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ABSTRACT
Increasingly, many data sources appear as online databases,
hidden behind query forms, thus forming what is referred
to as the deep web. It is desirable to have a tool that can
provide keyword search functionality on such data sources.
However, to provide such functionality, we need to address
the following challenges. First, we only know query schemas
of deep web data sources and the real content of the back-
end databases is hidden in web servers. Second, in most
cases, no single database can provide all desired data, and
many relationships between keywords of interest can only be
derived by querying across multiple deep web data sources.
Third, deep web data sources are often inter-dependent on
each other. This implies that multiple data sources need to
be queried in an intelligent order. Fourth, unlike most tradi-
tional databases, there is much data redundancy in deep web
data sources. On one hand, we can take advantage of such
data redundancy to generate multiple valid query plans for
a single query. But, at the same time, data source selection
and ranking become challenging problems.

This paper considers answering keyword search queries
in the context of a deep web integration system. We have
developed a bidirectional query planning algorithm which
is can generate multiple valid query answering plans based
on a multi-source inter-dependence hyper-graph model. We
also have designed a domain ontology to support data source
selection and query answering plan ranking. To the best of
our knowledge, our work is the first to address the problem
of answering such queries based on a dependence model,
while also considering data source selection, on deep web
data sources.

Our experiments show that our bidirectional query plan-
ning algorithm can generate query answering plans with
high relevance score and low execution time and our on-
tology based data source ranking strategy is effective. For
most cases, our algorithm can also generate query answer-
ing plans that are as good as the optimal plans generated by
an exhaustive algorithm, while taking significantly less time.
The quality of results produced by our implementation were
evaluated by a collaborating biologist, who found that the
answer extracted to be correct and complete.

1. INTRODUCTION
Keyword search is a very popular information discovery

method and much recent research has focused on it. Re-
cently, there have been several efforts on developing keyword

search tools in traditional databases [14, 13, 17, 9, 22, 1, 2].
Most of this work represents traditional databases as graphs,
with nodes in the graphs being the data tuples in each re-
lational table, and edges being the foreign key relationship
between the tuples. With this representation, graph search
algorithms can be used to perform the keyword search.

A parallel trend in data dissemination involves online data
sources that are hidden behind query forms, thus forming
what is referred to as the deep web [10]. As compared to
the surface web, where the HTML pages are static and
data is stored as document files, deep web data is stored
in databases. Dynamic HTML pages are generated only af-
ter a user submits a query by filling an online form. Thus,
standard search engines like Google are not able to crawl
to these web-sites. At the same time, manually submitting
online queries to numerous query forms, keeping track of the
obtained results, and combining them together is a tedious
and error-prone process.

Many challenges are associated in querying the deep web.
First, for deep web data sources, we only know the query
schemas, and not the contents of the back-end databases.
Second, most deep web data sources are inter-dependent,
furthermore, many of the inter-dependencies are multi-source,
i.e., the output results from multiple data sources are needed
for querying a particular data source. Thus, for a given user
query, a set of data sources may need to be queried in an in-
telligent order to retrieve all the desired information. Third,
there can be data redundancy across deep web data sources.
A data source selection and ranking strategy is essential for
the system.

In this paper, we consider the following scenario. We have
multiple correlated online data sources, each of which has
one or more query forms. A submitted query using these
forms triggers a query on the back-end database. We want
our system to support two types of keyword search queries:
1) Keyword-Attributes Search, where a user may submit an
entity name and one or more attributes, and would like to
search based on attributes of interest for the entity, and 2)
Keyword-Keyword Relationship Search, where a user sub-
mits multiple entity names from a domain, and wants to
know possible relationships among these names.

We will use the following two motivating examples to ex-
plain these types of queries:
Motivating Example 1: Keyword-Attributes Search:
Suppose we have a keyword query, Q1={ERCC6,NSYNSNP,
ORTH BLAST}. This keyword query has the following in-
tention: given a gene name ERCC6, we want to find all the



non-synonymous SNPs located in this gene and the BLAST
results between this gene and its orthologous genes of non-
human mammals. (We will address the semantic issues of
the query in Section 2) To answer this query, we need to
first query on an SNP database such as dbSNP to find out
all non-synonymous SNPs. Then, we use a gene database,
such as Entrez Gene, to obtain the encoded protein in hu-
man species and other orthologous species. After that, we
search a sequence database to find the sequences. Finally,
we use the sequences to do an alignment using an alignment
database such as Entrez BLAST. From this example, we see
that there is a clear query path guiding the search. The
query path is determined by the multi-source dependence
among the data sources.
Motivating Example 2: Keyword-Keyword Relation-
ship Search Suppose we have a keyword query, Q2={MSMB,
RET}. This query means that given two gene names MSMB
and RET, a user wants to know what kind of a relation is
present between these two genes. Our system needs to deter-
mine that the two genes can be connected by a chromosome
using database SNP500Cancer. i.e., it turns out that the
two genes are located in the same chromosome 10q11.2.

Overall, keyword queries over deep web data sources have
specific features that are very distinct from keyword searches
over relational databases. First, the number of deep web
data sources in a domain can be substantially larger than
the number of data tables in a relational database. For ex-
ample, there are about 500 deep web data sources about
SNP (Single Nucleotide Polymorphism) data, which is only
a small branch of biology. Second, in many domains, it
is common that a keyword query contains as many as 20
keywords, which rarely occurs in keyword queries over rela-
tional databases. Third, many relationships of interest can
be derived only by querying across multiple data sources.

Our system integrates online biological deep web data
sources and represents them as a multi-source inter-dependence
hyper-graph. A novel bidirectional query planning algorithm
generates multiple valid plans for answering keyword search
queries. To address data redundancy, our system uses a do-
main ontology and a novel ranking strategy to select the
most relevant set of data sources.

The rest of the paper is organized as follows. We describe
our data model for keyword search in Section 2. In Sec-
tion 3, we introduce our bidirectional query planning algo-
rithm. The domain ontology and dependence graph ranking
strategy are introduced in Section 4 and Section 5, respec-
tively. In Section 6, we evaluate our system. We compare
our work with related efforts in Section 7 and conclude in
Section 8.

2. QUERY AND DATA SOURCE MODEL
In this section, we will introduce the query and data source

model we consider in this paper.

2.1 Query Model
A query consists of n, n > 1, search terms t1, t2, . . . , tn.

The search terms are of two types, which are defined as
follows.
Attribute Set AS: AS contains all attributes in the stud-
ied domain. An attribute is a part of the metadata (column
name of the hidden databases) of a deep web data source.
In other words, an attribute corresponds to an attribute of
an entity in the ER diagram of the deep web data source’s
hidden databases. For example, suppose data source A has a

hidden data table containing a column named Gene Name,
then Gene Name is an attribute for our discussion.
Entity Set ES: ES contains all entity names in the studied
domain. An entity name is an instantiation of an attribute.
For example, ERCC6 is the name of a particular gene, and
we know that Gene Name is an attribute, so ERCC6 is an
entity name.

A query Q is formally defined as Q = {t1, t2, . . . , tn},
where {t1, t2, . . . , tm} ∈ ES, and {tm+1, tm+2, . . . , tn} ∈
AS, n ≥ m. If m = 1 and n − m > 0, query Q has one
entity name and multiple attributes of interest. This type
of query is the keyword-attributes query. If m > 0 and
n = m, query Q has multiple entity names. This type of
query is the keyword-keyword relationship query. In our
current system, we only support these two types of keyword
queries.

It should be noted that semantics is an important issue in
keyword search. Semantics are used to determine the scope
or type of a keyword and the intention of the query. In our
problem, the type of a keyword is determined by a domain
ontology, which we will introduce in Section 4. Because the
keywords involved in our searches are technical terms from
a specific domain, it is relatively easy to decide the intention
of each query. In generalizing our system in the future, we
will incorporate the existing work [18, 26, 29] on this topic.

2.2 Data Model for a Single Deep Web Data
Source

Each online deep web data source has a query interface
and an output format. A user can construct a query by
specifying some input attributes and constraints. Our model
captures the above features of a deep web data source.

In our data source model, we view all the deep web data
sources belonging to one sub-domain of biology (such as
SNP) as a virtual relational table. In this virtual table, each
data tuple is the query schema of a deep web data source.
We call such a data tuple as a virtual data tuple. The virtual
data tuples are connected by the inter-dependence relation-
ship between deep web data sources.

Furthermore, if a single deep web data source has only one
query interface (query schema), we model it as one virtual
data tuple. If it has multiple query interfaces, we use mul-
tiple virtual data tuples to represent it. Each virtual data
tuple is modeled as a record with three types of attributes,
the input attributes, which are required in the query form,
the output attributes, which are the attributes returned for
the corresponding query, and the inherent constraints, which
are the attribute conditions imposed on the data source by
its designer. In addition, we separate the input attributes
into two categories, the must-fill ones which have to be pro-
vided to get the query results and the optional ones which
can be omitted and only provide extra constraint conditions
to narrow down the search space. If the optional attributes
are not provided in a query, we assume they will appear in
the output attributes.

We denote a virtual data tuple formally as R(MI,OI,O, C),
where MI, OI, O and C correspond to the sets of must-fill
attributes, optional attributes, output attributes and inher-
ent constraints. For example, data source SeattleSNP has
two query schemas, so it is modeled as two virtual data
tuples as in Table 1. The first schema takes Gene Name
as a must-fill input attribute, Up Base and Down Base as
the optional attributes, and SNP Function and Frequency
information as the outputs. It also has an inherent con-



Table 1: Data Model for SeattleSNP Data Source

Data
Source

MI OI O C

Seattle Gene
Name

Up Base
Down Base

SNP Function
Frequency

Organism=
Human

Seattle SNPID Up Base
Down Base

Alleles Dis-
equilibrium

Organism=
Human

straint which means that all data in this data source are
from human species. We notice that the model only contain
high-level terms, not the real content of the database. For
example, we only know that SeattleSNP can return SNP
function information, but we do not know which SNP is
included in this data source.

2.3 Data Model for Inter-Dependent Data Sources
Data sources are connected by the inter-dependence be-

tween them. For a certain query, a data source may need to
be queried prior to another data source, so as to obtain the
necessary input attributes of the second data source.

Consider a group of n deep web data sources,

R1(MI1, OI1, O1, C1), . . . , Rn(MIn, OIn, On, Cn)

We assume all their attributes belong to a universal set of
attributes. For two deep web sources R1 and R2, we define
three types of dependence relationships: Type 1) The query
output of R1 can be applied to R2’s must-fill input if O1 ∩
MI2 6= Φ; Type 2) the query output of R1 can be applied to
R2’s optional input if O1 ∩ OI2 6= Φ; Type 3) the optional
input of R1, which is also part of its output, can be applied
to R2’s must-fill input or optional input attribute, i.e., OI1∩
(MI2 ∪ OI2) 6= Φ. The first type of relation shows that R1

has to be queried before R2 in order to obtain the necessary
input attributes of R2. The second type of relation shows
that if R1 is queried before R2, using the output from R1,
we can narrow down the searching scope of R2 or make
the query on R2 more accurate. The third type of relation
is the combination of the first two. These three types of
dependencies play different roles when we are generating
query answering plans. Figure 1 shows the inter-dependence
among five deep web data sources for SNP data. Nodes
are virtual data tuples, and three different types of arrows
represent the three types of dependence relations above. We
can see that dbSNP and Entrez protein form a hyper node
for its descendant BLAST, which means that to be able
to query BLAST, one needs to query both of dbSNP and
Entren Protein first.

Besides the dependence relationship between two data
sources, R1 and R2 can also share common must-fill input
attributes or output attributes. The first case implies that
they share the same predecessor in the dependency graph.
The second case implies that they can be the predecessors
of the same descendant. We call this data redundancy.

3. BIDIRECTIONAL PLANNING ALGORITHM
FOR KEYWORD SEARCH

We now consider the problem of keyword search over deep
web data sources. For keyword search in traditional databases,
we have the direct access to the data. As a result, research in
literature on keyword search with relational databases takes

Figure 1: Dependence Relations between Five Data
Sources

the set of data tuples in every relational table as nodes, and
the foreign key relation between tuples as edges. Relational
tables are also connected by foreign key relations forming a
schema graph. Keyword query answering is done by using
graph searching algorithms [14, 13, 17, 9, 22, 1, 2].

Algorithm 3.1: Bidirectional-Query-Planning(Q,Nodes)

Initialize IL, ∀u∈IL, add u to FQ, FE=Φ, FN=Φ
Initialize BQ, BE=Φ, BN=Φ
Create a pseudo-starting node PS
∀u∈Nodes, ∀j∈Keywords
if j∈ Ou

distanceu,j = 0
else distanceu,j = ∞

∀ui∈IL, ∀j∈Keywords
if j∈ Ou

decedentsu,j = u
else decedentsu,j = null

∀u∈Nodes, ∀j∈Keywords, siblingu,j = null
∀u,v∈Nodes, BitMapGraphu,u = 0
if v∈IL

BitMapGraphPS,v = 0
else BitMapGraphu,v = ∞

ContinueSearch=true
while (FQ6= Φ or BQ 6= Φ) and continueSearch=true
select the node with the highest priority score from FQ and BQ
call it nextnode
if nextnode∈IL
Explore(PS,nextnode)

if Find Answer(PS)
Plan Constructor()
if doesn’t need to generate more plans
continuesearch=false
else Refresh()

if nextnode comes from FQ
Forward-Explore(nextnode)
else

if nextnode6∈IL
Backward-Explore(nextnode)
else Explore(PS,nextnode)



Algorithm 3.2: Forward-Explore(node)

foreach v∈Neighbors(node)
if v∈IL
Explore(PS,node)
else

U=Partners(node,v)
if U is a single node
Explore(U,v)

if U is a hyper-node
if for all n∈U, n∈FE or n∈BE
Explore(U,v)
else put unexplored partners into BQ

if v6∈FQ and v6∈FE
add v to FQ

if node6∈FQ
decay the priority score of node
add node to FN

Algorithm 3.3: Backward-Explore(node)

foreach U∈Parents(node)
if U is a single node
Explore(U,node)

if U is a hyper-node
if for all n∈U, n∈FE or n∈BE
Explore(U,node)
else put unexplored partners into BQ

if node6∈FQ and node6∈FE
add node to FQ

if node6∈FQ
decay the priority score of node
add node to FN

foreach n∈U
if n6∈BQ and n6∈ BE
add n to BQ

if n6∈BQ
decay the priority score of n
add n to BN

Algorithm 3.4: Explore(U, v)

foreach keyword k
if U is a single node
if there is a shorter path from U to k via v

nextnodeU,k = newdis, decedentsU,k = v
propagate the newdis to all reached ancestors of U

if U is a hyper-node
compute an olddis which is the current shortest distance
from any of the nodes in U to keyword k
if there is a shorter path to k
foreach n∈U

nextnoden,k = newdis, decedentsn,k = v

compute CA=CommonAncestor(U)
foreach n∈U
foreach anc∈Ancestor(n)
if anc6∈CA
propagate newdis to anc

foreach ca∈CA
if ca is not an ancestor of another common
ancestor in CA
newdis = Max{BitMapGraphca,n

+distancen,k}, n ∈ U
olddis = distanceca,k

if newdis<olddis
update the distance
propagate the distance to ca’s ancestor
decedentsca,k = U
add sibling information to any node in U

Algorithm 3.5: FindAnswer(PS)

find=true
foreach keyword k
if distancePS,k = ∞
find=false

return (find)

For deep web data sources, we do not know the data inside
the hidden databases. So, keyword search cannot be directly
performed on the data tuple granularity level. Instead, we
need to address the keyword search problem at a higher-
level (schema-level). Recall that in our data source model,
we view all the deep web data sources belonging to one sub-
domain (such as SNP) as a virtual relational table. In this
virtual table, each data tuple is the query schema of a deep
web data source, which we had earlier referred to as a virtual
data tuple.

These virtual data tuples are connected by the inter-dependence
relationship between deep web data sources. The number
of deep web data sources of a sub-domain is substantially
large in most cases, as we pointed out in Section 1, and
many sources have multiple query interfaces corresponding
to different query schemas. Thus, scale of the graph com-
posed by virtual data tuples is comparable to the scale of the
graph composed by real data tuples in traditional keyword
search. By making this analogy, we want to adapt graph
algorithms onto a higher granularity, in order to solve the
keyword searching problem over deep web data sources.

Systems for keyword search on relational database, such
as DBXplorer [1] and DISCOVER [14], model the query an-
swering plan as a tree and have the direct access to the ac-
tual data. In a well defined relational database, there is not
much data redundancy. As a result, the above systems do
not consider data table ranking. The number of tuple sets
for generating the candidate network used in DISCOVER
system is proportional to the size of the power set of the
keyword set. It is reasonable for keyword queries on rela-
tional database. In our scenario, we do not know the actual
data inside the deep web data sources, and because some
data sources can be queried in parallel (there is no depen-
dency between them), therefore, a tree is not sufficient for
us, instead, we need a forest structure to represent the query
answering plan. Furthermore, we need to take the data re-
dundancy into account to perform data source ranking. Fi-
nally, it is common to have keyword queries with more than
10 or even 20 keywords. Due to these reasons, we need to
propose a new algorithm to solve our problem.

One of the keyword searching algorithms is the bidirec-
tional searching algorithm addressed in [17]. Since our data
model is also a graph model, which is analogous with the
model used in [17], we can address our problem by building
on this bidirectional search algorithm. However, the charac-
teristics of our dependence graph model give us many new
challenges. First, unlike the foreign key relation in a rela-
tional database, our dependence relation is directed. This
requires that our bidirectional algorithm is direction sen-
sitive. Second, since the dependence relation is a multi-
source relation, in our new algorithm, we not only need to
keep track of the sequential order of node exploration, but
also keep track of the parallel sibling relation between multi-
source predecessors. Furthermore, we need to come up with
a new edge exploration function which can deal with hyper-
nodes. Finally, since in our problem, the query answering
plan can be a forest with disconnected component, we need



Figure 2: Running Example of a Sample Query

multiple starting nodes to initiate the search on different
component.

3.1 Algorithm Overview and Assumptions
Given a keyword query with n keywords and the depen-

dency hyper-graph data model introduced in Section 2.3,
we need to first map the keywords onto the nodes in the
dependency graph. Next, we want to traverse the graph us-
ing some algorithm to find multiple connected components
which connect the mapped nodes to form a forest struc-
ture. Though we will discuss an example later, an example
of the query answering plan forest can be seen in Figure 2.
The traversing of the graph is done in a bidirectional man-
ner. A forward exploration touches as many executable data
sources as possible from a current data source. But, if one
data source has many dependent data sources, it is likely
to explore some unnecessary sources as well. If we are sure
that some data sources should certainly be queried to answer
the given query, we can view them as targets and perform a
backward exploration.

To present the algorithm, the following concepts are de-
fined.
Starting Node: From Section 2.1, we know that a query
Q in our system must contain at least one entity name. The
entity names are served as the triggering keywords which
initiate the query. The answering of the keyword query must
start from the data sources which can take the triggering
keywords as their input. We call these data sources the
starting nodes.
Data Source Necessity: Each data source has a set of
output attributes. If an attribute can only be provided by
a single data source, that data source should have a higher
priority to be selected. Conversely, if the attribute can be
provided by multiple data sources, a lower node score can
be assigned to these data sources with respect to this at-
tribute. Based on this idea, each term is associated with a
Data Source Necessity value. Formally, for a term k, if R
data sources can provide it as output, the data source ne-
cessity value for k is DSNk = 1

R
. Then, the data source

necessity value for a data source d is defined as follows
DSNd = Max{DSNk}, k ∈ Od.

It should be noted that our algorithm can be used on any
domain. We assume that we have a ranking strategy for
ranking each data source schema (node in graph) and a de-
pendence relation (edge in graph). Furthermore, we assume
that a domain ontology is built which can support the rank-
ing strategy. The usability of the algorithm is independent
of the ranking strategy and domain ontology proposed for
this specific domain.

3.2 Algorithm Details
In this section, we first introduce the data structures we

use in our algorithm, followed by the detail algorithm de-
scription. Algorithms 3.1, 3.2, 3.3, 3.4 and 3.5 show the
pseudo-code.

3.2.1 Data Structures
Suppose there are N nodes in the dependence graph and

K keywords in the query. Our bidirectional query planning
algorithm uses the following data structures (some of these
are based on [17]).
InitialNodeList IL: A list containing all the starting nodes
of the search.
ForwardQueue FQ: A priority queue containing all nodes
which are ready to be explored in the forward fashion.
ForwardExplored FE: A queue containing all nodes that have
already been explored in the the forward manner.
ForwardNextRound FN: A priority queue containing all nodes
which have already been explored in the forward fashion in
the current round, and ready to be explored in the forward
manner in the next round.
BackwardQueue BQ: A priority queue containing all nodes
which are ready to be explored in the backward manner.
BackwardExplored BE: A queue containing all nodes that
have already been explored in the the backward manner.
BackwardNextRound FN: A priority queue containing all
nodes which have already been explored in the backward
manner in the current round, and ready to be explored in
the backward manner in the next round.
distance[N][K]: An array contains the shortest distance from
any node to any keyword. The shortest distance is computed
in terms of dependence graph edge score, which we will de-



fine later.
descendants[N][K]: An array maintains the next set of nodes
that need to be visited in order to obtain the shortest dis-
tance from any node to any keyword.
sibling[N][K]: An array maintains a set of siblings (partners)
needed to obtain the shortest distance from any node to any
keyword. This data structure is designed for taking care of
hyper-node predecessors.
BitMapGraph[N][N]: An array maintains the shortest dis-
tance for every pair of nodes in the graph.

3.2.2 Algorithm Initialization
Because of the nature of the deep web queries we are

considering, a valid query answering plan can be a forest
with disconnected components, as in the example shown
in Figure 2. This feature requires that we need a start-
ing node for each disconnected component which results in
multiple starting nodes. The original Bidirectional search
algorithm uses the idea of Dijkstra algorithm, which solves
the single-source shortest-paths problem on a weighted di-
rected graph [7]. In order to solve our multi-source problem,
we need to convert a multi-source shortest path problem to a
single source shortest path problem. Based on this idea, we
add a pseudo-starting node (PS) into our graph. PS serves
as single entering point for the search. It is connected by a
pseudo-dependent relation edge with each data source node
in the initial list with edge score of zero. This means that
there is no cost to travel from PS to any of the actual start-
ing nodes. We can use PS to check whether an answer has
been found or not for a query. If the distance from PS to
any keyword is a finite number, an answer is found.

The data structures of the algorithm are initialized as fol-
lows: We add the starting nodes to the initial list and the
forward queue. Then, we find all data source nodes whose
output attributes cover any of the non-triggering keywords
into the backward queue. All other queues are initialized as
empty. If a data source covers a certain keyword, the dis-
tance from this source to the keyword in the distance array
is set as 0, otherwise the value is set as infinity. Other arrays
are initialized similarly.

3.2.3 Edge Exploration
The bidirectional search is performed within a loop until

the top k query answering plans are found. At each round,
we select the node with the highest node score from the
forward and backward queue. Edge exploration is conducted
based on the queue from which the highest scored node is
selected. In forward exploration, all out-going neighbors of
the current node will be explored. In backward manner, all
in-coming parents of the current node will be explored. In
edge exploration, we take two nodes. One is the predecessor
denoted as U , the other one is the descendant denoted as v.
Forward edge exploration is performed from the predecessor
(U) to the descendant (v) and backward edge exploration is
performed from v to U .

If U is not a hyper-node, i.e., it is a single node, we call
the Explore function directly. If U is a hyper-node (U is
composed of multiple nodes), first, we check whether all the
predecessors in U have been explored or not. If any of the
predecessors have not been explored, we will skip the explo-
ration in this round and add the unexplored predecessors
into backward queue. This is because the accessibility of
the dependent node depends on the accessibility of all its
predecessors, as a result, if any one of U is not accessible

currently, we cannot access v. Only when all predecessors
are explored, we can call the Explore function to do edge
exploration.

We perform edge exploration between U and v as follows.
If U is not a hyper-node, the Explore function just updates
the shortest distance information from U to any keyword
via v and propagates the updated information to U ’s ances-
tors if necessary. If U is a hyper-node, we use a different
propagation strategy. We obtain all common ancestors of
U to form a common ancestor set CA. A common ancestor
ca is a node which is an ancestor of all nodes in U . For
any node n in U , we propagate the distance information to
n’s ancestors as normal except the ancestors in CA. This is
because the shortest distance from any common ancestor to
a keyword depends on all nodes in the set U . The distance
from a common ancestor ca to a keyword is the longest dis-
tance from ca to a keyword via any of the node in U . If this
distance is smaller, we update the distance information on
ca. Then we add U as the descendants of ca. The sibling
information between nodes in U is also updated. Finally,
we propagate the distance information to any ancestor of
ca. The example in Section 3.3 shows the idea.

After the exploration of edge (U, v), we need to update FQ
and BQ. In the forward manner, v is added to FQ because
we want to continue to explore from v. In the backward
manner, we first add U to BQ, because we want to continue
to explore from U backwardly; second, we add v to FQ in
order to explore the frontier of v.

In order to detect an answer as soon as it has been gener-
ated using PS. We need to obtain the distance information
from PS to any keyword as soon as possible. As a result, we
do the pseudo-dependent edge exploration frequently. This
is the reason we invoke the edge exploration function when-
ever we detect the current being explored node is in the
initial list.

3.2.4 Kernel Nodes and Decay Factor
An important difference between our algorithm and the

algorithm in [17] is that in their algorithm, as long as one
node is explored, it will be put into the explored queue.
Then, it can never be used again for the current query when
generating other query answering paths. But in our prob-
lem, some keywords can only be provided by a single data
source, which has DSN value of 1. It must be reused for
generating other valid query answering plans. We call the
data sources of this kind the kernel nodes.

Kernel nodes are the nodes we want to reuse. There are
also nodes we do not want to reuse when generating the
next query answering plan for a query. If a keyword can be
provided by multiple data sources with a similar score, we
want to change the score of the used source and give other
sources a chance to be selected while generating the next
plan. This is to avoid missing possible new query answering
plans. We introduce a decay factor β for each node which is
going to be put into FN or BN queues. The decay factor β
will decrease the score of the node according to the node’s
possibility of being a kernel node. The decayed score of node
n would be β × NScore(n). In future exploration, node n
will use the decayed score, not the original score. Formally,
we define the decay factor of a node n to be βn = DSNn,
where DSNn is the data source necessity value introduced
in Section 3.1. Here, if the DSN value of the node n is
large, for example DSNn = 1, this means that this node is
a kernel node, we do not want to decay this node’s score,



as we can see the decayed score would be 1 × NScore(n).
But if a node has a very small DSN value, it means many
other data sources have the same attributes as this node, as
a result, the score of this node will be severely decreased.
In this way, other similar nodes can be used in later query
plans.

3.3 Example
We give a simple example of the algorithm proposed above

to illustrate the idea. We focus on the general idea in our
description, and the actual execution of the algorithm is
much more complex than what we discuss here.

We have a keyword query

Q = {ERCC6, NSY NSNP,MOLA,ORTH BLAST}

and six data sources dbSNP, SeattleSNP, Gene, Protein,
BOND and BLAST. ERCC6 is a gene name. NSYNSNP
(K1) is covered by dbSNP and SeattleSNP, ORTH BLAST
(K2) is covered by BLAST and MOLA (K3) is covered by
BOND. For simplicity, we assume the score of each edge in
the dependence graph is 1. We run the bidirectional plan-
ning algorithm to find a query answering plan for this query.
Initially, the IL list contains data source nodes dbSNP, Seat-
tleSNP, Gene and BOND, because these four data sources
have Gene Name as their input attributes. FQ is initialized
the same as IL and BQ contains BLAST at the beginning.
A partial dependence graph is constructed and shown in
Figure 2. The order of the data sources according to their
node scores is BOND, dbSNP, SeattleSNP, BLAST, Protein,
Gene (from high to low). Figure 2 shows the six steps used
in this example. At each step, we display the state of main
data structures after the execution of the step.

At the first step, BOND is selected and because BOND
is in IL, we explore the edge (PS,BOND). Keyword K3 is
reached, and the corresponding values in the distance and
descendant array are updated. At step 2, dbSNP is selected
to be explored. Because dbSNP is also in IL, the edge
(PS,dbSNP) is explored and keyword K1 is reached. We try
to forwardly explore the edge ({dbSNP,Protein},BLAST), in
which {dbSNP,Protein} forms a hyper-node predecessor for
BLAST. Since Protein has not been explored yet, we skip
this exploration but add Protein to BQ to make it as a tar-
get want to be explored in backward fashion. At step 3,
we try to explore using SeattleSNP, suppose the distance
from PS to K1 via SeattleSNP is no shorter than the dis-
tance using dbSNP, the exploration of SeattleSNP will not
change the state of the data structure. At step 4, we try to
explore the edge ({dbSNP,Protein},BLAST) in a backward
manner. Since Protein is not explored yet, we skip this ex-
ploration. At step 5, Protein is selected from BQ to do a
backward exploration using the edge (Gene,Protein). Af-
ter this exploration, the nodes Gene and PS are connected.
But K2 is still not reachable. We add Protein into FQ
wishing a forward exploration from it. At step 6, Protein
is selected from FQ, and a forward exploration on edge
({dbSNP,Protein},BLAST) is performed. Keyword K2 is
reached, and we update the distance and descendant infor-
mation. Because PS is a common ancestor of dbSNP and
Protein, we cannot directly update the distance from PS to
K2 via dbSNP and Protein separately. The distance from
PS to K2 is the longest distance between the two possible
paths. The first one is passing through dbSNP, and the sec-
ond one is passing through Gene and Protein. The final
query answering plan is shown in Figure 2, and we can see

that it is a forest with two disconnected components.
Then, the data sources dbSNP, Gene, Protein, BLAST

and BOND will be put into FN and BN respectively and
their scores will be decayed properly. In the next round,
SeattleSNP is likely to be selected instead of dbSNP to form
a new query answering plan. Because BLAST has decay
factor of 1 (only BLAST can cover K2), it is served as a
kernel node, and it will be included in the next query plan
again.

3.4 Query Plan Construction
We use a two dimensional, N×N , array QueryBitMap to

store a query answering plan, where N is the total number
of nodes in the dependence graph, excluding the pseudo-
starting point. Taking the pseudo-starting point as the
starting iterator, we follow the descendants data structure.
If the descendants of a node u is a set of nodes v1, . . . , vm,
we mark QueryBitMap[u][vi] = 1. If we meet a node with
siblings, we obtain its sibling and create another iterator
starting from that sibling, continuing to complete query con-
struction. The QueryBitMap array will serve as the unique
identification of a query answering plan.

Given the QueryBitMap of a query answering plan, we
use graph topological sorting algorithm to obtain the query
order. The query order will have several levels, with each
level containing all the data sources which can be executed
in parallel.

4. DOMAIN ONTOLOGY
In this section, we will introduce the design of our domain

ontology and explain how we use ontology to support node
ranking.

4.1 Ontology Design
Our domain ontology is designed with the following goals.

First, we want to identify the relationship between domain
terms, which could appear as keywords, to understand the
intent behind a query. For example, if a query contains
keyword human and from the ontology we know human is
a type of organism which is used to categorize genes, we
would know the query uses keyword human to impose a
constraint on search scope. Second, a user may not use the
exact scientific terms which are used by the data sources.
She may use some aliases or synonyms or even some words
with a fuzzy meaning instead of the exact scientific terms in
a query. We need to map these terms into a form in which all
terms are recognizable by the data sources. For example, if
a query contains keyword SNP Frequency, we need to map
SNP Frequency which is an abstract term into the exact
terms genotype frequency and alleletype frequency. Third,
as we had mentioned earlier, there is data redundancy in
deep web data sources. We want to obtain a data source
quality score for each keyword by using domain ontology.

Our ontology contains attribute terms (and a few concept
terms from the same domain). The ontology does not con-
tain entity names. For example, Gene Name, which is an
attribute term, is included in the ontology, but ERCC6 or
other actual gene names are not included in the ontology. In
this sense, our ontology is a schema level ontology. Because
the number of attribute terms is likely quite limited in a
domain, our ontology remains small and scalable to a large
number of data sources. As a query can also contain names
such as ERCC6, we use heuristics to map it to the attribute
term Gene Name in the ontology.



Our ontology is a connected directed graphOG = (ON,OE).
ON is the set of nodes in the ontology graph, and OE is set
of edges. The nodes in ontology graph are the domain terms
and edges are relations between these terms.
Domain Term: There are three types of domain terms in
the ontology: biological concept terms, attribute terms, and
a single special Root term. Biological concept terms are
high level conceptual terms such as Chromosome and SNP
which are not among the input or output attributes of any
deep web data sources. Attribute terms were introduced
in Section 2.1 as the set AS. An attribute term can also
be a synonym or high-level abstract term of other attribute
terms. For example, Human is a synonym of Homo Sapi-
ens and SNP Frequency is a high level attribute term which
covers four lower-level attribute terms.
Ontology Relation: We define four types of ontology re-
lation. 1). A type relation. It connects a term with its
synonym. An A type link comes from a term within the
vocabulary of a data source to its alias or synonym which
is not within that scope. For example, there is an A type
link pointing from Organism to Species. 2). B type relation.
It connects two biological concept terms, which are related
in the domain of ontology. For example, biological concept
terms Gene and SNP are connected by a B type relation
because a SNP is located in a specific gene. B type link
is undirected. 3). C type relation. It captures the class-
subclass relationship. A C type link points from a biological
concept term to an attribute term by which the concept
term can be categorized into several sub-classes. For ex-
ample, SNP and SNP Function are connected by a C type
relation, because SNP can be divided into several different
classes by its SNP Function attribute. 4). F type relation.
It connects a biological concept term with its attribute terms
or connects a high-level abstract attribute term with its low
level attribute terms. For example, SNP Frequency is con-
nected to its four low level attribute terms population, sam-
ple, genotype frequency, and alleletype frequency by four F
type relations.

4.2 Data Source Representatives
We introduce a new concept, representative of a data source.

Each data source schema has a list of output attributes
which characterize the main focus or interest of the data
source. If we know the main focus of a data source, we
can use this information to rank the data source’s relevance
with respect to a keyword. For example, data source A has
20 output attributes. We find that 15 output attributes
come from the concept term SNP, and the rest 5 comes
from the concept term Protein. With this information, we
roughly know that data source A is about SNP and protein
data, and the main focus of A is providing SNP information.
Data source B has 10 output attributes, and we find that
all the 10 terms come from the Protein node. Data source
B is built solely for providing protein information. Given
the above information, if a user keyword can be mapped to
the protein node in the ontology graph, we can have a high
confidence in concluding that the data source B can provide
more relevant information than A.

We define the representatives of a data source to be all bi-
ological concept terms in the ontology which can be reached
by reverse traversing F or C type links starting from the
data source’s output attribute. Suppose a data source D
has n representatives r1, r2, . . . , rn, and each representative
ri is associated with a weight wi. The weight wi is the ratio

between the number of output attributes of D which finally
reach to biological concept term ri and the total number of
output attributes of D. In other words, if a greater number
of output attributes of D can be mapped to a representa-
tive ri, this representative will have a higher weight. This
is because we believe that the data source D is more likely
to be focusing on providing information about ri.

5. RANKING STRATEGY
In this section, we will introduce the ranking strategy used

in our current implementation. Our ranking strategy has
three components, which are node ranking, edge ranking,
and query answering plan ranking. We first outline the de-
sired properties for ranking functions, then we define our
specific ranking function.

5.1 Desired Properties and Main Ideas
For our bidirectional search to be efficient, the node rank-

ing function should give a data source higher node score if
the node has the following properties: 1) it can cover more
keywords, 2) it is easier to reach from the set of starting
nodes, 3) it provides the data with higher quality, and 4) it
satisfies the constraints which are specified in the query.

Similarly, an edge should be given higher priority if the
exploration of this edge can help to narrow down the search
space or provide more accurate answer to a query. For ex-
ample, if an edge e between node u and v contains two types
of dependence relations, which are the first type and the sec-
ond type introduced in Section 2.3, we know the second type
of dependence relation can be considered as providing sup-
plemental information, which may shrink the search space.
In this case, the edge e should be ranked higher than other
edges which only have the first type of dependence relation.

Finally, a query answering plan should be ranked higher
if its nodes and edges are highly ranked.

5.2 Node Ranking Strategy
Suppose a query contains a set of keywordsQ = {k1, . . . , km}.

A node corresponds to a data source schema. Given a node
ni, we first define the node score of ni with respect to query
keyword kj as NScore(ni, kj) = cij × qij × DSNkj

. Here,
cij is the node coverage score of the node ni with respect to
kj , and qij is the node quality score of node ni with respect
to kj . If multiple data source can provide this keyword kj ,
i.e. DSNkj

is small, the score of this node ni is decreased.
Node Coverage Score: The node coverage score of node
ni with respect to kj is defined as cij = 1

Level(i)+1
×Is Contain(j).

Level(i) is the shortest distance in terms of the number of
edges from any of the starting points to the current node ni.
Is Contain(j) is a function which returns 0 if data source
ni does not contain kj as its output, returns 1 otherwise.
Note that the Level(i) value can vary across queries, be-
cause different queries have different starting points. This
ranking function gives a node higher score if it covers more
keywords and is easier to reach.
Node Quality Score: The node quality score of a node
ni with respect to kj is defined as qij = OntoScore(i, j).
The function OntoScore(i, j) returns a relevance score of
node ni with respect to kj . The intuition behind this func-
tion is as follows. We obtain the representatives of a data
source which illustrate the focus of the source, then we try
to compute a kind of distance between the keyword and the
representatives of the source. The shorter the distance, the



closer the keyword to the focus of the data source, and the
higher the relevance.

To compute OntoScore(i, j), first, we find the representa-
tives of data source n, as r1, r2, . . . , rm with weights w1, w2,
. . . , wm. For each representative ri, we compute the least
common superclass of ri with respect to the keyword k
following the general definition of Learning Accuracy from
Cimiano et al. [6]: lcs(k, ri) = argminc∈Ontology{δ(k, c) +
δ(ri, c) + δ(Root, c)}, where δ(a, b) is the shortest distance
between node a and b in the ontology. Then, we compute
the similarity score between ri and k as follows:

Sim(ri, k) =
δ(Root, f) + 1

δ(Root, f) + 1 + δ(ri, f) + δ(k, f)

where f = lcs(ri, k). We define the ontology quality score
of data source ni with respect to keyword kj as follows:
ontoScore(i, j) =

Pm

y=1 wy × Sim(ry, kj), where m is the
total number of representatives of node ni and wi is the
weight of representative ri. The node quality score qij =
ontoScore(i, j).
Score of Matched Constraints: Some keywords repre-
sent constraints that a user sets on the query. For example,
the keyword “Human” implies that the user wants to find
data about humans. Each data source has a C attribute
which represents the inherent constraints of the data source.
We prefer to use a data source which has inherent constraints
matching with the user specified constraints. The higher the
number of matched constraints, the higher the node score.
We use function CountConstraints(ni, Q) to compute the
score of matched constraints of a data source with respect
to a query. If a query has a constraint set UC, and the
node ni has inherent constraints set NC, We compute the
score of matched constraints based on the following cases:
1). UC = Φ and NC = Φ. In this case, both the query
and the data source do not have any constraint, we sim-
ply simply return zero. 2). UC = Φ and NC 6= Φ. In
this case, user does not set any constraints, but the cur-
rent data source has inherent constraints. The data source
inherent constraints will shrink the answers to a narrower
range, as a result, the data source should receive a penalty.
We return −|NC|. 3). UC 6= Φ and NC = Φ. In this
case, user sets constraints, but data source does not have
constraints. We return zero. 4). UC 6= Φ and NC 6= Φ
and HasConfliction(UC,NC) = true. HasConfliction()
is a function to detect whether there is any confliction be-
tween UC and NC. For example, user sets constraint on
“Organism=Human”, but the data source has constraint
”Organism=Mouse”. In this case, this data source defi-
nitely cannot be chosen for this query. So we will return
a special value null. 5). UC 6= Φ and NC 6= Φ and
HasConfliction(UC, NC) = false. In this case, we return
|UC ∩NC| − |NC −UC|. |UC ∩NC| is the number of user
specified constraints which are also matched in data source
constraint set. |NC − UC| is the number of data source
constraints which are not requested by the user.
Node Score for A Single Node: Now we define the node
score for a node ni as

NScore(ni) =

8

>

>

<

>

>

:

null if ϕ,
P

kj∈Q NScore(ni,kj)

m×(|NCM|+1)
if χ,

P

kj∈Q NScore(ni,kj)×(|NCM|+1)

m
if ψ.

ϕ represents CountConstraints(ni, Q) = null. χ rep-

resents CountConstraints(ni, Q) = NCM and NCM <

0. ψ represents CountConstraints(ni, Q) = NCM and
NCM >= 0. m is the number of keywords in query Q.
The above node score function considers the effect of node
coverage score, node quality score, and score of matched
constraints.
Node Score for Query Answering Plan: The node score
of the query answering plan QAP is defined as

NScore(QAP ) =

P

∀ni∈QAP
NScore(ni)

N

where N is the number of nodes in QAP. We can see that
the node score of query answering plan QAP is roughly the
average node score for all nodes in the plan. This function
gives penalty to a plan with many nodes (longer plans with
redundant nodes).

5.3 Edge Ranking Strategy
The edge score is considered as a cost one needs to pay to

traverse from one node U to its descendant V . Therefore, a
higher ranked edge has a lower score. An edge can be built
between U and V and a constant score is assigned to it
only when there is a first type dependence relation between
them. According to the desired properties in Section 5.1, if
there exists second and/or third type dependence relation,
we reduce the edge score, essentially giving it a bonus. Along
this line, the edge score of e connecting U and V can be
defined as

EScore(U,V ) =

8

>

>

>

<

>

>

>

:

∞ if no first type dependence

relation between U and V ,

4 − T1 − T2 − T3 if has first type dependence

relation between U and V .

T1 =

(

0 if no second type dependence relation between U and V ,

1 if has second type dependence relation between U and V .

T2 =

8

>

<

>

:

0 if no third type dependence relation between U and V ,

1 if has third type dependence relation between U and V

and it is pointing from optional input to must-fill input.

T3 =

8

>

<

>

:

0 if no third type dependence relation between U and V ,

1 if has third type dependence relation between U and V

and it is pointing from optional input to optional input.

The total edge score for query answering plan QAP is
defined as:

EScore(QAP ) =
1

P

∀e∈QAP
EScore(U, V )

5.4 Query Answering Plan Ranking Strategy
Combining the node and edge ranking functions above,

the query answering plan ranking function is a linear com-
bination of its node score and edge score, which is defined
as :

Score(QAP ) = λ×NScore(QAP )+(1−λ)×EScore(QAP )

In our current system, we set the parameter λ to be 0.5. We
prefer query answering plans that have a higher score.
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Figure 3: Comparison among BIA, NA and EXA: (a) Comparison between BIA and NA;(b) Comparison
between BIA and EXA.

Table 2: Query Statistics
Query ID Number of Terms
1-10 2-5
11-18 8-12
19-24 17-23
25-28 27-33
29,30 37-43

6. EVALUATION
This section describes the experiments we conducted to

evaluate our algorithm.

6.1 Experiment Setup
Our evaluation was done using 14 different biological deep

web databases we have integrated. We created 30 queries for
our evaluation. Among these 30 queries, 10 are real queries
specified by a domain expert we have collaborated with. The
remaining 20 queries were generated by randomly select-
ing query keywords from the ontology to form queries. We
create two types of queries, keyword-attributes queries and
keyword-keyword relation queries. Among the 30 queries,
22 queries are of the first type, and 8 queries are of the sec-
ond type. We also vary the number of terms in each query
in order to evaluate the scalability of our algorithm. Table 2
summarizes the statistics for the 30 queries.

Among our queries, we have several queries with a large
number of keywords. We choose these queries for the fol-
lowing reasons. Unlike the traditional relational database
queries in commercial domains, a biological domain query is
very likely to have a large number, i.e., 20 or more, keywords.
This is because users tend to use high-level abstract terms
in their keyword search. For example, SNP Frequency, a
very common query keyword, is a high-level abstract term
that corresponds to four low-level keywords. Another rea-
son for creating long queries was that we wanted to test our
algorithm in extreme cases.

In the evaluation, we compare our BIdirectional Algo-
rithm (BIA) with three other algorithms, which are the
Naive Algorithm (NA), the EXhaustive Algorithm (EXA)
and the Backward Algorithm (BA).
Naive Algorithm: As the name suggests, this algorithm
does query planning in a naive way. The algorithm selects

all data sources which can be queried at each round, until
all keywords are covered. This algorithm can quickly find
a query answering plan, but it is likely to have a very low
score and a long execution time.
Exhaustive Algorithm: This algorithm searches the en-
tire space in a recursive manner, and compares every pos-
sible query answering plan. Then, it selects the plan with
the highest score. This algorithm always finds the optimal
answering plan, but has high time and space requirements.
Backward Algorithm: This algorithm uses exactly the
same data structures as the bidirectional planning algorithm.
The only difference is that backward algorithm can only
search from the backward direction.

6.2 Evaluation Metrics
Query Answering Plan Score: We use the ranking func-
tion introduced in Section 5 to compute a score for each
query answering plan. We prefer the plan with a higher
score, because higher score implies that a smaller number of
data sources are involved, and they have higher relevance.
Query Answering Plan Estimated Execution Time:
The query execution time of a deep web data source is esti-
mated by issuing multiple randomly selected sample queries.
Since the query answering plan has a disconnected compo-
nent and some sources can be executed in parallel, the esti-
mated execution time of the entire plan is computed based
on the parallel execution model. The longest path (in terms
of time) in the plan determines the execution time.
Query Planning Time: Efficiency of query planning al-
gorithm is an important consideration. We record the query
planning algorithm’s running time.
Planning Time for Generating the First Query Plan:
BIA and BA algorithms can generate multiple query an-
swering plans. We record the time used to generate the first
(possibly the best) plan. We prefer the algorithm which can
generate the first plan quickly.
Average Query Planning Time: For BIA and BA, we
compute the average query planning time by dividing the
total query planning time by the number of query plans
generated.

In addition to comparing different algorithms using the
above metrics, we have also evaluated the scalability of the
bidirectional planning algorithm with respect to the number
of data sources involved in the query.

One important observation is that a query plan with a



Table 3: Query Planning Time Comparison Between
BIA, NA and EXA

Selected
Query

NA Plan-
ning Time
(ms)

EXA
Planning
Time (ms)

BIA Plan-
ning Time
(ms)

1 6 1385 30
2 3 774 29
3 5 1020 131
4 15 3090 62
5 4 615 48

high score does not necessarily have a low estimated execu-
tion time, and vice versa. The reason is that a very highly
ranked data source may have longer execution time. As a
result, it is possible to see a query answering plan with high
score but a large execution time.

6.3 Experiment Results

6.3.1 Comparing BIA against NA and EXA
In Figure 3, sub-figure (a) shows the comparison between

BIA and NA. It is plotted in logarithmic scale. The SRa-
tio (Diamond) is the ratio between BIA’s generated query
answering plan’s score and NA’s generated query answering
plan’s score. The ETRatio (Rectangle) is the ratio between
NA’s generated plan’s estimated execution time and BIA’s
generated plan’s estimated execution time. Figure (b) shows
the same comparison between BIA and EXA. In both the
sub-figures (a) and (b), the x-axis is the query ID, and the
y-axis is the ratio value.

From sub-figure (a), we can see that except for queries 1
and 4, the plans generated by BIA always have much higher
(more than 5 times) score than the plans generated by NA.
Similarly, the execution time of the plans generated by BIA
are always lower than the execution time of plans generated
by NA. For queries 1 and 4, NA can also obtain very good
results. This is because these two queries are very simple,
and only need a single data source. For the query 4, the
execution time of NA’s query plan is even shorter than that
of BIA’s query plan. This is reasonable, because a data
source with higher relevance may have long execution time.

From sub-figure (b), we can observe that the score of plans
generated by BIA are almost the same as the score of the
plans generated by EXA. This shows that the quality of the
plans generated by BIA is very close to the quality of the
optimal plans generated by EXA. The execution time has
the same pattern as the score, except for queries 5 and 7.
For these two queries, we can see that the estimated exe-
cution time for query plans of BIA are even shorter than
the optimal query plan’s execution time. This is reason-
able because our optimal query plan is generated based on
query answering plan score and BIA algorithm, for this two
queries, selects the data source with a lower execution time.

In Table 3 we show the comparison of query planning time
between BIA, NA, and EXA. We can clearly see that BIA
takes much less time than EXA. Compared to the time of
NA, BIA’s running time is still modest.

In summary, BIA outperforms NA in terms of generated
plan’s quality. BIA can generate nearly optimal query an-
swering plans while take much less time than EXA.

Figure 5: The Scalability of BIA according to Num-
ber of Data Sources Involved in Queries.

6.3.2 Comparing BIA against BA
In Figure 4, sub-figure (a) shows the SRatio and ETRatio

between BIA and BA. Because BIA and BA use the same
data structure, we expect both the ratios should be near
1. We can observe that this is actually the case. We can
also note that for some queries (10 out of 30), BIA obtains
answers with higher scores than BA. This shows that in
terms of the quality of query answering plan, BIA and BA
have nearly the same performance, with BIA outperforming
BA in some cases.

Because BA searches only from one direction, we expect
that BIA will beat BA in terms of query planning time.
Sub-figure (b) and (c) are plotted in logarithmic scale. In
Figure 4, sub-figure (b) shows the ratio between BA’s av-
erage query planning time and BIA’s average query plan-
ning time. We can observe that for most queries, BIA takes
smaller amount of time to generate a query plan. The sub-
figure (c) shows the time ratio for the first generated query
plan between BA and BIA. We have the same observation,
i.e. BIA can generate the first query plan much faster than
BA.

6.3.3 The Scalability of BIA:
From Figure 5, we can observe that in terms of the average

planning time, there is a sharp increase when the number
of data sources increases from 2 to 4. Then, the planning
time increases moderately with respect to the number of
data sources. In terms of the first plan generation time,
there is a sharp increase when the number of data sources
increases from 7 to 10, otherwise, the increase is moderate.
This shows that our system has good scalability.

6.3.4 Actual Query Result Evaluation of BIA
The answers retrieved by our system were checked by a

biologist collaborating with us. Currently, we have wrappers
for 8 deep web data sources, out of the 14 we used for query
planning. For the plans that only extract data from these 8
sources, the plans are automatically executed and answers
are retrieved and tabulated. For all other plans, the answers
were extracted manually. Both automatically and manually
retrieved answers were presented to the biologist.

From the feedback from the domain scientist, all answers
to the 30 experimental queries are correct and sufficient,
with the exception for one query. The query is “rs7412,
rs12982192”, which is intended to find the relationship be-
tween the two SNPs. The expected answer was that the
two SNPs are located in the gene APOE and the chromo-
some 19. Our system can correctly find the first relation-
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Figure 4: Comparison between BIA and BA: (a) Query Plan Comparison between BIA and BA;(b) Average
Planning Time Ratio between BA and BIA;(c) First Plan Generating Time Ratio between BA and BIA.

ship. For the second relationship, our system indeed finds a
correct query answering plan, but because the data source
our system chose has incomplete data (rs12982192 are not
in its database), the relationship is not discovered. This
limitation can be addressed in the future by having addi-
tional knowledge about the data sources. Our system can
also enable execution of another query plan on request from
the domain scientist, which may retrieve data from different
sources.

7. RELATED WORK
We now compare our work with existing work on a number

of related topics, including query planning, keyword search
on relational databases, database ranking, deep web mining,
and semantic search.
Query Planning: Query planning has been extensively
studied in databases. Raschid and co-workers have devel-
oped a navigational-based query planning strategy for min-
ing biological data sources [3, 19].They build a source graph
representing integrated biological databases and an object
graph representing biological objects in each database. The
key difference in our work is we focus on deep web data
source dependencies, not the physical links between the database
objects

Much work on query planning is based on the well known
Bucket Algorithm [9, 8, 16, 24, 21, 20, 25]. In this work,
it is assumed that the user query specifies the databases or
relations that need to be queried. The task of the work
is to find a query order among the specified relations or
databases. Based on user specified relations or sub-goals, a
bucket is built containing all the databases which can answer
the corresponding sub-goal. In comparison, in our work,
the user query only contains keyword and does not specify
any databases or relations of interest. Our system takes
advantage of domain ontology and data redundancy to select
the best data sources automatically. In other words, our
system figures out sub-goals by itself. At the same time,
query planning is also performed by the system.

In [27], a query planning algorithm is presented which
minimizes the query’s total running time by optimally ex-
ploits parallelism among web services. The main differences
between our work and theirs are: first, they assume that one
attribute can only be provided by one data source, and sec-
ond, they assume all available databases should be used in
the query plan, and their focus is ordering them to minimize
the query plan running time. We use a domain ontology to
rank databases and select the most relevant data sources to

do query planning and for answering the query.
Keyword Search on Relational Databases: Recently,
performing keyword based search over relational databases
has attracted a lot of attention [14, 13, 17, 22, 1, 2, 23].
In relational database keyword search, databases are repre-
sented as graphs. Each row in relation table is represented
as a node, and foreign keys are represented as edges. The
graph stores the actual data in the databases. The critical
difference in our algorithm are as follows. We also represent
the entire deep web as a graph. The nodes in our graph
are deep web data source query schemas, and as a result,
our graph model only contains the high level abstract infor-
mation for each data source. We do not know the actual
content of the data sources. The edges in our graph are
inserted based on multi-source inter-dependencies, which is
a directed relationship. This is different from the foreign
key relationship, which is single-source and undirected. The
multi-sources dependence relationship determines that our
graph is a hyper-graph with multiple hyper-nodes. As a re-
sult, our search algorithm is adapted to this special feature
of the graph. Finally, data redundancy is an important con-
sideration. We use ontology to rank data sources according
to their relevance to user query.
Database Ranking: There has been some efforts on database
ranking. In [28], the authors rank relational databases’ rel-
evance with respect to a set of keywords. The number of
joins needs to be made to connect two keywords within one
database is used as the measurment. In [15], a search re-
sult ranking strategy in the presence of overlapping data
sources is addressed. A surprisingness and confidence score
are computed for each search result. The results are then
ranking by these two scores. In our work, we are considering
data redundancy in deep web data sources, not in relational
databases. We use domain ontology and similarity mea-
sure to select the most relevant databases according to user
query.
Deep Web Mining: Lately, there has also been a lot of
work on mining useful information from the deep web [11,
5, 4, 12]. However, the above work is generally driven by
e-commerce domain applications, focusing on database inte-
gration and schema matching. Dependencies between data
sources have not been considered by these.
Semantic Search: The semantic issues in keyword search
and web services have motivated much research [26, 18, 29].
Two main issues have been addressed by the existing re-
search. The first one is using ontology to determine the type



or scope of a keyword, and the second is using ontology re-
lations to obtain the intention of a query. In our work, we
are also considering the semantics issue. A domain ontology
is used to decide the type and relation between keywords.
But in our case, the keywords involved are technical terms
from a specific domain, which are different from some ran-
dom keywords in a relational text database. Therefore, it
is relatively easy to decide the intention underlying a given
query.

8. CONCLUSIONS
In this paper, we have considered keyword search over on-

line deep web data sources. Our algorithm is able to support
two type of queries, which are keyword-attributes query and
keyword-keyword relation query, and derive interesting re-
lationships between the keywords from the deep web. We
use a hyper-graph model to capture the multi-sources inter-
dependencies between data sources. Since there is data re-
dundancy across deep web data sources, we have also de-
signed a domain ontology based data source ranking and
selection strategy. We have developed a bidirectional query
planning algorithm which is based on bidirectional search-
ing algorithm for traditional database keyword search, but
addresses several new challenges.

Our query planning algorithm is capable of finding an
query answering plan for a keyword query with a high rel-
evance score and a low execution time. We compared our
algorithm with the naive algorithm, the exhaustive algo-
rithm, and a backward planning algorithm. We find that
our algorithm can generate optimal results for most queries,
with much smaller query planning time, and also runs much
faster than the backward algorithm.
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