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ABSTRACT
Mining frequent subtrees in a database of rooted and labeled trees is
an important problem in many domains, ranging from phylogenetic
analysis to biochemistry and from linguistic parsing to XML data
analysis. In this work we revisit this problem and develop an archi-
tecture conscious solution targeting emerging multicore systems.
Specifically we identify a sequence of memory related optimiza-
tions that significantly improve the spatial and temporal locality of
a state-of-the-art sequential algorithm – alleviating the effects of
memory latency. Additionally, these optimizations are also shown
to reduce the pressure on the front-side bus, an important consider-
ation, when executing data-intensive algorithms on emerging large-
scale multicore systems. We then demonstrate that these optimiza-
tions while necessary are not sufficient for efficient parallelization
on multicores, primarily due to parametric and data-driven factors
which makes load balancing a significant challenge. To address
this challenge, we present a methodology that adaptively modu-
lates from coarse grained task partitioning to the finest granularity
of partitioning needed, as dictated at runtime by the input param-
eters and the dataset properties, while minimizing overhead costs.
The resulting algorithm achieves near perfect parallel efficiency on
up to 16 processors on challenging real world applications. The op-
timizations we present have general purpose utility and a key out-
come is the development of a general purpose scheduling service
for moldable task scheduling on emerging multicore systems.

1. INTRODUCTION
The field of knowledge discovery is concerned with extracting

actionable knowledge from data efficiently. While most of the
early work in this field focused on mining simple transactional
datasets, recently there is a significant shift towards analyzing data
with complex structure such as trees. Examples abound ranging
from analysis and management of XML repositories [29] to phy-
logenetic analysis [28], from web mining [28] to analyzing glycan
structures [8], from analyzing linguistic data [3] to examining parse
trees [2]. In most of these instances, the essential problem may be
abstracted to the one that of discovering frequent patterns from a
database of rooted ordered trees, the focus of this article.
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Motivated primarily by power and energy considerations recent
advancements in computer architecture have seen the advent of
chip multiprocessor (or multi-core) systems (CMPs). Such sys-
tems are becoming extremely common-place, and the general trend
in processor development has been from single-core to many-core:
from dual-, quad-, eight-core chips to the ones with tens of cores 1.
For such architectures, it is becoming increasingly evident that a
memory conscious design is critical to obtain good performance.
There is both a need to alleviate the problem of memory access la-
tency as well as to reduce the bandwidth pressure since technology
constraints are likely to limit off-chip bandwidth to memory as one
scales up the number of cores per chip [9, 11]. Equally important,
it becomes imperative to identify scalable and efficient parallel al-
gorithms to deliver performance commensurate with the number of
cores (processing elements) on chip. A fundamental challenge is
to ensure good load balance in the presence of data and workload
skew pointing to the need for an adaptive design strategy.

It is our contention that extant tree mining algorithms will re-
quire significant changes to meet these challenges. The rationale
is as follows. First, a majority of these algorithms employ special
data structures to store extra state with which they avoid repeated
executions of expensive subtree isomorphism checks, a key oper-
ation in such algorithms [1, 5, 12, 14, 17, 20, 21, 24, 28]. These
data structures house redundant information[17, 28], may rely on
pointer-based designs[24], and are often persistent across the entire
execution[17]. Such mechanisms that trade off space for time are
acceptable and often effective on unicore systems with large mem-
ory capacities but expected to be inefficient on multicore architec-
tures where the premium on off-chip memory accesses is expected
to be even higher. Moreover, parallel instantiations of such algo-
rithms will require shared access to such data structures and often
dictate housing additional redundant information thereby reducing
the overall efficiency. Second, even if the first issue can be effec-
tively resolved through appropriate memory conscious designs, one
still needs to design an effective parallelization strategy accounting
for workload skew. This is particularly challenging, since it is of-
ten difficult to estimate the workload of a task, even at runtime, for
such applications since the influence of dataset characteristics and
input parameters must be accounted for and accurately estimated.
Additionally, as several recent researchers have pointed out there is
a need to expose and subsequently exploit fine-grained parallelism
on such architectures [15].

As an effort in this direction, we propose several memory con-
scious optimizations to improve the locality, limit the working set
size, and alleviate the bandwidth pressure on the front side bus of
such algorithms. While these optimizations are presented and eval-
uated in the context of Trips[20] a state-of-the-art sub-tree mining

1
http://techfreep.com/intel-80-cores-by-2011.htm



algorithm, the key ideas are quite generic and can often be easily
incorporated to other algorithms targeting the mining and manage-
ment of structured data. Our Memory Conscious Trips (MCT) re-
duces the memory usage of Trips by up to 366-times and improve
the run time by up to 4 times. When compared to other extant algo-
rithms, we demonstrate over three orders improvement in memory
usage, and more than two orders improvement in run time.

We then empirically demonstrate that these optimizations while
necessary are not sufficient for efficient parallelization on multi-
cores, primarily due to parametric and data-driven factors which
makes load balancing a significant challenge. To address this chal-
lenge, we present a methodology that adaptively modulates from
coarse grained task partitioning to the finest granularity of parti-
tioning needed, as dictated at runtime by the input parameters and
the dataset properties, while minimizing overhead costs. The re-
sulting algorithm achieves near perfect parallel efficiency on up to
16 processing elements on challenging real world applications. The
optimizations we present have general purpose utility and a key
outcome is the development of a general purpose scheduling ser-
vice for moldable task scheduling on emerging multicore systems.

2. BACKGROUND AND CHALLENGES

DEFINITION 2.1. Frequent Subtree Mining: Given a database
of rooted ordered trees, enumerate the set of all frequent embedded
subtrees (|FS|)i.e., the subtrees whose support is greater than a user
defined minimum support threshold.

Figure 1: Example database and patterns

The minimum support (minsup) can either be expressed as a
percentage or as an absolute number of database trees. There are
two ways to define the support of a subtree (or pattern) S – transact-
ion-based or occurrence-based. The former counts the number
of trees in which S occurs, and the latter counts the total num-
ber of embeddings (or matches) in the database. If S occurs twice
in a given tree then its transaction-based support is 1 whereas its
occurrence-based support is 2. In this article, we use the transaction-
based definition. Figure 1 shows two example database trees (T1,
T2) and patterns (P1, P2). P1 has one embedding in both T1

and T2, whereas P2 occurs only in T1 (with 2 embeddings). If
minsup=2 then we have a single frequent subtree, P1. A variant
of this problem mines for induced, as opposed to embedded, sub-
trees 2.

There are two important phases in any tree mining algorithm,
candidate generation and support counting. The first phase gener-
ates the candidate subtrees which are then evaluated for their fre-
quency in the second phase. A key challenge in the first phase
is to efficiently traverse the search space. The challenge in sup-
port counting is to quickly check for the existence of a subtree
in a given database tree (i.e., subtree isomorphism). We employ
a pattern-growth method where a frequent subtree S is repeatedly
grown with new edges to yield new candidate subtrees. The process
of attaching an edge is called as point growth and the edge itself is
called as an extension. An equivalence class of S (denoted as [S])

2An induced subtree preserves parent-child relationships whereas an embedded sub-
tree preserves ancestor-descendant relationships.

TreeMiner iMB3-T Trips
Working set1 (KB) 256 128 64

Memory usage2 (GB) 7 32 4
1On Treebank data set at minsup=45K (see Section 7)

2Maximum memory footprint observed in all our experiments in Section 7

Table 1: Characterization of Tree Mining Algorithms

contains the set of all frequent subtrees generated from S through
one or more point growths. For instance, if S is a single node (say
v) then [S] contains all frequent subtrees whose root is v.
Related Work: A majority of existing tree mining methods main-
tain embedding lists (EL) in order to speedup the mining process.
The set of all matches of a frequent subtree S is stored in its EL so
that the embeddings of subtrees from its equivalence class [S] can
be found easily. TreeMiner, proposed by Zaki, stores the matches
in scope-lists whose entries (in a worst case) are of size equal to the
pattern size [28]. It generates new candidates by joining different
scope-lists. Scope-lists however suffer from redundancy and oc-
cupies a lot of memory (see Table 1), especially when the number
of overlapping embeddings is high – a common case in most real-
world data sets. All-in-all large memory also lead to expensive run
time performance for low support queries.

Asai et al proposed FreqT that operates in a similar manner to
TreeMiner but mines only induced subtrees. It maintains the occur-
rences of the right-most leaf (as an embedding list) and uses them
in generating new candidates. Induced subtree mining is much eas-
ier than embedded subtree mining since parent-child relations are
simpler than ancestor-descendant relations.

Tan et al proposed iMB3 that relies on occurrence-based support
and mines both induced and embedded subtrees [17]. They recently
developed a similar algorithm that uses a transaction-based support,
which hereinafter, is referred to as iMB3-T. Both iMB3 and iMB3-
T employ several data structures: dictionary to represent the data;
descendant list to track all descendants of a frequent node; and oc-
currence list to store the embeddings. The memory consumption of
iMB3-T is typically very high since the first two potentially large
data structures are maintained across the entire execution. Occur-
rence lists further increase the memory consumption to unaccept-
able levels, even at moderate values of minsup (see Table 1).

Wang et al proposed Chopper and XSpanner [24]. Chopper re-
casts the problem of subtree mining into sequence mining. How-
ever, its performance is often hindered by large number of false
positive subsequences. XSpanner, on the other hand, mines for sub-
trees by performing recursive projections. As we note in a previous
study, its performance suffers from complicated projections and
pointer-chasing and typically is outperformed by TreeMiner [20].

Researchers have also proposed algorithms for mining closed
and maximal frequent subtrees, which significantly reduce the out-
put size. These algorithms also suffer from similar performance
issues. For example, CMTreeMiner [5] and PathJoin [26] can mine
only induced subtrees. Extending these ideas for mining embed-
ded subtrees is not trivial. Termier et al proposed algorithms for
mining closed embedded subtrees [22] but they assume that no two
sibling nodes can have the same label – an unrealistic assumption
especially in case of real-world data sets. In addition, they suffer
from memory issues since they also employ data structures similar
to descendant lists in iMB3-T. There exist several other algorithms
which differ in the type of subtrees that they mine [12, 14, 16].
Please refer to the survey paper by Chi et al for more details [4].

In this work we present our memory optimizations in the context
of Trips, an algorithm that relies on a sequence-based representa-
tion of tree structured data [20]. Of all the algorithms discussed
thus far it has the smallest memory footprint and working set size



(see Table 1 for a comparison among leading contenders), and as
we show in our empirical results it is also the most efficient. While
these numbers appear quite reasonable for Trips, at lower support
values, they can still be much too large for emerging multi-core
systems. We next briefly describe the Trips algorithm.
Trips [20]: Trips encodes each database tree T as two sequences:
NPST – Numbered Prüfer Sequence; and LST – Label Sequence.
Trips constructs these sequences iteratively based on post-order
traversal numbers (PON) associated with every node in T . In every
iteration, it removes the node (say, v) with the smallest PON. The
label of v is appended to LST , and the PON of v’s parent is added
to NPST . An example Prüfer sequence is shown Figure 2.

Figure 2: Example tree and its Prüfer sequence

Algorithm 1 Trips Algorithm

Input: {T1, T2, . . . , TN}, minsup
(D, F1) = Transform(Ti): 1 ≤ i ≤ N
for each f in F1 do

mineTrees (NULL, (f , −1), D)
mineTrees (pat, extension (lab,pos), tidlist)
1: newpat← pat + (lab, pos) // pattern extension
2: output newpat
3: for each T in tidlist do
4: if (lab, pos) is an extension point for pat in T then
5: update the embedding list of T i.e., EL(T )
6: add T to newtidlist // to indicate newpat occurs in T
7: H = NULL
8: for each T in newtidlist do
9: for each node v in T do

10: for each match m in EL(T ) do
11: if v is a valid extension to m then
12: add the extension point to H
13: for each ext in H do
14: if ext is frequent then
15: mineTrees (newpat, ext, newtidlist)

The complete Trips algorithm is shown in Algorithm 1. It first
transforms the given database trees into sequences (D) and deter-
mines the set of all frequent nodes (F1). For each f ∈ F1, mine-
Trees is called to mine subtrees from its equivalence class [f ].

mineTrees is a recursive procedure with three parameters: a pat-
tern pat, an extension point (lab, pos), and a projected database
tidlist. An extension (lab, pos) of pat defines a new subtree that
is obtained by attaching a node with label lab to a node in pat
whose PON is equal to pos (=newpat in line 1). Each extension
point thus uniquely identifies a subtree that is grown from a given
pattern. The projected database (PD) tidlist contains the list of
trees in which pat has at least one embedding.

EL(T) initially contains the set of all embeddings of pat in tree
T . Lines 3-5 transform this list into EL for newpat by appending
the locations in T at which (lab, pos) matches – equivalent of find-

ing isomorphisms of newpat in tidlist. PD for newpat is simulta-
neously built by adding T to newtidlist in line 6. When mineTrees
returns, the newly appended entries associated with (lab, pos) are
deleted so that only the matches of pat remain in EL(T).

Lines 8-12 scan each tree in newtidlist to determine exten-
sions (i.e., point growths) of newpat. Every node in T is evalu-
ated against every embedding of newpat, given by EL(T) (lines 9-
10). All valid extensions are then hashed into H , which maintains
their frequencies (lines 11-12). Lines 13-14 determine the frequent
extensions and they are recursively mined by invoking mineTrees.
Note that, each extension in H denotes a unique subtree that is ob-
tained by adding a node to newpat.

3. CHALLENGES
We next briefly outline some of the key challenges one needs to

address in order to get effective performance on emerging multi-
core systems for such applications.
1. Memory footprint size: The control of memory footprint size
is an important consideration for both sequential and parallel algo-
rithms. Excessive memory usage may force OS to rely on virtual
memory thereby slowing down the application. It may also increase
the bus contention and consequently the number of stalls – likely
to be aggravated on CMPs since cores usually share a common bus
to the main memory. As Table 1 illustrates, the memory footprint
for state-of-the-art algorithms is quite high.
2. Locality of reference and working set sizes: In emerging mul-
ticore systems, since a sizable portion of the chip’s real estate is
occupied by the cores themselves, the amount of space available
for on-chip caches and local stores is expected to be somewhat lim-
ited[9, 11]. Algorithms designed for CMPs must maintain small-
sized working sets to deliver good performance – a side effect of
having small caches. The working set is the amount of data that is
actively used by the program during a particular phase of computa-
tion. If working sets are large then the off-chip traffic increases due
to constant data swapping between cache and memory. Again re-
ferring to Table 1, it is illustrative to see that at a moderate support
value the working sets for the three algorithms listed range from
64KB to 256KB. With lower supports, and on systems with many
cores the problem will be more severe. Efforts to improve locality
in pattern mining algorithms to address this challenge is non-trivial
since spatial locality is deterred by pointer-based data structures,
and temporal locality is hindered by huge search space.
3. Load Balance: Good scalability can only be achieved by keep-
ing the processors busy for as much time as possible by effectively
partitioning and distributing the work among processors. It is a
challenging task since it is difficult to estimate the time to mine a
given pattern. The mining time depends not only on the workload
and data set characteristics but also on the input parameters.

4. MEMORY OPTIMIZATIONS
Though embedding lists (EL) are designed to trade space for im-

proved execution time, they can grow arbitrarily in size resulting in
poor memory and run time performance, especially at low support
values. As an illustration, consider the embedding lists in Trips
(see Algorithm 1). Assume a worst case scenario of a chain tree
(i.e., a path) of size n, where every node has the same label (say,
A). For a single node pattern (i.e., A), EL would contain exactly
`

n

1

´

=n entries. When it is extended with a node to produce new

subtree A-A (an edge), the list will contain
`

n

1

´

+
`

n

2

´

= n(n+1)
2

entries. Similarly, when the pattern has n nodes (i.e., the complete
path), the number of entries in EL is equal to

Pn

i=1

`

n

i

´

= 2n − 1,
even though there is exactly a single embedding for the pattern.



The size of EL thus increases proportionally with the number of
matches, which is exponential in a worst case. For example, in
case of Cslogs (a real-world data set – see Section 7), when a 3-
node pattern is grown into a 6-node subtree, the number of matches
sharply increased from 141, 574 to 474, 716, 009 – resulting in a
proportional increase in the memory footprint size. We address
these limitations by designing a series of memory optimizations.

The architecture of our Memory Conscious Trips (MCT) is shown
in Figure 3. The database trees (D) are first transformed into Prüfer
sequences (T(D)) – see Section 2. Tree pruning phase prunes the in-
frequent nodes from T(D) to produce T′(D) (see Section 4.1). Both
T′(D) and the set of frequent nodes F1 are fed to the mining block
that contains three phases: on-the-fly embedding lists OEL (see
Section 4.2), candidate generation CG, and support counting SC.
Instead of storing the complete embedding list, CG invokes OEL
to compute the matches on-demand (see Section 4.3). CG and SC
then operate on the matches to produce frequent extensions (point
growths). Generated extensions are fed back into the mining block
for producing larger patterns. The computation in OEL is reorga-
nized so that only a fixed number of matches (called as chunk) are
generated at any given time. Instead of finding all matches at once,
CG always requests OEL for a fixed number of matches (called
as chunk – see Section 4.3). Once the processing of one chunk is
complete, it requests OEL for the next chunk of matches.

4.1 Tree Pruning and Recoding (PRUNE)
This avoids superfluous computations by eliminating those parts

of the tree which do not help in finding frequent subtrees. It draws
inspiration from a well-known technique in itemset mining [7]. It
prunes the database trees from infrequent nodes and recodes the
remaining nodes. Pruning alters the label sequence and recoding
changes the numbered Prüfer sequence (see Algorithm 2). Once
the size of pruned tree is computed (lines 3-5), labels are recoded
from root to leaves so that a node’s NFA is known at the time of
pruning it. NFAs are maintained in map array, and they are used
to build the new NPS (line 4). newLab stores the recoded labels
which are updated whenever a frequent node or an infrequent root
node is found. The time complexity of both pruning and recoding
steps is O(n), where n is the number of nodes in the tree.

Algorithm 2 Tree pruning and recoding algorithm

Input: Database D, Recoded labels newLab = φ
1: for each tree T in D do
2: n← size of T ; Trecoded← null; count← 0
3: for each node v ∈ T do
4: if v is the root or v is frequent then
5: increment count
6: ind← count − 1
7: for i from n to 1 do
8: v← ith node in the Prüfer sequence of T
9: if v is root then

10: add v to newLab, if not present
11: add v to Trecoded with recoded label
12: map[n]← count
13: else if v is frequent then
14: u← (newLab(v.label), map[v.parent])
15: add u to Trecoded

16: map[i]← ind; ind← ind - 1;
17: else
18: map[i]←map[v.parent]

4.2 On-the-fly Embedding Lists (NOEM)

As mentioned, a majority of algorithms leverage embedding lists
(EL) to trade space for time. Instead of storing EL explicitly, we
adopt the following strategy: dynamically construct the embed-
ding list; use it; and then de-allocate it. In graph-theoretic terms,
the problem of dynamic list construction is equivalent to the one
that asks for the set of all (embedded) subtree isomorphisms of a
given pattern in the database. Inspired by our recent research in
XML indexing that converts XML data into sequences and subse-
quently makes use of dynamic programming to determine sequence
matches [19], we employ a similar approach here. Note that, this
optimization affects only the lines 3-6 of Algorithm 1 – correctness
of the overall algorithm is still intact.

Let P =(LSP , NPSP ) be the subtree whose embeddings need to
be found in a database tree T =(LST , NPST ). Also, let m and n
be the size of P and T , respectively. The subtree matching problem
is recasted into a much simpler problem of subsequence matching
by leveraging the following property.

PROPERTY 4.1. If a pattern P is a subtree of a tree T then
the label sequence of pattern LSP is a subsequence of the label
sequence of tree LST .

From Property 4.1, being a subsequence is a necessary but not suf-
ficient condition for subtree isomorphism. We also note that, LSP

is a subsequence of LST if and only if LSP is the longest com-
mon subsequence (LCS) of LSP and LST . In order to construct
the dynamic embedding lists, we first check whether or not LSP

is a subsequence of LST by computing their LCS (step 1). If yes,
we proceed to enumerate all subsequence matches in LST (step 2)
and these matches are processed further to determine exact subtree
matches (step 3). We now present these three steps, in detail.
Step 1 - Subsequence Checking: As mentioned, we check if LSP

is a subsequence of LST or not by computing their LCS length.
LCS is traditionally computed using a dynamic programming ap-
proach [23]. Such an approach constructs a matrix (say R) with
LCS lengths for all possible prefix combinations of input strings
i.e., LSP and LST (see Equation 1). If |LCS|=R[m,n] is not
equal to |LSP |=m then we conclude that P is not a subtree of
T . An example pattern and its corresponding R-matrix is shown in
Figure 3b.

R[i, j]

=

8

<

:

0, if i = 0, j = 0
R[i− 1, j − 1] + 1, if LSP [i] = LST [j]
max(R[i− 1, j], R[i, j − 1]), if LSP [i] 6= LST [j]

(1)
Step 2 - Subsequence Matching: If LSP is a subsequence of LST

then we enumerate all subsequence matches of LSP in LST by
backtracking from R[m, n] to R[1, 1] (lines 6-11 in Algorithm 3).
Whenever the labels of both P and T match, the match location
is recorded in SM and the match length L is incremented (lines
5-7). Since backtracking is done in a reverse order, the matches are
established from right-to-left. Each resulting subsequence match
SM is of the form (i1,...,im), where LSP [k]=LST [ik] for 1 ≤
k ≤ m (see Figure 3b for an example).
Step 3 - Structure Matching: Since Property 4.1 is only a necessary
condition, Step 2 can potentially generate false positive matches.
We filter them in this step by matching the structure of P with the
structure that is formed by SM . We establish a map (strMap) by
mapping parent-child relations in P with ancestor-descendant rela-
tions in T . More formally,
i) Given: P and a subsequence match (i1,...,im)
ii) Map the root node directly by setting strMap[m]=im.
iii) For k = m-1...1, check whether strMap[NPSP [k]] is either



Figure 3: (a) Framework of our algorithm MCT (b) Dynamic list construction: R-matrix for P and T1 of Figure 2

Algorithm 3 On-the-fly embedding list construction

Input: P = (LSP , NPSP ), T = (LST , NPST )
R← computeLcsMatrix(LSP , LST );
say m← |LSP |, n← |LST |
if R[m][n] != m then return
else processR (m, n, 0)

processR (pi, tj , L)
1: if pi=0 or tj=0 then return
2: if L = m then
3: if SM [..] corresponds to a subtree then
4: update EMList[T ] with SM
5: return
6: if LSP [pi] = LST [tj ] then
7: SM [m − L]← tj

8: processR (pi − 1, tj − 1, L + 1)
9: processR (pi, tj − 1, L)

10: else if R[pi, tj − 1] < R[pi − 1, tj ] then
11: processR (pi, tj − 1, L)

equal to NPST [ik] or is a nearest mapped ancestor of NPST [ik].
This ensures that the parent of kth node in P is mapped to an an-
cestor of ithk node in T . Note that the structure match is also es-
tablished from right-to-left (i.e., in a root-to-leaf order) so that u
∈ P is processed only after the structure match for its parent is
determined. The complete mapping strMap is then added to the
dynamically constructed embedding list.

Example: In Figure 3b, only M1, M2, and M4 are subtree
matches. For M3: at k=3, the root node is mapped to node i3=9 in
T i.e., strMap[3]=9. The structure agreement check at k=2 (ik=2)
will pass because strMap[3]=NPST [ik]. However at k=1 (ik=1),
strMap[3] is not equal to not the nearest mapped ancestor of i1 in
T . At this point, the structure agreement check fails and we declare
that M3 is a false positive. Similarly, for M5 and M6, the structure
agreement check fails at k=1 and k=2, respectively.

The tree matching algorithm in Alg. 3 suffers from two issues:
recursion overhead; and the overhead from processing false pos-
itive subsequence matches. We now present optimizations which
are built on top of this basic algorithm to alleviate these two issues.
Label Filtering (LF): It alleviates the recursion overhead in Alg. 3
by eliminating columns which are not useful in subsequence match-
ing. Let ∃k such that LST [k] /∈LSP . Since the entries R[∗, k] sim-
ply carry forward the LCS values from R[∗, k − 1] to R[∗, k + 1],
recursions made on them do not help in building the subsequence
match – Hence they can be safely deleted from R. LF not only

reduces the redundant computations but also shrinks R matrices
making them to fit in few cache lines. In Figure 3b, the columns
for D, E, and F can be filtered.
Dominant Match Processing (DOM) LF relies on the distribu-
tion of P ’s labels over the nodes of T . If every label in T occurs
in P then LF has no effect on the performance. DOM enforces
further restrictions to streamline the backtracking process. DOM
strengthens the benefits from LF by limiting the processing to only
a selected few entries in R. Let R[i, j] and R[k, l] be two cells at
which the LCS length is incremented (condition 2 in Equation 1).
Also, say that @ x such that 1 ≤ j < x < l ≤ n, and LSP [k] =
LST [x]. Such entries are referred to as dominant matches. The re-
cursions on cells between R[i, j] and R[k, l] simply carry the LCS
length from R[i, j] to R[k, l] without improving the subsequence
match. Backtracking from R[k, l] can directly jump to R[i, j] with-
out going through all the intermediate cells. The dominant matches
are encircled in Figure 3b. For example, R[1, 3] and R[2, 6] are
dominant, and recursions on all the shaded cells can be eliminated
without affecting the correctness of the algorithm. By restricting
recursions to dominant matches, the recursion overhead can be re-
duced significantly.
Simultaneous Matching (SIMUL) Both LF and DOM do not ad-
dress the problem of overhead due to false positive subsequences
which are fed into the structure matching phase. We note that
both subsequence and structure matching phases operate on the
sequence from right-to-left. They can therefore be performed si-
multaneously instead of evaluating the structure after a complete
subsequence match is generated. We perform the structure match
at position k as soon as the subsequence match at that position is
established. By embedding structural constraints into subsequence
matching, SIMUL detects the false positives as early as possible
and never generates them completely.

4.3 Computation Chunking (CHUNK)
Since the size of EL is proportional to the number of matches,

the dynamic embedding lists can also be exponential, in a worst
case. This optimization completely eliminates the lists by coalesc-
ing both tree matching and tree mining algorithms. It operates in
three steps: loop inversion, quick checking, and chunking. The
computation in Algorithm 1 is reorganized by inverting loops in
lines 9-10 i.e., T is scanned for each match m instead of process-
ing m for each node in T . The second step Quick checking notes
that the extensions associated with two different matches mi and
mj (i < j) are independent of each other. Thus, mi need not wait
till mj is generated and thus it need not be stored explicitly in EL.
Finally, chunking improves the locality by grouping a fixed num-



ber of matches into chunks. The tree T is then scanned for each
chunk instead of for each match m. Once the extensions against all
the matches in one chunk are found, we proceed to the next chunk.
This optimization implicitly leverages all the other optimizations
described above. In our empirical study, we define chunks to con-
tain 10 matches.

Though chunking and tiling are seemingly similar, there are few
differences. First, while tiling (in a classical sense [25]) groups a
set of data items, chunking groups a set of computations which is
applied onto a single data item (here, T ). We thus refer to these
chunks as computation chunks. Second, tiling improves the cache
performance by dividing the data (i.e., T ) into parts such that each
part fits in the cache where as chunking improves the performance
by reducing the number of accesses on T (without dividing it). Un-
like tiling, it does not depend on any hardware parameters such as
cache size making it a cache oblivious algorithm as opposed to a
cache-conscious algorithm [6].

Algorithm 4 Fully optimized Trips
mineTrees (pat, extension e, tidlist)

A: for each T in tidlist do
B: construct R-Matrix for T and newpat
C: processR (m, n, m)
D: for each ext in H do
E: mineTrees (newpat, ext) recursively

processR (pi, tj , L)
1: if pi = 0 or tj = 0 then return
2: if L = 0 then
3: add SM to EMList and add T to newtidlist
4: if |EMList| % 10 = 0 then
5: for each match m in EMList do
6: for each node v in T do
7: if v is a valid extension with m then
8: add the resulting extension to H
9: EMList← null

10: return
11: for k = tj to 1 do
12: if R[pi][k] is dominant & R[pi][k]=L then
13: SM [k]← (LST [tj ],NPST [tj ])
14: if agreeOnStructure (P , SM , k) then
15: processR (pi − 1, tj − 1, L− 1)

Our complete Memory Conscious Trips (MCT) is shown as Al-
gorithm 4. Since it always keeps a fixed number of matches in
memory, MCT maintains a constant-sized memory footprint through-
out the execution. Further, chunk-level processing helps in local-
izing the computation to higher level caches thereby improving the
locality and working sets.

Complexity analysis: Like any other pattern mining algorithm,
MCT belongs to #P complexity class since it has to count and enu-
merate all frequent subtrees. The procedure mineTrees in Algo-
rithm 4 is invoked exactly once for every frequent pattern (pat+e)
that is discovered. For a given S and T (of size m and n, respec-
tively), the maximum number of recursions on processR (cm,n) can
be approximated to the following [19]:

cm,n =



1 +
Pn−m+1

i=1 (1 + cm−1,n−1), if n > m
n, if n = m ∨m = 1

(2)

cm,n has a closed form of
`

n+1
n−m+1

´

. The branch conditions in lines
12 and 14 takes constant time and the complexity of lines 2-10 is
governed by the total number of embeddings of S in T .

Our optimizations are general purpose and can be applied to

other algorithms. The tree matching algorithm of NOEM is ap-
plicable to sequences used in TreeMiner. However unlike Alg. 4,
TreeMiner relies on the scope-lists without making any explicit
database scans. Therefore, one can not directly apply NOEM and
other subsequent optimizations without revamping the entire TreeM-
iner algorithm by avoiding scope-lists. All our optimizations can be
incorporated into iMB3-T with suitable modifications. The dictio-
nary strucutre in iMB3-T stores the tree nodes in pre-order. By
making simple modifications to the data structure, one can apply
our tree matching algorithm in Section 4.2 and the three tree match-
ing optimizations to iMB3-T. Note that this will only eliminate
the large Occurrence lists maintained by iMB3-T. Other poten-
tially large dictionary and descendant list data structures can not
be avoided unless the entire algorithm is rearchitected.

5. INDUCED SUBTREE MINING
Induced subtrees maintain parent-child relationships whereas em-

bedded subtrees preserve ancestor-descendant relationships. Our
optimizations can be tuned to mine induced subtrees by making
some simple modifications to our algorithms. While searching for
new extensions in line 11 of Algorithm 1, we only need to con-
sider v’s parent instead of evaluating all of v’s ancestors. Once we
apply PRUNE optimization (see Section 4.1), children of a given
node may actually correspond to descendant nodes in the original
tree. We therefore need to distinguish between induced children
and embedded children. In other words, each edge in the pruned
tree has to be annotated to indicate whether it represents a parent-
child or ancestor-descendant relation in the original data base tree.
Finally, structure agreement checks at line 14 of Algorithm 4 have
to consider only the parent node. More precisely, structure agree-
ment check at position k succeeds only if LSP [k]=LST [ik] and
strMap[NPSP [k]]=NPST [ik].

6. ADAPTIVE PARALLELIZATION
We now consider the parallelization of MCT for emerging CMP

architectures. For the record we would like to note that directly
parallelizing the Trips algorithm is the first approach we consid-
ered. However, we quickly abandoned this approach as the mainte-
nance of embedding lists led to a large memory footprint resulting
in significant contention overhead and pressure on the front-side
bus. Moreover, the inherent dependency structure of the lists pose
difficulties in sharing them, which lead to coarse grained work par-
titioning resulting in poor load balance. Essentially, parallelization
without identifying the memory-conscious optimizations, presented
in the previous section, is extremely inefficient.

Figure 4: Schematic of different job granularities
Our parallel framework employs a multi-level work sharing ap-

proach that adaptively modulates the type and granularity of the



work that is being shared among different threads. Such a strategy
helps in obtaining good parallel efficiency by keeping all proces-
sors busy for as much time as possible. Each core Ci in the CMP
system runs a single instantiation (i.e., a thread) of our parallel al-
gorithm. Therefore, throughout this section, the terms core, thread,
and process are used interchangeably and are referred by Ci. A
job refers to a piece of work that is executed by any thread. The
set of all threads consume jobs from a job pool (JP) and possibly
produce new jobs into it. The jobs from a job pool are dequeued
and executed by threads on a “first come first serve” basis.

As Leung et al [10] pointed out, if the threads are allowed to
share the work asynchronously then detecting a global termination
would become non-trivial – since the jobs could be shared while a
termination detection algorithm is being executed. Instead, we im-
plement a simple lock-based termination detection algorithm that
is driven by the amount of work that is available in the system.
Whenever a thread Ci finds JP to be empty, it votes for termina-
tion and joins a thread pool (TP). Before joining TP, Ci detaches
itself (i.e., blocks itself) from execution. Though a busy-wait style
approach is applicable here, it will be extremely inefficient. Each
thread monitors TP at pre-set points during its run time to check if
it can share some of its work. If TP is not empty then the thread
may choose to fork off some new jobs onto JP. At which point, the
thread that shared the jobs signals (i.e., unblocks) the threads on
TP to indicate the availability of newly generated work. Unblocked
threads then proceed to execute the new jobs from JP. The min-
ing process terminates when all threads vote for termination. We
implemented TP using simple locks (akin to semaphores) and con-
dition variables. Note that this algorithm can easily be extended to
detect termination in cases where multiple job pools are maintained
based on different thread groups (e.g., distributed and hierarchical
job pools). Such a design allows job pools to act as implicit chan-
nels for communication between running and waiting threads.

For better load balance, we allow threads to operate in three dif-
ferent execution modes: task-parallel, data-parallel, and chunk-
parallel. Each mode determines the type and granularity of the
work that is being shared among threads in that mode. For a simpler
design, we used different job pools for different execution modes:
task pool (JPT ), tree pool (JPR), and column pool (JPC ), respec-
tively – see Figure 4 3. Shared access to these pools is protected
using simple locks. Individual jobs are uniquely identified by job
descriptors. Each job descriptor J is a 6-tuple as shown below.

J = (J.t, J.i, J.f, J.c, J.o, J.r)

J.t =

8

<

:

task, if J ∈ JPT

data, if J ∈ JPR

chunk, if J ∈ JPC

9

=

;

The job type J.t determines the remaining entries of the descriptor.
A thread starts with the input parameters J.i, applies the function
J.f to produce an output J.o. The control is then returned to the job
that created J if the return flag J.r is set to true. A condition J.c is
evaluated at pre-set points in order to determine whether or not to
spawn new jobs from J . The job type J.t also determines the type
of new jobs that J can spawn. If J.t = task then J can either create
new tasks onto JPT or a single job of type data. A job in JPR can
only create jobs of type chunk. Finally, jobs of type chunk can
not create any new jobs i.e., ∀J ∈ JPC , J.c=false. The granu-
larity of jobs in JPT is more than that of in JPR, which in turn is
greater than the granularity of jobs in JPC . The pseudocode that
integrates different execution modes and our termination detection
algorithm is shown as Algorithm 5. Such a design adaptively ad-

3Alternatively, one can implement it as a single job pool with prioritized jobs.

Algorithm 5 Parallel Tree Mining
1: while true do
2: if JPT is empty then
3: if JPR is empty then
4: if JPC is empty then
5: vote for termination
6: block itself from execution
7: if { all threads voted } break
8: else
9: process columns from JPC // chunk-parallel

10: else
11: operate on trees from JPR // data-parallel
12: else
13: mine a task from JPT // task-parallel

justs the granularity by switching between the execution modes.

6.1 Task-parallel mode
In this mode, jobs are shared at a granularity of tasks through

JPT . A task is always associated with a subtree S, and is defined
as the piece of work that mines (i.e., finding extensions) S and also
a subset of patterns from its equivalence class [S].

For each job J ∈ JPT , J.i is a subtree and J.o is the set of all
frequent subtrees generated (from J.i) by invoking J.f (mineTrees
procedure from Alg. 4). Further, J.r is always set to false in this
mode. J continues to execute until one of the following holds: (i)
the spawning condition J.c is evaluated to true; or (ii) all the sub-
trees from the class [J.i] are enumerated. J.c is repeatedly evalu-
ated at pre-set points in Algorithm 4. We identify three different
strategies to partition the search space into tasks.

Equivalence class -level task partitioning (EqP): In this strat-
egy, threads operate at the highest level of granularity.

JPT = {J | J.i is a seed pattern ∧ J.c = false}

J.i is an element of F1 in Algorithm 1 and corresponds to a coarsest
partition of the search space – denoted as EQ in Figure 4. Since the
spawning condition is set to false, the output contains the set of all
frequent subtrees whose root is J.i (= [J.i]). This strategy performs
very well when the output sizes |J.o|’s ∀J ∈ JPT are in the same
order. However, most real-world data sets are highly skewed and
the variance in |J.o|’s is considerably high. Therefore, this strategy
often results in very poor load balance.

Pattern -level task partitioning (PaP): EqP exploits the paral-
lelism between equivalence classes whereas this strategy exploits
the parallelism between individual patterns. Each job corresponds
to the task of mining a single pattern (P in Figure 4).

JPT = {J | J.i is a frequent subtree ∧ J.c = true}

JPT is initialized with the seed patterns from F1. If |F1| < |C|
then we initialize with the extensions from seed patterns (i.e., fre-
quent edges). One can continue to mine in levels until the number
jobs are sufficiently greater than the number of cores. J.o contains
all extensions produced from S. Since J.c is a tautology, every
extension in J.o is used to create a new task on JPT . For better
efficiency, along with the subtree, one can also supply its projected
database (i.e., newtidlist) as part of J.i.

Aggressive job sharing in this strategy often results in poor mem-
ory management and high computation overhead. Further, this
technique also suffers from poor locality since it does not guarantee
that the subtrees are mined at the place where they are generated.

Adaptive task partitioning (AdP): Both EqP and PaP strate-
gies operate at two extreme levels of granularity. While EqP is



too conservative, PaP is too aggressive in job sharing. This strat-
egy operates in some middle-ground by adaptively modulating the
granularity. Here, JPT is initialized in a similar manner to PaP.

JPT =



J | J.i = a frequent subtree ∧
J.c = (TP 6= Φ ∧ |Ext| ≥ 1)

ff

|Ext| is the number of frequent extensions derived from J.i that
are yet to be processed. J spawns new tasks into JPT only when
the thread pool is not empty and there exists a few unprocessed
extensions which can be shared with idle threads in TP. Note that
the condition TP 6= Φ implies that the job pool is empty. This
is a stringent requirement because new jobs are not spawned until
JPT becomes empty. Instead, we can choose to spawn new tasks
when the number of jobs in JPT (|JPT |) falls below a pre-defined
threshold, thresh. J.c is evaluated before processing each exten-
sion i.e., between lines D-E of Algorithm 4.

Adaptive task partitioning achieves better load balance when
compared to EqP and PaP because of its dynamic modulation of
task granularity. In addition, it exploits the locality by mining the
extensions on the processor that created them, whenever possible.

6.2 Data-parallel mode
Task-parallel strategies achieve load balance by migrating tasks

among different threads. They implicitly rely on an assumption
that all patterns are of equal complexity. However due to inherent
skew in most of the real-world data sets, the variance in mining
times of different patterns is typically very high. The resulting load
imbalance can be alleviated by parallelizing the job of mining a
single subtree S. The key step in mining S is the scan on S’s
projected database newtidlist (PDS) – lines 8-12 in Algorithm 1
(PD in Figure 4).

In a naive data partitioning strategy, a job is defined as the work
associated with each tree in PDS . In other words,

JPR = {J |J.i = T : T ∈ PDS ∧ J.c = false ∧ J.r = true}

Note that JPR (unlike JPT ) is defined in the context of a subtree
that is currently being mined. The function J.f finds embeddings
of S in the tree J.i and produces the corresponding extensions of S
(i.e., J.o). J.r is set to true so that the thread that spawned jobs into
JPR can perform a reduction operation to combine the partial set
of extensions discovered by each job in JPR. This approach cre-
ates a tree pool for every pattern and hence it can suffer from heavy
synchronization overhead. Instead, we design a strategy that dy-
namically switches from task-parallel mode to data-parallel mode
when task-level parallelism can not be exploited any further.

Hybrid work partitioning (HyP): Let a core Ci is processing a
task-level job J ∈ JPT with J.i=S. If Ci finds any idle threads
while finding extensions from S then Ci switches to data-parallel
mode and forks off new jobs onto JPR. Once JPR is processed
by co-operating threads, the control returns to the place where J
spawned the data-parallel jobs. At which point, J performs the
reduction operation on the partial sets of extensions. Note that, J
may now proceed (if needed) to create new tasks according to AdP
strategy. Therefore, a task-level job may either create new tasks
or new jobs of type data – spawning condition thus needs to be
augmented as follows.

∀J ∈ JPT ,

J.c =

8

<

:

spawn tasks onto JPT , if |JPT | < thresh
spawn jobs onto JPR, if TP 6= Φ ∧

J.f is not complete

9

=

;

First condition is evaluated between the lines D-E of Alg. 4 (sim-
ilar to AdP) whereas the second condition is evaluated between

the lines A-B. We can further strengthen the second condition by
adding an additional criterion, ”mining J.i is expensive”. A simple
predictive estimate for cost of mining J.i can be obtained based on
its size, its support (already known – line 14 in Alg. 1), and the
number of matches found so far.

To further improve the load balance, we employ a heuristic that
is used in classical job scheduling, where the jobs are sorted in the
decreasing order of their processing time. Similarly, before creat-
ing the tree pool, we sort the trees in PDS in the decreasing order
of their size. This is because the time to mine extensions from a
tree is likely to be proportional to its size (line 9 in Alg. 1).

6.3 Chunk-parallel mode
In this mode, we move to a much finer level of granularity and

parallelize the job of mining a single database tree – which includes
finding embeddings and associated extensions from the tree. We
allow multiple threads to operate on a single R-matrix so that the
embeddings are enumerated in parallel. A job in JPR switches into
this mode based on following condition:

∀J ∈ JPR,
J.c =

˘

spawn jobs onto JPC , if TP 6= Φ
¯

Alternatively, one can also design J.c based on pattern size, number
of matches found so far, and the portion of R-matrix that is yet to
be explored. It is evaluated between lines 13-14 of Alg. 4.

For each J ∈ JPC , the input consists of a column from the
R-matrix and also the partial match that is constructed so far (by
J’s parent job in JPR). J.f backtracks from the input column to
discover the remaining part of the match, and the corresponding
extensions (J.o). The return flag for jobs in this mode is always set
to true so that the extensions generated from different column jobs
can be combined at the parent job. Also, J.c is always set to false.

6.4 Cost analysis
The benefits from our multi-level adaptive work sharing approach

will be undermined if the cost of context switching between differ-
ent execution modes is very high. We now evaluate the number of
context switches by analyzing the job spawning conditions. Note
that the evaluation of all spawning conditions is a constant time op-
eration. Let N(t, S) be the number of times the spawning condition
that results in jobs of type t is evaluated to true, while processing S.
Similarly, let N(S) be the number context switches (of any type)
while mining S and N be the total number of context switches dur-
ing the entire mining process. We now have,

N(S) = N(task, S) + N(data, S) + N(chunk, S)
N =

P

S
N(S)

We now build worst case bounds on N(t, S) for each t. While
mining S, new jobs of type task are created only through adaptive
task partitioning, which is performed only after all the extensions
are produced from S (see Section 6.1). Hence a given subtree can
produce new tasks at most once. We now have,

∀S, N(task, S) ≤ 1 =⇒
X

S

N(task, S) ≤
X

S

1 = |FS| (3)

In a case where a task-level job J spawns jobs onto tree pool, a
job is created for each unexplored tree in J.i’s projected database.
Whenever the control returns back to J , it is guaranteed that all
trees in the projected database are processed for extensions. Thus
for any subtree, the context switch from task parallel mode to data
parallel mode can happen at most once.

∀S,N(data, S) ≤ 1 =⇒
X

S

N(data, S) ≤ |FS| (4)



Finally, N(chunk, S) is equal to the number of trees in S’s pro-
jected database which spawn the chunk-level jobs. From Section 6.3,
the spawning condition simply checks whether or not the thread
pool is empty. We can thus infer that N(chunk, S) can never be
equal to or exceed the number of cores, |C|. If N(chunk, S) ≥
|C| then TP can not be empty. Therefore,

∀S, N(chunk, S) ≤ |C|−1⇒
X

S

N(chunk, S) ≤ |FS|∗(|C|−1)

(5)
From Equations 3- 5,

N =
P

S N(S)
=

P

S
N(task, S) +

P

S
N(data, S) +

P

S
N(chunk, S)

≤ |FS| + |FS| + |FS| ∗ (|C| − 1)
≤ |FS| ∗ (|C| + 1)

Thus, the number of context switches per pattern is bounded by a
constant, and the total number N is in the order of |FS|. How-
ever in practice, these numbers are very very small since the al-
gorithm moves to a lower granularity only when the parallelism
at current granularity is completely exploited. For example, many
subtrees would have already been enumerated by the time the first
data-parallel job is created i.e.,

P

S
N(data, S)� |FS|.

6.5 Scheduling Service
A key outcome of our efforts in adaptive parallelization is a

scheduling service that has currently been ported to two multicore
chips and one SMP system. We believe that such services will be
ubiquitous as systems grow more complex and are essential to re-
alize algorithmic performance commensurate with technology ad-
vances. For expository simplicity, we limit our discussion to the
basic interface shown in Algorithm 6. Functions I1 and I2 are basic
start and clean-up routines. Jobs in our system are implemented
using job descriptors, as described in previous sections. Once the
service is started, I3 specifies the list and the order among different
granularities which the application wants to exploit. It also cre-
ates different job pools and other internal data structures used for
scheduling. The specified gOrder determines the order in which
different job pools are accessed. For each granularity, I4 defines an
application handle that is invoked to execute the the job of that
granularity. I5 (optionally) registers a synchronization callback
handle that is used for jobs whose return flag is set to true. I6 is
responsible for scheduling and completing all jobs by performing
context switches, if needed (similar to Alg. 5). I7 and I8 are in-
voked for the creation and execution of jobs. I9 is a check point
function used to evaluate whether or not to switch between differ-
ent granularities.

Algorithm 6 Prototype interface for scheduling service
I1 void startService ()
I2 void stopService ()
I3 int register ( int *granularities, int size, int *gOrder )
I4 int bind ( int gran, void (*callback) (void *) )
I5 int finalize ( int gran, void (*sync) (void *) )
I6 void schedule ()
I7 int createJob ( int gran, void *inputs )
I8 int executeJob ( job *j );
I9 bool evaluateForSpawning ( job *j )

An example pseudocode using different interface routines is sho-
wn as Alg. 7. Once the service is started one registers the two
levels of granularity and binds specific functions to be executed at

Algorithm 7 Sample pseudocode using the service interface
1: startService()
2: int grans[ ] = {A, B}, order[ ] = {0, 1};
3: register ( grans, 2, order );
4: bind ( A, funcA ) ;
5: bind ( B, funcB ) ;
6: finalize ( B, syncB );
7: for each Eq in F1 do
8: createJob ( A, Eq )
9: schedule()

10: stopService()

each level. Assuming that the lowest granularity requires synchro-
nization, a call to finalize is made. Subsequently jobs at the coarse
grained granularity are spawned off. funcA includes calls to I9 to
determine if a more fine-grained strategy is desired.

In this article we have specifically employed this service for the
task of tree mining but we expect it to be useful for a range of pat-
tern mining tasks (from itemsets to graphs) as well as more broadly
for other data-intensive applications. The current prototype of the
service is limited to general purpose multicore systems and SMPs
but we are in the process of extending this service for cluster sys-
tems comprising multicore nodes.

7. EMPIRICAL EVALUATION
We now evaluate the sequential and parallel algorithms on two

commonly used real-world data sets, Treebank (TB) 4 and Cslogs
(CS) [28] – derived from the domains of computation linguistics
and web usage mining, respectively. The number of trees and the
average tree size (in number of nodes) in CS and TB are (59691,
12.94) and (52581, 68.03), respectively. For sequential algorithms,
we use a 900 MHz Intel Itanium 2 dual processor system with 4GB
RAM. Whenever the memory requirement is more than 4GB, we
use a system with the same processor but with 32GB RAM instead
of relying on virtual memory. We evaluate our parallel methods on
both a CMP system and also on a large SMP system.
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Figure 5: Change in NM and NFP as a function of minsup

We consider two data set characteristics which significantly af-
fect the performance – number of frequent patterns NFP (affects
the run time), and average number of matches per frequent pattern
NM (affects the memory usage). Both Cslogs and Treebank data
sets have a small number of frequent patterns and each frequent
pattern, on average, has a large number of embeddings in the data
(see Figure 5). While the trees in Treeabank posses a very deep re-
cursive structure, the tree nodes in Cslogs exhibit a high variance in
their label frequencies. As a result, NM increases at a much faster
rate in Cslogs as one decreases the minimum support. Hereafter,

4
http://www.cs.washington.edu/research/xmldatasets/



 0

 0.5

 1

 1.5

 2

30K-56%35K-60%40K-75%45K-85%50K-94%

S
p
e
e
d
u
p
 w

.r
.t
 T

ri
p
s

Minimum Support

Trips
PRUNE
NOEM
SIMUL
CHUNK

(a) Treebank 10-1

100

101

102

30K-56%35K-66%40K-75%45K-85%50K-94%

R
e
d
u
c
ti
o
n
 i
n
 R

S
S

 w
.r

.t
 T

ri
p
s

Minimum Support

Trips
PRUNE
NOEM
SIMUL
CHUNK

(b) Treebank

 0

 1

 2

 3

 4

 5

 6

 7

600-1%700-1.2%800-1.3%900-1.5%1000-1.7%

S
p
e
e
d
u
p
 w

.r
.t
 T

ri
p
s

Minimum Support

Trips
PRUNE
NOEM
SIMUL
CHUNK

(c) Cslogs 10-1

100

101

102

103

600-1%700-1.2%800-1.3%900-1.5%1000-1.7%

R
e
d
u
c
ti
o
n
 i
n
 R

S
S

 w
.r

.t
 T

ri
p
s

Minimum Support

Trips
PRUNE

NOEM
SIMUL
CHUNK

(d) Cslogs
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Figure 7: Results on real-world data sets (a&b) Cslogs (c&d) Treebank

we refer to a mining experiment as DS-minsup where DS is a
data set and minsup is the support.

7.1 Sequential Performance

7.2 Comparison with Trips
In order to demonstrate the benefits from our optimizations, we

consider the run time and memory usage of Trips as the base-
line (see Figure 6). Note that the Y-axis in 6b & 6d is shown
in reverse direction to indicate the reduction in memory usage.
The memory footprint of algorithms is approximated by the res-
ident set size (RSS) obtained from the “top” command. The re-
sults shown for each optimization includes the benefits from all the
optimizations presented before that. For instance, NOEM refers
to the algorithm obtained by adding both PRUNE and NOEM
to Trips; and CHUNK denotes the complete optimized Memory
Conscious Tree Miner (MCT).

Consider a single experiment TB-40K 5 (see Figures 6a & b).
First, PRUNE cut down the memory footprint of Trips almost by
half, from 222MB to 138MB. By constructing the required state
dynamically, NOEM further brought down the RSS by 2.7 times
to 51MB. However, the computational overhead in Algorithm 3
slowed down the mining process by 3.6 times – 10 billion recur-
sions for finding 413 million subsequences. Subsequently, LF and
DOM alleviated this overhead and reduced the number of recur-
sions to a mere 554 million. Approximately 289 million out of 413
million subsequences (i.e., about 7 out of 10) were false positives,
which were eliminated by SIMUL thereby improving the run time
by 23%. Finally, CHUNK reduced the memory usage of Trips by a
factor of 6.5. Similarly for TB-30K, our optimizations improved
the memory footprint of Trips by 45 times (1.5GB→ 34MB), and
its run time by 24%.

Our optimizations resulted in much higher benefits on Cslogs
due to large variance among the frequencies of different nodes (see
Figures 6c & d). PRUNE, NOEM, and CHUNK (on an average)
reduced the memory usage by a factor of 1.7, 9, and 82, respec-
tively. In addition, the tree matching optimizations improved the

5We chose high supports for TB as the data set is highly associative.

run time of Trips, on an average, by 4 times. For CS-600 alone,
our optimizations brought an improvement of 366-folds in memory
usage, and a speedup of 3.7-folds in run time.

To summarize, the benefits from PRUNE are marginal especially
at low support thresholds. Though NOEM improves the memory
usage by constructing the lists on demand, it suffers from huge
computational overhead. Such an overhead is alleviated by our
tree matching optimizations LF, DOM, and SIMUL. Computation
chunking completely eliminates the need for explicit maintenance
of embedding lists, and as a result, significantly reduces the mem-
ory usage of Trips. Further, the well-structured chunk-by-chunk
processing improves the locality, reduces the working sets, and re-
sults in improved mining times.

7.3 Comparison with TreeMiner
Figure 7 shows the comparison between MCT and TreeMiner.

While mining CS or TB, TreeMiner typically stores large scope-
lists since the average NM is very high in these data sets. For in-
stance, when a particular frequent edge in Cslogs is grown into a
6-node pattern, number of matches increased sharply from 11, 339
→ 141, 574→ 2, 337, 127→ 35, 884, 361→ 474, 716, 009. Re-
sulting large lists are then used in expensive join operations. There-
fore, not only the memory usage but also the run time performance
is significantly affected. When minsup is decreased from 1000
to 800, the run time of TreeMiner has increased by more than 300
times (from 27sec to 8, 748sec), and memory has gone up by 18.5
times (from 135MB to 2, 505MB). In contrast, the run time in-
crease in MCT is very small, and more interestingly, without any
change in memory consumption.

MCT maintains a constant sized memory footprint at all support
levels – 10.72MB on Cslogs & 34MB on Treebank. Since chunk-
ing keeps a fixed number of matches in memory at any given point
in time, our optimizations were able to regulate the memory re-
quirements of the algorithm – a significant result for CMP architec-
tures where the bandwidth to memory is precious. At minsup=700,
TreeMiner was aborted after running for 100 hours, at which point
the memory footprint was more than 7GB. On the other hand, MCT
took about 50sec (a 7200-fold speedup) and maintained a 10.72MB
memory footprint (more than 660-fold reduction). Even if we fac-



tor out the algorithmic benefits from Trips [20], the benefits from
our optimizations are quite significant.

Similar conclusions can be drawn from the results on TB (see
Figures 7c & 7d). The performance of TreeMiner is again mediocre
as a result of deep recursive structure present among trees in Tree-
bank. When minsup is reduced from 50K to 35K, the run time
of TreeMiner increased exponentially by more than three orders of
magnitude. At TB-35K, it was aborted after running for 100 hours
(memory usage then was > 4GB) whereas MCT spent 866sec and
used 34MB of memory in mining all frequent subtrees – more than
400-fold speedup and 120-fold reduction in memory footprint.

7.4 Comparison with iMB3-T
The comparison between MCT and iMB3-T is shown in Fig-

ure 7. iMB3-T takes a parameter “level of embedding” (L) which
controls the type of subtrees that are mined. It mines embedded
subtrees when L is left unspecified – Figure 7 is obtained using
this setting. The memory usage of iMB3-T is usually very high
due to multiple potentially large data structures and also because
of its apriori-style mining (embedding lists for many subtrees have
to be maintained). In other words, both NM and NFP govern the
memory consumption of iMB3-T, which increases exponentially
with the reduction in support threshold. As the support is changed
from 1000 to 700 on CS, its memory usage is increased quickly
from 340MB to 25GB with the proportional 130-fold slowdown in
run time. At CS-700, MCT exhibited more than 2, 300-fold re-
duction in memory usage along with 66-fold speedup. Note that,
iMB3-T was aborted at CS-600 as its footprint exceeded 32GB,
and hence there is no corresponding data point in Figure 7a. On
Treebank data set, its memory footprints are large even at high sup-
port values (e.g., 8.5GB at 50K support). This is because of deep
recursive tree structures in TB – iMB3-T stores the set of all de-
scendants for every node. At minsup=40K, MCT is 780-times
faster and used 480-times less memory. At the support of 35K, it
was again aborted as the memory consumption exceeded 32GB.

7.5 Comparison with FreqT
We now evaluate the induced subtree mining algorithm presented

in Section ?? against both FreqT 6 and iMB3-T (L=1) (see Fig-
ure 8). In terms of scale, the run times in Figure 8 are much smaller
than that of in Figure 7. This is because the induced subtrees are
much easier to mine when compared to embedded subtrees. When
compared to FreqT, MCT demonstrated up to 10-fold improvement
in memory usage, and more than 15-fold speedup in run time.
Since FreqT stores only the location of right most leaf nodes, its
memory footprint is not very high. However, such simple strate-
gies can not be extended for mining embedded subtrees.

In contrast, iMB3-T, even at very high supports, keeps large
memory footprints and exhibits very poor run time performance.
For example at minsup=50%, the memory usage iMB3-T was
more than 8GB (>> 62MB of MCT), and the mining time was
more than 7, 500sec (>> 64sec of MCT). The memory footprint
of iMB3-T on Cslogs is approximately 30 times bigger than that of
MCT. Similarly, the run time of iMB3-T is very high when compare
to the mining times of both MCT and FreqT.

7.6 Characterization study for CMP architec-
tures

We now present a detailed characterization of our optimizations
to show their applicability for CMP systems. These results are
obtained by conducting a TB-45K experiment on a system with

6
http://chasen.org/˜taku/software/freqt/

1.4GHz Itanium 2 processor and 32GB memory 7, and by collect-
ing several hardware performance counters using PAPI toolkit 8.

Analysis of cache performance: By considering Algorithm 3 as
the baseline, we compare the reduction in number of cache misses
due to various optimizations in Figure 9a. Note that this compar-
ison is not to show that NOEM performs poorly but to demon-
strate the effect of different optimizations, which are built on top
of NOEM. All optimizations reduce the amount of work done and
they all show some improvement in L1 misses. The tree match-
ing optimizations improve the cache performance by 19 times: R-
matrices are shrunk by LF; the number of accesses to R are re-
duced by DOM; L2 and L3 performance is improved by SIMUL.
In addition, chunking helps in localizing the computation to higher
level caches and improves the L1 and L3 performance by a factor
of 1, 442 and 5, respectively. A step-by-step improvement in run
time due to various optimizations is shown in Figure 10d. Overall,
tree pruning and recoding, simultaneous matching, and computa-
tion chunking help in achieving very good cache performance.

Analysis of bandwidth pressure Figures 9b-d present the vari-
ation in off-chip traffic during the execution of TreeMiner, Trips,
and MCT respectively iMB3-T is not considered here because of
its large memory usage and poor run time. We divided the execu-
tion time (X-axis) into small one msec slices – a coarse-grained
analysis. The off-chip bandwidth during each slice (Y -axis) is ap-
proximated to (L3 line size) * (number of L3 misses recorded by
PAPI in that slice). With this experiment, though a coarse-grained
one, we want to bring out the effect of our optimizations on the
memory access pattern.

Initial spikes in these figures denote the cold L3 misses incurred
while bootstrapping (e.g., reading the data set). Evidently, the off-
chip traffic of TreeMiner is more due to frequent accesses to large
memory-bound scope-lists. Each cluster of points in Figure 9c cor-
responds to the amount of data transferred while mining a single
subtree. The spikes followed by sudden dips indicates the non-
uniform nature of computation in Trips. MCT in contrast always
performs well-structured computations thereby resulting in more
uniform and small sized memory requests. On an average, accesses
made by MCT are well below 200KB per msec whereas the ac-
cesses made by TreeMiner and Trips are sized more than 1100KB
and 600KB per msec, respectively. This difference is even more
while mining the patterns with large number of matches – com-
pare small spikes (similar to the one at 6000 msec) in Figure 9d
with corresponding large spikes (similar to the one around 8000
msec) in Figure 9c. From this coarse-grained study it appears that
each core in TreeMiner, and to a lesser extent in Trips, aggressively
attempts to access main memory (due to embedding lists). For in-
stance, we observed a sustained cumulative bandwidth of 1.5GB
per sec for all cores of a dual quad-core system (see Section 7.7).
With 1100KB per msec accesses (i.e., 1GB per sec per core), the
bandwidth is likely to saturate when TreeMiner is executed on mul-
tiple cores. Overall, our optimizations reduce the overall off-chip
traffic (and its variability) making them viable for CMPs.

Analysis of working set size We empirically examined the work-
ing sets maintained by different algorithms using Cachegrind 9. We
monitored the change in L1 miss rate as L1 size was varied from
2KB to 256KB (L2 size and its associativity was fixed). We found
that L1 miss rate of MCT has reduced sharply between 8KB and
16KB and stayed constant for L1 size > 16KB. This suggests that
the working set size is between 8KB and 16KB. As shown in Ta-

7On-chip caches: 16KB L1-data; 16KB L1-instruction; 256KB L2; and 3MB L3.
8
http://icl.cs.utk.edu/papi/index.html

9
http://valgrind.org/info/tools.html
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Figure 10: (a, b, c) Parallel performance; (d) Effect of optimizations

ble 1, other algorithms maintain relatively large working sets. This
is an encouraging result with respect to CMPs as the amount of
cache available for each core is likely to be small [9, 11].

7.7 Parallel Performance
The effectiveness of our parallel algorithms on a system with

dual quad-core E5345 Xeon processors 10 is shown in Figure 10a.
Our adaptive load balancing strategies achieved near-linear speedups
up to 7.85-folds on Cslogs and 7.43-folds on Treebank, when all
8 cores of the system were used. Since the number of cores in fu-
ture generation of multicores is likely to increase, we considered
a 16-node SMP system 11 to test the scalability of our techniques.
As shown in Figure 10b, the speedup continues to increase with the
number of processors giving up to 15.5-fold speedup when using
all the 16 available processors.

Load balance achieved by individual strategies for TB-45K is
demonstrated in Figure 10c. Also, Figure 10b suggests that the
need for more fine-grained strategies increases as one increases the
number of processors. In case of CS-600, the performance of hy-
brid strategy (HyP) peaks at 12 processors and reaches its plateau
(“CS-600 Hybrid” in Fig. 10b). This is due to a 6-node pattern that
had approximately 33 million matches in a single database tree of
99 nodes, whose mining takes up to 45sec. As per Amdahl’s law,
hybrid strategy can never perform better than 45sec as it is limited

106GB RAM, 8MB shared L2, and 1333 MHz bus speed.
11A SGI Altix 350 system with 16 1.4GHz Itanium 2 processors and 32GB memory.

Cores (|C|) 1 2 4 8 16
Nt 0 4 7 26 48
Nd 0 2 2 10 11
Nc 0 0 0 9 19

Table 2: Cost analysis on TB-35K, |FS|=451

Cores (|C|) 1 2 4 8 16
Nt 1 1 3 4 3
Nd 2 3 6 5 5
Nc 0 0 0 0 7

Table 3: Cost analysis on CS-600, |FS|=252

by the task of finding extensions from a single tree. Thereafter the
efficiency can only be improved by employing more fine-grained
strategies such as the one in Section 6.3. Similarly, the speedup in
case of TB-35K was saturated at 16 processors.

Table 2 shows the average cost incurred in context switches taken
over 10 different runs of a TB-35K experiment. For a given gran-
ularity g,

P

S
N(g, S) is denoted as Ng in the table. With a sin-

gle thread, the number of context switches is zero since the work
is not shared at any level. As the number of cores are increases,
we see more and more context switches at fine-grain level reflect-
ing the fact that our strategies adaptively also automatically exploit
the parallelism at all levels of granularity. It is worth noting that
the numbers in Table 2 are much lower than their theoretical upper
bounds from Section 6.4: Nt=48 � |FS|=451; Nd=11 � 451;



Cores 1 2 4 6 8
EqP 1.00 1.61 1.94 1.95 2.01
AdP 1.00 1.77 2.23 2.25 2.30

Table 4: Speedups of parallel TreeMiner on TB-45K

and Nc=19� 451*(|C|-1), where |C| is number of cores.
Similar results on CS-600 can be found in Table 3. Even though

the number of context switches is much smaller than that of in Ta-
ble 2, it demonstrates the need for fine-grained strategies. A major-
ity of run time (up to 90%) while mining Cslogs is spent in finding
extensions from a very small subset of trees. Therefore, it is suf-
ficient to parallelize the process of mining from this small subset
of trees in order to realize good speedup. Without our fine-grained
HyP and Chunk-level strategies, it is impossible to obtain the par-
allel efficiency that is shown in Figure 10a-b.

The results in Figure 10 are obtained by employing global job
pools. We expect the contention overhead due to mutually exclu-
sive accesses to job pools to be small as the locking on emerging
architectures is likely to be very cheap 12. If needed, one can seam-
lessly implement distributed or even hierarchical job pools with our
scheduling service presented in Section 6.5.

We also parallelized TreeMiner by applying our task-level strate-
gies EqP and AdP (see Table 4). Scope-lists in TreeMiner intro-
duce dependencies which make it difficult to implement more fine-
grained strategies. Since these lists are maintained in sorted or-
der, data-partitioning methods (which construct the lists in parallel)
likely to incur significant synchronization overheads. Furthermore,
excessive use of dynamic data structures in TreeMiner significantly
degrades the parallel performance as they impose a serial order on
heap accesses – the system time (obtained from the “time” com-
mand) increased by more than 4 times when using all 8 cores. Here
the techniques such as memory pooling are likely to be ineffective
since these dynamic data structures often grow arbitrarily in size.
These results re-emphasize the following key strategies for achiev-
ing good parallel efficiency: reduce the memory footprints; reduce
the use of dynamic data structures; and reorganize the computation
so that more fine-grained strategies can be applied.

We next discuss the broader outcomes of our study, directions
for future research and highlights key results.

8. DISCUSSION
With respect to memory-related optimizations, improving local-

ity (spatial or temporal) continues to be important but in addition,
bandwidth considerations must also be considered when designing
data-intensive algorithms for emerging multicore systems. The tra-
ditional trade-off between time and space and its implications for
parallelism need to be examined carefully in this light. All our
memory optimizations target the above challenges. Taken in iso-
lation each optimization may not amount to a significant improve-
ment on its own but the specific orchestration applied when com-
bining them yield significant savings – L1 misses reduced by up to
1, 442 times, memory footprints reduced by up to 366 times, band-
width pressure reduced significantly while making making uniform
small-sized accesses to main memory, and overall running time re-
duced by up to a factor of four on sequential execution.

It is also worth noting that the memory related optimizations
have broader utility. The optimizations associated with the creation
of on-the-fly embedding lists have found utility in problems such
as XML indexing. Chunking may help for other mining tasks such
as graph mining. All the optimizations discussed are also useful

12
http://download.intel.com/technology/architecture/sma.

pdf

when mining induced subtrees – we get a 15-fold speedup when
compared to FreqT (see Section 7.5). They can also potentially
be leveraged for answering reachability queries in directed graphs,
direction of research we are actively pursuing.

With regards to task scheduling, algorithms that can adapt and
mold are essential to achieve performance commensurate with the
number of cores in emerging multicore systems. Coarse-grained
task partitioning is obviously preferred when the load is evenly bal-
anced since the overheads associated with task management is min-
imal. However, often due to systemic, parametric or data-driven
constraints, workload estimation is often challenging. In such sce-
narios the ability of an algorithm to adaptively modulate between
coarse grained and finer grained task partitioning is essential to par-
allel efficiency. In fact how much an algorithm can adapt essentially
dictates when the performance plateau is reached as we observe
from our study. Our adaptive design strategy yielded linear speedup
over our optimized sequential algorithm on a state-of-the-art CMP
system (8 cores) and a modern SMP system (16 processors).

A key outcome here beyond the specific algorithm realized for
tree mining is the realization of a general purpose scheduling ser-
vice that supports the development adaptive and moldable algo-
rithms for database and mining tasks. We are currently investigat-
ing ways to extend this service on modern cluster systems where
each node is a CMP system.
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