processor-second of the job. The cost of urgent jobs is set
to be higher than that of non-urgent jobs by a factor C. In
our experiments, we used values of 20%, 50% and 80% for
U and value of 100 for C.

5.2 Revenue Improvement for Different
Schemes

Revenue is an important metric to Supercomputer center
to evaluate the performance of the center. In this section,
we measure the revenue achieved using each scheme for
the same workload. Overall revenue of a system of n jobs
can be estimated using the Eq. 6 in the user-centric model
(Figure 1).

Offered Load 20% Urgent Job 50% Urgent Job
59% 7.5 7.8
65% 12.7 13.9
72% 35.9 19.4
78% 40.2 42.7

Table 1. Percentage Improvement of
NormalizedUrgency over FirstReward for
sequential job traces.

Although our main focus is parallel jobs in a multi-
processor system, we initially study the schemes in the
context of only sequential jobs . In Table 1, we
present the revenue improvement of our proposed scheme
NormalizedUrgency with respect to the best previously
proposed scheme FirstReward . For this experiment, the
sequential job trace is synthetically generated using the util-
ity from [11]. The results are presented for various offered
loads and for two different job-mixes. The data displays
that the new scheme NormalizedUrgency earns as high
as 40% more revenue than FirstReward . More detailed
results are shown for different schemes in Table 2 and Ta-
ble 3.

Figure 2 shows the revenue improvements for differ-
ent schemes with respect to FirstPrice [10] for a multi-

Offered First Normalized Present Opportunity
Load Price Urgency Value Cost
59% -79 7 -81 -11
65% -140 13 -139 -20
72% -314 36 -309 -24
78% -452 40 -445 -53

Table 2. Percentage Revenue Improvement of
different schemes over FirstReward for se-
quential jobs with 20% urgent job

Offered First Normalized Present Opportunity
Load Price Urgency Value Cost
59% -89 8 -87 -11
65% -137 14 -136 -20
72% -280 19 -276 -39
78% -476 43 -469 -56

Table 3. Percentage Revenue Improvement of
different schemes over FirstReward for se-
quential jobs with 50% urgent job

processor system. Figure 2(a) displays the revenue where
urgent and non-urgent jobs are equal in load and Figure 2(b)
shows the revenue where the number of urgent jobs are
fewer (20% urgent jobs). In both graphs, we vary the
system load from the actual load (74%) of CTC trace to
higher loads upto 88%. The graphs clearly demonstrate that
our proposed scheme NormalizedUrgency achieves the
highest revenue among all the schemes (nearly 45% im-
provement over the second best scheme). This revenue im-
provement is expected because the NormalizedUrgency ,
unlike other schemes, is based on the job’s urgency rela-
tive to its length. It does not look at the maximum revenue
offered by a job. Our optimality proofs and sufficiency cri-
teria for the restricted versions of the problem validate the
idea of normalized urgency. In addition, we observe that the
revenue improvements are much higher at high load as com-
pared to the original load (74%) scenario. This is because,
though the job mix is the same as the original load case, the
absolute number of urgent jobs is higher in the high-load
case allowing more opportunity to start more high revenue
jobs earlier. The results for traces with mostly urgency jobs
(80%) also exhibits the same trends as shown in Figure 3.

5.3 Impact on System Performance

Although revenue maximization is an important aspect
for a supercomputer center, it is significant to study the
impact on other widely used performance metrics such as
slowdown, response time and utilization. In this section, we
study the response time and slowdown metrics for various
schemes at different load. We did not include the utilization
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(a) 50% Urgency Job
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(b) 20% Urgency Job

Figure 4. Response time for different schemes assuming exact runtime estimate at different offered
loads
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(a) Response Time
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(b) Slowdown

Figure 5. Response time and Slowdown for different schemes assuming exact runtime estimate at
different offered loads with 80% urgent job
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(a) 50% Urgency Job
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(b) 20% Urgency Job

Figure 6. Slowdown for different schemes assuming exact runtime estimate at different offered loads
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(a) 50% Urgency Job
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(b) 20% Urgency Job

Figure 7. Achieved utilization for different schemes assuming exact runtime estimate at different
offered loads

1 Proc 2-8 Procs 9-32 Procs > 32 Procs
0-10min 137.8 61.28 91.47 267.16
10m-1hr 3.09 7.02 17.37 36.36
1hr-8hr 1.8 1.98 4.99 5.59
> 8hr 1.17 1.29 1.84 2.04

Table 4. Slowdown (First Price) for offered
load 88%

1 Proc 2-8 Procs 9-32 Procs > 32 Procs
0-10min 0.96 1.63 4.13 15.91
10m-1hr 1.80 2.80 6.14 12.87
1hr-8hr 6.79 6.44 12.40 16.06
> 8hr 15.72 17.68 22.68 22.95

Table 5. Response Time in hour (First Price)
for offered load 88%

results due to the space constraints.

1 Proc 2-8 Procs 9-32 Procs >32 Procs
0-10min 14.47 23.85 55.92 234.58
10m-1hr 1.42 2.7 8.13 35.54
1hr-8hr 1.27 1.45 3.36 4.78
> 8hr 1.11 1.15 1.92 2.2

Table 6. Slowdown (Present Value) for offered
load 88%.

Response Time: The response time of a job is the sum of
the time for which it has to wait in the job queue (for re-
sources to be available) and the actual runtime after the job

1 Proc 2-8 Procs 9-32 Procs >32 Procs
0-10min 0.28 0.67 2.51 14.27
10m-1hr 0.89 1.18 2.93 12.28
1hr-8hr 5.23 5.01 9.44 15.17
> 8hr 15.04 15.99 23.73 25.50

Table 7. Response Time in hour (Present
Value) for offered load 88%.

1 Proc 2-8 Procs 9-32 Procs >32 Procs
0-10min 3.76 6.99 17.33 30.86
10m-1hr 1.39 1.92 5.64 8.2
1hr-8hr 1.26 1.38 3.16 3.44
> 8hr 1.14 1.14 2.19 2.59

Table 8. Slowdown (Normalized Urgency) for
offered load 88%.

starts running. Figure 4 shows the graphs for response time
as the load varies for two different job mixes. The graphs
demonstrate that FirstPrice performs worst whereas the
proposed NormalizedUrgency performs the best or com-
parable to the second best. Figure 5(a) displays the response
time where most of the jobs are urgent (80%).

Slowdown: Slowdown of a job measures how much
slower the system appears to the user compared to a ded-
icated machine. It is calculated as the ratio of the response
time to the runtime of a job. Figure 6 shows the average
slowdown for various schemes at different loads. In addi-
tion, Figure 5(b) displays the slowdown where most of the
jobs are urgent (80%). The graphs demonstrate that our pro-
posed scheme NormalizedUrgency significantly outper-

9



1 Proc 2-8 Procs 9-32 Procs >32 Procs
0-10min 0.09 0.24 0.81 1.95
10m-1hr 0.87 0.98 2.11 3.06
1hr-8hr 5.21 4.89 9.70 11.69
> 8hr 15.56 15.78 27.16 29.74

Table 9. Response Time in hour (Normalized
Urgency) for offered load 88%.

1 Proc 2-8 Procs 9-32 Procs > 32 Procs
0-10min 4.83 9.83 28.31 85.18
10m-1hr 1.42 2.05 6.53 14.21
1hr-8hr 1.23 1.33 3.55 5.79
> 8hr 1.07 1.11 1.73 2.5

Table 10. Slowdown (Opportunity Cost) for
offered load 88%.

1 Proc 2-8 Procs 9-32 Procs > 32 Procs
0-10min 0.12 0.30 1.37 5.89
10m-1hr 0.89 0.95 2.32 4.89
1hr-8hr 4.96 4.66 9.83 16.58
> 8hr 14.48 15.35 21.42 28.57

Table 11. Response Time in hour (Opportu-
nity Cost) for offered load 88%.

forms the other schemes in terms of slowdown. In general,
the shorter jobs contribute most to the average slowdown
metric. In other words, the scheme, which prefers the short
jobs to long jobs, exhibits a lower slowdown value. Since
the proposed scheme also favors the short jobs, the improve-
ment is anticipated. This hypothesis is further supported by
the size-wise results in the table 4 to table 13. We cate-
gorize the jobs into sixteen categories based on the runtime
and number of processors requested. The tables present the
slowdown and response time for each category of job for
various schemes. The first row of table 8 and 12 show
that NormalizedUrgency schemes serves the short jobs
(runtime between 0 to 10 minutes) better as compared to
FirstReward , resulting in a lower slowdown. However,
the slowdown value for longer jobs are similar for both the
schemes, as expected.

Utilization : Utilization is the ratio of resources used by
the jobs to the resources offered. The utilization metric
is very important to the supercomputer centers. Figure 7
shows the achieved utilization for different schemes. The
achieved utilization for the schemes are nearly identical,
and are a function of the scheduler’s ability to tightly pack
the submitted jobs in the 2D chart.

1 Proc 2-8 Procs 9-32 Procs > 32 Procs
0-10min 5.82 9.73 29.64 72.57
10m-1hr 1.39 2.24 6.88 16.17
1hr-8hr 1.21 1.24 3.33 3.97
> 8hr 1.06 1.11 1.7 2.54

Table 12. Slowdown (First Reward) for offered
load 88%.

1 Proc 2-8 Procs 9-32 Procs > 32 Procs
0-10min 0.14 0.31 1.39 4.77
10m-1hr 0.87 1.03 2.52 5.76
1hr-8hr 4.82 4.51 9.27 12.42
> 8hr 14.39 15.35 20.74 28.96

Table 13. Response Time in hour (First Re-
ward) for offered load 88%.

5.4 Impact of User Runtime Inaccuracy

In our previous experiments, we assumed that the user
accurately estimated runtime of a job at submission. The
assumption was made to reduce the number of variables
and thereby aid the process of understanding the behav-
ior of schemes in a more predictable scenario. However,
the user runtime estimates are inherently inaccurate. Most
of the time, the user over-estimates the runtime of a job.
Therefore, in this section, we investigate the impact of such
inaccuracy in user runtime estimation for different schemes.

Figure 8 shows the revenue improvement in a real setting
where the inaccurate estimated runtime from an actual trace
is utilized in scheduling decision. The results show similar
trends to the ones shown in Figure 2 where exact runtime
estimation was assumed. However, the absolute revenue
improvements are lower in all cases (compared to Figure 2)
and this disparity is highest in the case where we employ the
lowest percentage of urgent jobs (Figure 8(b)). The main
reason for this is the over-estimation of a job’s runtime and
the usage of overestimated runtime in defining value func-
tion (Figure 1). As previously described, our value function
has two region: a flat region where revenue is constant and a
sloped region where the revenue drops as the time increases.
Since the runtime is usually over-estimated, the flat region
becomes longer and most of the jobs get completed within
the flat region resulting in no differences in revenue. Fig-
ure 9 displays the same overall trend where most of the jobs
(80%) are urgent. In summary, although the absolute rev-
enue gains of the schemes are not very good, our proposed
scheme still outperforms all other schemes at all loads and
at all job mixes exhibiting the improved adaptability of our
scheme.

So far, in our experiments, we used the CTC trace as the
base trace. To demonstrate the robustness of our schemes

10



���

���

��

��

��

��

��

���

���

	�� ��� ���

�
�
�
�
�
�
�
��
�
	


�
�
�
�
�
�
��

���
�������

����������	
����������
������
���
���


��������������� ������������

����������� ��� !����"�#���

(a) 50% Urgency Job
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(b) 20% Urgency Job

Figure 8. Revenue improvement realtive to FirstPrice assuming inexact runtime estimate at different
offered loads
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Figure 9. Revenue improvement realtive to FirstPrice assuming inexact runtime estimate at different
offered loads with 80% urgent job

across different workloads, we illustrate the revenue im-
provement using the SDSC workload. Figure 10 shows the
revenue improvement for various loads and two different
job mixes where user estimated runtime is actual but inac-
curate. Although the trends are consistent with the CTC
workload, the improvement is far better for SDSC work-
load. This is attributed to high original offered load (82%)
for SDSC compared to low original offered load (74%) in
CTC. At high load, there are more urgent jobs which the
schemes can leverage to improve the overall revenue.

6 Conclusions

In this paper, we explored the problem of market-based
batch scheduling for parallel jobs running on supercom-
puter centers, with a view to maximize the overall rev-
enue earned by the resource provider. We proposed a new

scheduling heuristic called NormalizedUrgency which
is based on the notion of prioritizing jobs based on their
urgency and their processing times. We prove the opti-
mality of our approach for certain restricted versions of
the problem. Finally, we experimentally compare our
schemes against the existing schemes like FirstPrice ,
FirstReward etc. using real supercomputer center work-
loads. Our results demonstrate that the proposed scheme
leads to significantly higher revenue as compared to exist-
ing schemes while achieving better performance with re-
spect to standard performance metrics such as slowdown
and utilization.
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