Utilizing Wikipedia Categories for Document Classification

Timothy Weale
Department of Computer Science and Engineering
weale@cse.ohio-state.edu

Abstract

This paper introduces our technique for integrating
Wikipedia as a broad-coverage knowledge base for
use in document classification. We outline an algo-
rithm for integrating the Wikipedia categories found
from named entities in the articles. We then demon-
strate this algorithm on a toy corpus, where we are
able to successfully classify our documents.

1 Introduction

Traditionally, document classification has been
based on a variation of the “bag of words”(BOW)
approach. BOW treats all the words in a document
as elements in a classification vector. These words
can be a boolean decision (found or not) or weighted
based on some measure (usually Term Frequency-
Inverse Document Frequency. A new document is
judged to be a member of a class based on how sim-
ilar it is to the training documents.

The underlying assumption to this classification
method is that similar documents will exhibit sim-
ilar words. More advanced clustering methods
(SVMs) and applying linguistic information (stop-
word removal, stemming, pos-tagging) can get bet-
ter results, but these approaches are all more-or-less
limited to the surface forms of the documents.

Document classification is not about the words
— classes are organized around common concepts.
That related documents will have similar word oc-
currences is merely a byproduct of the related con-
cepts.

Gabrilovich (GMO5) highlights this idea by using
document #15264 in the Reuters-21578 corpus, be-
longing to the category “copper”. This is a long arti-
cle, discussing other mining activities and informa-
tion about the companies involved in mining. Cop-
per is mentioned only briefly. Thus, the article is
typically mis-classified when it considers only sur-
face words. If one were able to capture the common
concepts behind the words, they should be able to
more successfully classify the article.

A more specific problem is that the BOW ap-
proach oftentimes overlooks the information con-
tained in named entities. Named entities carry a
lot of informational content about the concepts in a
document. Going back to the copper example, if the

article mentions BHP Billiton and European Miner-
als (both mining companies) several times, then we
should have greater evidence that this is an article
about mining, rather than about a particular com-
pany due to the overlap in concepts among the enti-
ties mentioned.

Taken more generally, an article that discusses
Angelina Jolie is probably different than one that
discusses the Cleveland Browns in ways beyond the
surface words in the document. However, if we
want to make an even finer distinction, say among
closely related concepts (whose surface words will
overlap), then more information is needed. Ide-
ally, documents focusing on one class of entities
{Harrison Ford, Brad Pitt, Julia Roberts} (all ac-
tors) should be distinguishable from classes of doc-
uments that discuss other, closely related topics
{Steven Spielberg, George Lucas, Peter Jackson}
(all directors).

Up until recently, there hasn’t been an available
resource to capture the underlying information con-
veyed by these named entities. Hand-crafted re-
sources (WordNet, CYC, OpenMind) were expen-
sive to construct and limited in scope. The develop-
ment of Wikipedia has, however, given us a cheap,
broad-scoped resource to capture some of the con-
cepts associated with these entities. In this paper,
we propose to use Wikipedia to extract the hidden
information in entities for more accurate classifica-
tion than would be able if we used surface features
alone.

The organization of our paper is as follows:
In Section 2, we discuss similar attempts to use
Wikipedia as a knowledge source. We outline our
algorithm in Section 3 before introducing our data
set and evaluating our algorithm’s performance in
Section 4. We conclude in Section 5 and discuss
future work in this area.

2 Prior Work

Wikipedia has just begun to be used as a supplemen-
tal text resource, similar to WordNet or FrameNet.
Wikipedia has been used to both compete with
and also bootstrap WordNet. In their 2006 paper
(SP06), Strube and Ponzetto use Wikipedia to ex-
tract semantic relatedness between pairs of words.
To do this, they utilize Wikipedia categories to

compute path based and text overlap based mea-
sures of relatedness between two words. In the
end, the resulting relatedness measures are compa-
rable to WordNet. This work has been extended by
Gabrilovich and Markovitch (GMO07) to process se-
mantic similarity among non-title text, text longer
than one word and with a more sophisticated simi-
larity vector. On the other end, Wikipedia has also
been used to effectively extract semantic relation-
ships in order to extend WordNet (RCACO05).

Wikipedia has been used to train gazetteers for
named entity recognition (TMO06). Toral and Munoz
utilize Wikipedia to speed up gazetteer creation,
which can be a long and tedious process. Addi-
tionally, they observe that since their algorithm is
language independent, additional languages can be
added by simply running their algorithm over the
appropriate Wikipedia language set.

Additional Wikipedia research has looked at its
internal link structure. In their 2005 paper, Adafre
and de Rijke (AdROS), they tackle the problem of
missing inter-article hyperlinks. To do this, they
propose a two-step ranking mechanism, LTRank, in
order to cluster similar pages (which should have
similar link structures) and then use these clusters
to identify missing links among the documents.

Finally, this work is closest in manner to that of
Gabrilovich and Markovitch (GMO06). In their 2006
paper, they demonstrate a system for text catego-
rization and use Wikipedia to overcome the bottle-
neck generated by limitations of the Open Direc-
tory Project. Their system uses a multi-resolution
feature generator to classify documents using infor-
mation at the word, sentence, paragraph and doc-
ument level. Their final classifications are signifi-
cantly better than previously published results.

3 Feature Construction

Our features are constructed by extracting all named
entities from our corpus. These entities are then
matched (if possible) to a Wikipedia article, where
the category information is used to generate the doc-
ument features.

3.1 Named Entity Extraction

As we have argued before, one of the major
strengths of Wikipedia is that it contains informa-
tion about a specific entity in the world, not avail-
able through other resources. Therefore, the first
step in our algorithm is to extract entities from the
documents.

To do this, we run an named entity recognizer
over each document in the corpus and extract the
named entities to be used for article matching. The

Bill Belichick
1952 births, Baltimore Colts coaches,
Cleveland Browns coaches, Denver Broncos
coaches, Detroit Lions coaches, Living people,
New England Patriots coaches, New York Giants
coaches, Phillips Academy alumni,
Croatian-Americans, The NFL on ABC

AFC North
National Football League, Baltimore Ravens,
Cincinnati Bengals, Cleveland Browns,
Jacksonville Jaguars, Pittsburgh Steelers,
Tennessee Titans, 2002 establishments

Figure 1: Categories for given entities

final output of this step is a list of entities found in
each individual document.

3.2 Article Matching

We then extract category information from the arti-
cle about the named entity. This category informa-
tion forms the basis for our classification vector.

Unlike other categorization resources (such as the
Open Directory Project), Wikipedia categories are
not rigidly assigned to an overall hierarchy. So, an
entity can belong to multiple categories, each found
within its own hierarchy and corresponding to a dif-
ferent piece of information about the entity. For ex-
ample, “Bill Belichick” belongs to categories relat-
ing to his high school, career as an NFL coach and
birth year. This allows us to capture a wide variety
of high-level information about an entity cheaply.

In our implementation, entries that returned zero
queries were discarded, as they were usually mis-
named entities. If a disambiguation page was
reached, the named entity was also discarded. This
is a limitation of our current system, and will be dis-
cussed in Section 5.

At the end of this step, we have a list of categories
present in the document. These will then be turned
into our vector for classification.

4 Evaluation

The evaluation was done with the Wikipedia data
dump from November 11, 2006!. After decom-
pression, the resulting XML file was 6.6GB in size.
We used MediaWiki’s import routines to populate
a MySQL database, which we used to process our
named entity queries.

'http://download.wikimedia.org/

4.1 Data Set

The evaluation of our method was done on a toy cor-
pus consisting of 40 training documents(30 positive
/ 10 negative) and 4 testing documents(2 positive /
2 negative) gathered from Google news. We have
a very hard corpus — all documents pertain to the
2006 NFL season and therefore share many words
and have a high concept overlap. Positive examples
are those in which the article mentions a current or
former coach of the Cleveland Browns. Negative
examples are those that fail to mention a Browns
coach.

4.2 Category Discovery

We ran the LingPipe Named Entity Recognizer’
over our data set in order to get our named enti-
ties, an off-the-shelf named entity recognizer. The
named entity model was obtained from their MUC-
6 training model.

After running our named entity recognizer over
the dataset, we noticed that some of the training
documents failed to capture the desired entities. We
then reconfigured our training examples based on
the results of the entity recognition process, result-
ing in a 28 positive / 12 negative training split.

The resulting named entities were queried against
our MySQL database containing the Wikipedia en-
tries. In the case of multiple result queries, only
the highest-numbered result query was used (corre-
sponding to the latest version of the topic).

The resulting classification vectors are based on
all categories found somewhere in our training set
(rather than all possible categories). Any addi-
tional categories found in the testing set are dis-
carded. Since the number of categories is enumer-
able through a search of the Wikipedia dataset, we
may wish to expand our vector to include all possi-
ble categories in the future.

4.3 Classifiers

In our evaluation, we decided to try two different
types of classifiers: Support Vector Machines and
Decision Trees.

SVMs are linear classifiers that attempt to split
the input space into a hyperplane delineating all pos-
itive examples from negative examples. Vectors are
considered as a whole. In SVMs, we are looking for
hyperplanes with a maximum margin between the
positive and negative examples. For our evaluation,
we utilize the SVM'9" classifier’ and the C4.5 de-
cision tree algorithm®.

*http://www.alias-i.com/lingpipe/
*http://svmlight.joachims.org/
*http://www.rulequest.com/Personal/

Decision trees are models that make incremental
checks on vector elements to decide the class of an
object. The algorithm finds the most distinguish-
ing element from the vector and splits based on that
element. Then, it recursively finds the most dis-
tinguishing element of its subsets, until a sufficient
level of generalization is found. Decision trees have
many benefits — the results are easy to interpret, eas-
ily human-reproducible and can provide generaliza-
tions with little hard data. However, they can be
prone to over-fitting. We use the C4.5 decision tree
algorithm, which is based on the ID3 decision tree
generator.

4.4 Results

In our experiment, we compared the output of three
things: an un-optimized bag-of-words model, a bag-
of-named-entities model and bag-of-categories. All
input vectors consisted of boolean values — either
the item was found in the document, or it wasn’t.

Word | Entities | Concepts
SVM | 50% 50% 75%
C4.5 - 50% 100%

Table 1: Classification Accuracy

As expected, the BOW classification and the
named entity classification struggle with the con-
cept overlap in the data set. In all of these cases, the
classifiers tried to include all the testing examples.

With the category-based SVM vectors, the clas-
sifier was able to disregard one of the testing exam-
ples. Our negative example set was simply too small
for it to pick out the appropriate features for classi-
fication. With more negative training examples, we
should see improved performance from the SVM.

C4.5 was able to distinguish the appropriate cat-
egory with ease and generated a one-level decision
tree. If “Cleveland Browns coaches” category was
found, then the document was classified as a pos-
itive example. This is expected, given the corpus
involved.

5 Conclusions and Future Work

In this paper, we have introduced a method for doc-
ument categorization using Wikipedia as a large-
scale knowledge base for information about named
entities. We have also demonstrated this algorithm
on a toy dataset, where it successfully performs the
expected categorization.

There is a lot of work to be done in this domain.
Our first step is to rebuild the Wikipedia database.
While MediaWiki was able to successfully popu-
late our MySQL database, the provided database

New England Browns Green Bay Packers Packers Bengals
Patriots Romeo Crennel Green Bay Green Bay Marvin Lewis
Bill Belichick Charlie Frye Matt Hasselbeck ~ Forrest Gregg Cleveland
Tom Brady Terry Pluto Brett Favre Milwaukee Chris Perry
Chicago Georgia Dome Seattle William Perry Browns
Train 2 (+) Train 20 (+) Train 36 (-) Test 1 (+) Test 3 (-)

Figure 2: Example Named Entities from Corpus

structure is not optimal for our needs. Article links,
Wikipedia categories and other pertinent informa-
tion should be pre-computed and available within
our SQL queries.

Disambiguation needs to be handled. In our cur-
rent system, we discard entities that need disam-
biguation. Obviously, this needs to be handled.
Perhaps a two-pass method that gathers all non-
ambiguous entities first, and then does disambigua-
tion based on the article text and the disambiguated
article pages.

Additionally, we wish to run our algorithm on ad-
ditional data sources. Our toy corpus was used to
demonstrate the initial concept, but we need to see
how this might work in a more general classification
context. To this end, we have obtained the RCV1
corpus, and will be running experiments to see how
our algorithm works on this corpus.

Finally, we should investigate additional weight-
ing algorithms. The boolean classifier was sufficient
for the toy corpus, but established methods such as
TF/IDF may show some improvement, especially
on a corpus such as RCV1.

Further out, there is a lot of potential work. Ar-
ticle consistency needs to be checked to ensure that
appropriate inter-article links are maintained. For
example, the article on “Bill Belichick” lists him
as a living person. Yet, the article for the current
Browns coach (as of this writing) “Romeo Crennel”
does not. Such consistency needs to be maintained.
Then, we should be able to use the link structure to
find a the relatedness of different articles, based on
what we have seen before. Also, we would like to
implement the Gabrilovich and Markovitch (2006)
algorithm, which would provide us with the closest
comparison to state-of-the-art in this field.

References

Sisay Fissaha Adafre and Maarten de Rijke. Dis-
covering missing links in wikipedia. In Link-
KDD, Chicago, Illinois (USA), August 2005.

Evgeniy Gabrilovich and Shaul Markovitch. Fea-
ture generation for text categorization using
world knowledge. In The 19'" International
Joint Conference on Artificial Intelligence (1J-

CAI), pages 1048-1053, Edinburgh, Scotland,
UK, August 2005.

Evgeniy Gabrilovich and Shaul Markovitch.
Overcoming the brittleness bottleneck using
wikipedia: Enhancing text categorization with
encyclopedic knowledge. In Proceedings of
The 2I1st National Conference on Artificial
Intelligence (AAAI), pages 1301-1306, Boston,
July 2006.

Evgeniy Gabrilovich and Shaul Markovitch. Com-
puting semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings
of The 20th International Joint Conference on
Artificial Intelligence (IJCAI), Hyderabad, India,
January 2007.

Maria Ruiz-Casado, Enrique Alfonseca, and Pablo
Castells. Automatic extraction of semantic rela-
tionships for wordnet by means of pattern learn-
ing from wikipedia. In NLDB, number 3513 in
Lecture Notes in Computer Science, pages 67—
79, 2005.

Michael Strube and Simone Paolo Ponzetto.
Wikirelate! computing semantic relatedness us-
ing wikipedia. In AAAI, 2006.

Antonio Toral and Rafael Munoz. A proposal to
automatically build and maintain gazetteers for
named entity recognition by using wikipedia. In
Workshop on New Text, 11th Conference of the
European Chapter of the Association for Compu-
tational Linguistics, Trento (Italy), April 2006.

