
IMCa: A High Performance Caching Front-end for
GlusterFS on InfiniBand

Ranjit Noronha and Dhabaleswar K. Panda

Network-Based Computing Laboratory
Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{noronha, panda}@cse.ohio-state.edu

June 24, 2008

Technical Report
OSU-CISRC-3/08-TR09



IMCa: A High Performance Caching Front-end for GlusterFS on InfiniBand ∗

Ranjit Noronha and Dhabaleswar K. Panda
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{noronha,panda}@cse.ohio-state.edu

Abstract
With the rapid advances in computing technology, there is an explosion in media that needs to collected, cataloged, stored

and accessed. With the speed of disks not keeping pace with the improvements in processor and network speed, the ability
of network file systems to provide data to demanding applications at an appropriate rate is diminishing. In this paper, we
propose to enhance the performance of network file systems by providing an InterMediate bank of Cache servers between the
client and server called (IMCa). Whenever possible, file system operations from the client are serviced from the cache bank.
We evaluate IMCa with a number of different benchmarks. The results of these experiments demonstrate that the intermediate
cache architecture can reduce the latency of certain operations by upto 82% over the native implementation and upto 86%
compared with the Lustre file system. In addition, we also see an improvement in the performance of data transfer operations
in most cases and for most scenarios. Finally, the caching hierarchy helps us to achieve better scalability of file system
operations.
Keywords: InfiniBand, System Area Networks, Clusters

1 Introduction
With the dawn of the internet age, the rapid growth of multi-media and other traffic, there has been a dramatic increase

in the amount of data that needs to be stored and accessed. In addition, commercial and scientific applications such as
data-mining and nuclear simulations generate and parse vast amounts of data during their runs. To meet the demand for
access to this data, single server file systems such as NFS [13] and GlusterFS [1] and parallel file systems such as Lustre [15]
over high-bandwidth interconnects like InfiniBand with high-performance storage disks at the storage servers have become
common-place. However, even with these configurations, the performance of the file system under a variety of different
workloads is limited by the access latency to the disk. With a large number of requests to non-contiguous locations of the
disk, the ability of the file system to cope with these types of requests is severely limited. In addition, parallel striping of
parallel data provides limited benefit in environments with a lot of small files.

To reduce the load on the disk and enhance the performance of the file system, several different types of caching strategies
and alternatives have been proposed [9, 6]. Generally, in most file systems, a cache exists at the server side. It might be part
of the distributed file system, such as with Lustre [15], or it might reside in the underlying file system such as with NFS. The
server side cache will generally contain the latest data. The server side cache may be used to reduce the number of requests
hitting the disk, and also provide enhancements when there is a fair amount of read/write data sharing. The server side cache
is generally limited in size and shared by a large number of I/O threads. In addition, the limited size of the cache in-concert
with policies like LRU can reduce the performance of the server side cache.

In addition to a server side cache, file system protocols like NFS [13] and Lustre [15] also provide a client side cache.
A client side cache may provide a large benefit in terms of performance when most of the data is accessed locally, such as
in the case of a user home directory. However, client side caches introduce cache coherency issues when there is sharing
of data between multiple clients. NFS does not offer strict cache coherency and uses coarse timeouts to deal with the
issue. Lustre [15] on the other hand uses locking with the metadata server acting as a lock manger to implement client cache
coherency. Writes are flushed before locks are released. With a large number of clients, the overhead of maintaining locks and
keeping the client caches coherent increases. GlusterFS [1] does not provide a client side cache in the default configuration.

In this paper, we propose, design and evaluate an InterMediate Caching architecture (IMCa) between the client and the
server for the GlusterFS [1] file system. We maintain a bank of independent cache nodes with a large capacity. The file
system is responsible for storing information from a variety of different operations in the cache. Keeping the information in
the cache bank up-to-date is achieved through a number of different hooks at the client and the server. Through these hooks,
the client attempts to fetch the information for different operations from the cache, before trying to get it from the back-end
file server.

∗This research is supported in part by Department Energy’s grant #DE-FC02-01ER25506, National Science Foundation grants #CNS-0403342 and
#CCF-0702675; grants from Intel, Mellanox, and Sun Microsystems; and equipment donations from Intel, Mellanox, and Sun Microsystems.



We expect multiple benefits from using this architecture. First, the file system clients can expect to retain the benefits
of a client side cache with a small penalty bounded by network round-trip latency. With the advent of low latency, high-
performance networks like InfiniBand which offer low latency messaging, the penalty associated with this is likely to be low.
Second, since the number of caches is small in comparison to the number of clients, and these caches are lockless, keeping
the caches coherent is considerably cheaper. Finally, we expect to reap the benefits of a client cache without the associated
scalability and coherency issues.

Our preliminary evaluations shows that we can improve the performance of file system operations such as stat by up to
82% over the native design and upto 86% over a filesystem like Lustre. In addition, we also show that the intermediate cache
can improve the performance of data transfer operations with both single and multiple clients. Finally, in environments with
read/write sharing of data, we can see an overall improvement in file system performance. Finally, IMCa helps us to achieve
better scalability of file system operations.

The rest of this paper is organized as follows. Section 2 describes the background work. After that, Section 3 tries to
motivate the need for a bank of caches. In Section 4 we discuss the design issues. Following that, Section 5 presents the
evaluation. Section 6 looks at related work. Finally, conclusions and future work are presented in Section 7.

2 Background
In this section, we discuss the file system GlusterFS and the dynamic web-content caching daemon MemCached.

2.1 Introduction to GlusterFS
GlusterFS [1] is a clustered file-system for scaling the storage capacity of many servers to several peta-bytes. It aggregates

various storage servers or bricks over an interconnect such as InfiniBand or TCP/IP into one large parallel network file
system. GlusterFS in its default configuration does not stripe the data, but instead distributes the namespace across all the
servers. Internally, GlusterFS is based on the concept of translators. Translators may be applied at either the client or the
server. Translators exist for Read Ahead and Write Behind. In terms of design, a small portion of GlusterFS is in the kernel
and the remaining portion is in userspace. The calls are translated from the kernel VFS to the userspace daemon through the
Filesystem in UserSpace (FUSE).

2.2 Introduction to MemCached
Memcached is an objects based caching system [3] developed by Danga Interactive for LiveJournal.com. It is traditionally

used to enhance the performance of database application or websites with dynamic content that are heavily loaded. Mem-
cached is usually run as a daemon on spare nodes. Memcached listens for requests on a user specified port. The amount of
memory used for caching is specified at startup. Internally, memcached implements Least Recently Used (LRU) as the cache
replacement algorithm. Memcached uses a lazy expiration algorithm; i.e. objects are evicted when the cache is full and a
request is made to add an object to the cache, or a request to fetch a data element from the cache is made and the time for the
object in the cache has expired. Memory management is based on slab cache allocation to reduce excessive fragmentation.
Memcached currently limits the maximum size of the object to be stored to 1MB and the maximum length of the key to
256 bytes. The Memcache daemon may be accessed through TCP/IP connections. Clients usually change data elements
in memcached through a T(key, data) tuple. The API consists of the functions set, replace, delete, prepend and append. A
number of libraries are available for accessing memcached daemons; one of them libmemcache is a C based library [2].

3 Motivation
We now consider the motivation for using intermediate caching architecture in a file system. We look at some common

problems in file system design that could potentially be solved through the use of a caching layer.
Single Server Bandwidth Drop With Multiple Clients. Protocols like NFS/RDMA attempts to offer the improved

bandwidth of networks like InfiniBand to NFS. However, NFS servers usually store most of the data on the disk. The server
is constrained by the ability of the disk to match the bandwidth of the network. Since the disk is usually much slower than the
network, the benefit from using NFS/RDMA is reduced. The effect of this is shown in Fig. 1(b) and Fig. 1(a), which show
the multi-client IOzone Read throughput with different transports, namely NFS/RDMA (RDMA), NFS/TCP on InfiniBand
(IPoIB) and finally, NFS/TCP on Gigabit ethernet (GigE). In Fig. 1(a), 4GB server memory is used; in Fig. 1(b), 8GB server
memory is used. The bandwidth available to the clients seems to be related to the amount of memory on the server and falls
off as the server runs out of memory and is forced to fetch data from the disk.

Parallel I/O Bandwidth From Multiple Servers. Parallel I/O attempts to use the aggregate bandwidth of multiple
servers. Since the back-end server ultimately uses real disks, the benefits of parallel I/O bandwidth are ultimately mitigated
especially for multiple streams that access data spread on different portions of the disk causing increased disk seeking,
reducing performance.
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Fig. 1. Multiple clients IOzone Read Bandwidth with NFS/RDMA [13]

Performance For Small Files. Delivering good performance for small files is generally difficult. In data-center envi-
ronments a large number of small files are used [12]. Data striping techniques generally used in parallel file system are of
limited use for small files. Storing files on multiple independent servers can help reduce contention for small files, but still
exposes these files to the limits of the disk on these servers.

Cache Coherency Problems. In file system environments, a client side cache usually provide best performance. Client
caches may be coherent such as with Lustre [15] or non-coherent, such as with NFS [13]. Non-coherent client side caches
are more scalable but have limited use in environments with read/write sharing. Coherent client side cache may be used in
environments with sufficient read/write sharing. However, they have limited scalability.

Server load problems. Reducing the load on the server is generally crucial to improving the scalability of file system
protocols. RDMA is generally proposed as a communication offload technique to reduce the impact of copying in protocols
like TCP/IP. However, RDMA cannot eliminate other copying overheads such as those across the VFS layer and other file
system related overheads. Using an intermediate cache layer may help mitigate the effect of some of these problems. We will
now look at the design and implementation of a layer of caching nodes.

4 Design of a Cache for File Systems
In this section, we consider the design of the Intermediate memory caching (IMCa) architecture for the GlusterFS [1] file

system. First, we look at the overall block level architecture of IMCa in Section 4.1. Following that, we look at the potential
non-data file system operations that could be optimized in Section 4.2. In Section 4.3, we look at the potential optimizations
for data operations. Finally, we discuss some of the potential advantages and disadvantages of IMCa in Section 4.4.

4.1 Overall Architecture of Intermediate Memory Caching (IMCa) Layer
The architecture of IMCa is shown in Fig. 2. The architecture consists of three components: CMCache (Client Memory

Cache), MemCached (MCD) array and SMCache (Server Memory Cache). The first component CMCache (Client Memory
Cache) is located at the GlusterFS client.

Client Memory Cache (CMCache): This is responsible for intercepting file system operations at the client. It is imple-
mented as a translator on the GlusterFS client as discussed in Section 2. Once these operations are intercepted CMCache
determines whether these requests have any interaction with the caching layer or not. If there is no interaction, CMCache will
propagate the request to the server. Interactions are generally in two forms. In the first form, it may be possible to process
the request from the client directly by contacting the MCDs. In this case, CMCache will contact the MCDs and attempt to
directly return the results for the requests. CMCache communicates with the MCDs through TCP/IP.

MemCached MCD Array (MCD): This consists of an array of MemCached daemons running on nodes usually set aside
primarily for IMCa. The daemons may reside on nodes that have other functions, since MCDs tends to use limited CPU
cycles. To obtain maximum benefit from using IMCa, the nodes should be able to provide a sufficient amount of memory to
the daemons while they are running.

Server Memory Cache (SMCache): This is the final component of IMCa. It is located on the GlusterFS server. SMCache
is implemented as a translator at the GlusterFS server. SMCache is divided into two parts. The first part of SMCache
intercepts the calls coming from GlusterFS clients. Depending on the type of operation from the GlusterFS client, it may
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Fig. 2. Overall Architecture of the Intermediate Memory Caching (IMCa) Layer

either pass the operation directly to the underlying file system, or perform certain transformations on it before passing it to
the underlying file system. The GlusterFS file system uses the asynchronous model of processing requests as discussed in
Section 2. Initially, requests are issued to the file system and later when they complete, a callback handler is called that
processes these responses and returns the results back to the client. The second part of SMCache maintains hooks in the
callback handler. These hooks allow SMCache to intercept the results of different operations and send them to MCDs if
needed. SMCache communicates with the MCDs using TCP/IP.

4.2 Design for Management File System Operations in IMCa
We now consider some of the design trade-offs for different management file system operations.
Stat operations: These are included in POSIX semantics. Stat applies to both files and directories. Stat generally contains

information about the file size, create and modify times, in addition to other information and statistics about the file. Stat
operations are a popular way of determining updates to a particular file. For example, in a producer-consumer type of
application, a producer will write or append to a file. A consumer may look at the modification time on the file to determine
if an update has become available. This avoids the need and cost for explicit synchronization primitives such as locks. This
approach is used in a number of web and database applications [12]. Since the data structures for the stat operations are
generally stored on the disk, stat operations usually have considerable latency. It is natural to consider stat functions for
cache based functionality. We have designed a cache based functionality for stat. At open, MCD is updated with the contents
of the stat structure from the file by SMCache. The key used to locate a MCD consists of the absolute pathname of the file,
with the string :stat appended to it. SMCache uses the default CRC32 hashing function in libmemcache [2] to locate the
appropriate MCD. For every read and write operation, the stat structure in the MCD is replaced with the most recent value of
stat by SMCache. CMCache then intercepts stat operations, attempts to fetch the stat information from the MCD if available,
and return it to the client. If there is a miss, which might happen if the stat entry was evicted from the MCD for example, the
stat request propagates to the server.

Create operations: These usually require allocation of resources on the disk. There is not much potential for cache based
optimizations. Create operations are directly forwarded from the client to the server without any processing.

Delete operations: These operations usually require removal of items from the disk. The potential for optimizations with
delete operations is limited. Delete operations are forwarded by the client to the server without any interception. When delete
operations are encountered, we remove the data elements from the cache to avoid false positives for requests from clients.

4.3 Data Transfer Operations
There are two types of file system operations that generally transfer data; i.e. Read and Write. To implement Read and

Write with IMCa, CMCache intercepts the Read and Write operations at the client. Before we discuss the protocols for these
operations, we look at the issue of cache blocking for file system operations.

4.3.1 Need for Blocks in IMCa
Most modern disk based file systems store data as blocks [10]. Parallel file systems also tend to stripe large files across a
number of data servers using a particular stripe width. Generally, the larger the block size, the better bandwidth utilization
from the disk and network subsystems. Smaller block sizes on the other hand tend to favor lower latency, but also tend to



introduce more fragmentation. IMCa uses a fixed block size to store file system data in the cache. Since IMCa is designed
as a generic caching layer and should provide good performance for a variety of different file sizes and workloads; the block
size should be set appropriately keeping these limits in mind. It should be kept small enough so that small files may be stored
more efficiently. It should also be kept large enough to avoid excessive fragmentation and reasonable network bandwidth
utilization. MemCached [3] has a maximum upper limit of 1MB for stored data elements as discussed in Section 2. This
places a natural upper bound on the size of data that may be stored in the cache. Depending on the blocksize, IMCa may need
to fetch or write additional blocks from/to the MCDs above and beyond what is requested. This happens if the beginning or
end of the requested data element is not aligned with the boundary defined by the blocksize. This is shown in Fig. 3. As a
result, data access/update from/to the MCDs become more expensive. This is discussed further in Section 4.3.2.

File data segmented
by IMCa blocksize

data

Data Block Boundaries

Requested data
Extra

Fig. 3. Example of blocks requiring additional data transfers in IMCa
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Fig. 4. Logical Flow for Read and Write operations in IMCa

4.3.2 Design for Data Transfer Operations:
We now look at the protocols for Read and Write data transfer operations in IMCa. We also consider the supporting func-
tionality for data transfer operations such as Open and Close.

Open: On the open, in CMCache, the absolute path of the file and the file descriptor is stored in a database, so that this
information may be accessed at a later point. At the server, the MCDs are purged of any data relating to the file when the
Open operation is received.

Read: The algorithm for Read requests in CMCache is shown in Fig. 4(b). On a Read operation, CMCache appends the
absolute path of the file (which was stored during the Open) with the offset in the file to generate a key. Since IMCa is based
on a static block size; the size of the Read data requested from the MCD may be equal to or greater than the current Read
request size. CMCache will generate keys that consist of the absolute pathname for the file, that was stored during the open
and the offsets from the Read request, taking into account the IMCa blocksize. CMCache uses the keys to access the MCDs
and fetch the blocks. If there is a miss for any one of the keys, CMCache will forward the Read request to the GlusterFS
server. The cost of a miss is more expensive in the case of IMCa, since it includes one or more round-trips to the MCD, before
determining that there might be a miss. The SMCache Read algorithm is shown in Fig. 4(a). Because of the IMCa block
size, the Read operation may potentially require the server to read additional data from the underlying file system. Once the
Read operation returns from the filesystem, the server will append the full file path name with the block offset and update the



MCDs with the data. The server may need to send several blocks to the MCDs servers. Using an additional thread to update
the MCDs at the server may potentially reduce the cost of Reads at the server.

Write: Write operations are persistent. This means that the Write operations must propagate to the server where they
need to be written to the filesystem. CMCache does not intercept Write operation. At the server, the Write operation is issued
to the file system as shown in Fig. 4(c). When the write operation completes, Read(s) are issued to the underlying file system
by SMCache that cover the Write area, accounting for the IMCa blocksize. When the data is available, the Read(s) are sent
to the MCDs. Since there may be multiple overlapping Writes to a particular record and because of the IMCa requirement
of a fixed block-size, neither CMCache nor SMCache can directly send the Write data to the MCDs. Write latency may be
potentially increased by the additional update of the MCDs at the server. Using an additional thread as with Reads can reduce
the cost of this update.

Close: Closes propagate from the client directly to the server without any interception. When the close operation is
intercepted by SMCache, it will attempt to discard the data for the file from the MCDs.

4.4 Potential Advantages/Disadvantages of IMCa
In this section, we discuss the potential advantages and disadvantages of IMCa.
Fewer Requests Hit the Server: The data server is generally a point of contention for different requests. In addition to

communication contention, there may be considerable contention for the disk. IMCa may help reduce both these contentions
at the server.

Latency for Requests Read From the Cache is Lower: With considerable percentage of Read sharing as well as
Read/Write sharing patterns, a large number of requests could potentially be fielded directly from the MCDs. This might
help reduce the latency for these patterns, in addition to reducing the load on the server.

MCDs are self-managing: Each cache in the MCD implements LRU. As the caches fill up, unused data will automatically
be purged from the MCDs. There is no need to manage the cache by the client or the server. This reduces the overhead of
IMCa. Additional caching nodes can be easily added. IMCa can transparently account for failures in MCDs.

Failures in MCDs do not impact correctness: Writes are always persistent in IMCa and are written successfully to the
server filesystem before updating the MCDs. Irrespective of node failures in the MCDs, correctness is not impacted.

Additional Nodes Elements Needed Especially For Caching: MCDs needs an array of nodes on which to run the
daemons. These nodes might be used for other purposes such as storing file system data or running web services.

Cold Misses Are Expensive: Reads on the client require one or more accesses to the MCDs depending on the blocksize
and the requested Read size. If any of these accesses results in a miss, the Read needs to be propagated to the server. As a
result, misses are more expensive than in a regular file system.

Additional Blocks/Data Transfer Needed: In IMCa data is stored in blocksizes to act as a tradeoff between bandwidth,
latency, utilization and fragmentation. If the block size is set too large, small Read requests will be penalized, requiring
additional data to be transferred from the MCDs. If the block size is set too small, large requests might require multiple trips
to the MCDs to fetch the data.

Overhead and Delayed Updates: IMCa hooks into both Read/Write functions at the server through SMCache. Read/Write
data from the server needs to be fed to the MCDs before it is returned to the client in non-threaded mode. This may result in
additional overhead at the server and updates from the MDCs being delayed.

5 Performance Evaluation
In this section, we attempt to characterize the performance of IMCa in terms of latency and throughput of different

operations. First, we look at the experimental setup.

5.1 Experimental Setup
We use a 64 node cluster connected with InfiniBand DDR HCAs. Each node is an 8-core Intel Clover based system

with 8GB of memory. The GlusterFS server runs on a node with a configuration identical to that specified above; it is also
equipped with a RAID array of 8-HighPoint Disks on which all files used in the experiment reside. IP over InfiniBand
(IPoIB) with Reliable Connection (RC) is used as the communication transport between the GlusterFS server and client; as
well as between the components of IMCa namely SMCache, CMCache and the MCD array. The MCDs run on independent
nodes and are allowed to use upto 6GB of main memory. Unless explicitly mentioned, SMCache and CMCache use a CRC32
hashing function for storing and locating data blocks on the MCDs. For comparison, we also use the default configuration
of Lustre 1.6.4.3 with a TCP transport over IPoIB. The Lustre metadata server runs on a node separate from the data servers
(DS).

5.2 Performance of Stat With the Cache
We look at the performance of the stat operation with IMCa as discussed in Section 4.2.
Stat Benchmark: The benchmark used to measure the performance of stat consists of two stages. In the first stage

(untimed), a set of 262144 files is created. In the second stage (timed) of the benchmark, each of the nodes tries to perform a



stat operation on each of the 262144 files. The total time required to complete all 262144 stats is collected from each of the
nodes and the maximum time among all of them is reported.

Performance With One MCD: The results from running this benchmark is shown in Fig. 5. Along the x-axis the
number of nodes is varied. The y-axis shows the time in seconds. Legend NoCache corresponds to GlusterFS in the default
configuration (no client side cache). Legend MCD (x) corresponds to GlusterFS with x MemCached daemons running. From
Fig. 5, we can see that without the cache, the time required to complete the stat operations increases at a much faster rate
than with the cache nodes. With a single MCD, the time required to complete the stat operations increases at a much slower
rate. At 64 clients, with 1 MCD, there is an 82% reduction in the time required to complete the stat operations as compared
to without the cache. GlusterFS with a single MCD outperforms Lustre with 4 DSs by 56% at 64 clients.

Performance With Multiple MCDs: With an increasing number of MCDs, there is a reduction in the time needed
to complete the stat operations. However, with an increasing number of MCDs, there is a diminishing improvement in
performance. For example, at 64 nodes, there is only a 23% reduction in time to complete the stat operation from 4 to 6
MCDs. The statistics from the MCDs show that the miss rate with increasing MCDs beyond 2 is zero. This seems to suggest
that 2 MCDs provide adequate amount of cache memory to completely contain the stat data of all the files from the workload.
There is little stress on the MCDs memory sub-system beyond two MCDs. The overhead of the communication protocol
TCP/IP is alleviated to some extent by going beyond two MCDs. Using four and six MCDs provide some benefit as may be
seen from Fig. 5. At 64 nodes, using GlusterFS with 6 MCDs, the time required to complete the stat operation is 86% lower
than Lustre with 4 DSs.
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5.3 Latency: Single Client
In this experiment, we measure the latency of performing read and write operations.
Latency Benchmark: In the first part of the experiment, data is written to the file in a sequential manner. For a given

record size r, 1024 records of record size r are written sequentially to the file. The Write time for that record size is measured
as the average time of the 1024 operations. We measure the Write time of record sizes from 1 byte to a maximum record
size in multiples of 2. In the second stage of the benchmark, we go back to the beginning of the file and perform the same
operations for Read operations, varying the record size from 1 byte to the maximum record size, with the time for the Read
being averaged over 1024 records for each given record size.

Read Latency with different IMCa block sizes: The results from the latency benchmark for Read is shown in Fig. 6(a)
and Fig. 6(b). For IMCa, we used block sizes of 256 bytes, 2K and 8K bytes. For the Read latency shown in Fig. 6(a), for
a record size of 1 byte, there is a reduction of upto 45% in latency using one MCD over using NoCache, with a block size
of 2K, and a 31% reduction in latency with an 8K IMCa block size. With an IMCa block size of 256, the reduction in Read
latency increases to 59%. As discussed in Section 4, even for a Read operation of 1 byte, the client needs to fetch a complete
block of data from the MCDs. So, we must fetch data in multiples of the minimum record size of IMCa. Smaller block sizes
help reduce the latency of smaller Reads, but degrade the performance of larger Reads, since CMCache must make multiple
trips to the MCDs. This may be seen in Fig. 6(a), where beyond a record size of 8K, NoCache has lower latency than IMCa
with a block size of 256 and has the lowest latency overall as the record size is further increased (Fig. 6(b)). Since no Read
at the client results in a miss from the MCDs, no read requests propagate to the server. We use a block size of 2K for the
remaining experiments.



Comparison with Lustre: We use one and four data servers with Lustre, denoted by 1DS and 4DS respectively. Also, we
use two different configurations for Lustre, warm cache (Warm) and cold cache (Cold). For the warm cache case, the Write
phase of the benchmark is followed by the Read phase of the benchmark without any intermediate step. For the cold cache
case, after the Write phase of the benchmark, the Lustre client file system is unmounted and then remounted. This evicts any
data from the client cache. Clearly, the warm cache case denoted by Lustre-4DS (Warm) provides the lowest Read latency
in all cases (Fig. 6(a)), since Reads are primarily satisfied from the local client cache (results for larger record sizes with a
warm cache are not shown). The cold cache forces the client to fetch the file from the data servers. So, Lustre-1DS (Cold)
and Lustre-4DS (Cold) are closer to IMCa in terms of performance.

Write Latency: The Write latency is shown in Fig. 6(c) with an IMCa block size of 2K. Write introduces an additional
Read operation in the critical path at the server (Section 4). Correspondingly, Write latency with IMCa is worse than the
NoCache case. By offloading the additional Read to a separate thread, the additional latency of the Read may be removed
from the critical path and the Write latency can be reduced to the same value as without the cache. IMCa provides little
benefit for Write operations because of the need for Writes to be persistent (Section 4.3.2). Correspondingly, we do not
present the results for Write for the remaining experiments.
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Fig. 6. Read and Write Latency Numbers With One Client and 1 MCD.

5.4 Latency: Multiple Clients
The multi-client latency tests starts with a barrier among all the processes. Once the processes are released from this

barrier, each process performs the latency test (with separate files), described in Section 5.3. The Write and Read latency
components as well as each record size for Read and Write is separated by a barrier. The latency for a particular record size
is the average of the times reported by each process for the given record size.
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Fig. 7. Read latency with 32 clients and varying number of MCDs. 4 DSs are used for Lustre.

We present the numbers for the Read latency with 32 clients each running the latency benchmark, while the MCDs are
being varied. These latency numbers are shown in Fig. 7(a) (Small Record sizes) and Fig. 7(b) (Medium Record Sizes). From
the figure, we can see that there is reduction of 82% in the latency when four MCDs are introduced over the NoCache case for
a 1 byte Read. Clearly, IMCa provides additional benefit in the case of multiple clients as compared to the single client case.
In addition, with 32 clients, and a single MCD, statistics taken from the MCDs show that there are an increasing number
of MCD capacity misses. These capacity misses are reduced by increasing the number of MCDs. The trend of increasing
capacity misses may be seen more clearly while varying the clients and using a single MCD. These Read latency number are
shown in Fig. 8(a) and Fig. 8(c). The Read latency at 32 clients is higher than with one client and increases with increase in
record size.

We also compare with Lustre at 32 clients (Fig. 7(a), 7(b)). With a cold cache, for small Reads less than 32 bytes, Lustre
(Cold) has lower latency than IMCa (4MCD). After 32 bytes, IMCa (4 MCD) delivers lower latency than Lustre (Cold).
IMCa with 1 and 2 MCDs also provide lower latency than Lustre beyond 8K and 2K respectively. Finally, Lustre (Warm)
again produces the lowest latency overall. However, the latency for IMCa (4 MCDs) increases at a slower rate with increasing
record size and at 64K, IMCa (4 MCDs) has lower latency than Lustre (Warm). Similar trends can also be seen with varying
number of clients (Fig. 8(b), Fig. 8(d)).

5.5 IOzone Throughput
In this section, we discuss the impact of IMCa on the I/O bandwidth. One of the benefits of a parallel file system with

multiple data servers over a single server architecture such as NFS is the striping and advantage of improved aggregate
bandwidth from multiple data streams from multiple data servers. This is especially true with larger files and larger record
size. Using multiple caches in MCD, it might be possible to gain the advantage of multiple parallel data servers, while using
a single I/O server. We use IOzone to measure the Read throughput of a 1GB file, using a 2K block size. We replace the
standard CRC32 hash function used by libmemcache [2] with a static modulo function (round-robin) for distributing the data
across the cache servers using a 2K block size. We measured the IOzone Read throughput with 1, 2 and 4 MCDs. These
results are shown in Fig. 9. From these results, it can be seen that we can achieve a IOzone Read Throughput of upto 868
MB/s with 8 IOzone threads and 4 MCDs. This is almost twice the corresponding number without the cache (417 MB/s) and
Lustre-1DS (Cold) (325 MB/s). Clearly, adding additional Cache servers helps provide better IOzone Read Throughput.

5.6 Read/Write Sharing Experiments
To measure the impact of IMCa in an environment where file data is shared, we modified the latency benchmark described

in Section 5.3 so that all the nodes use the same file. In the write phase of the benchmark, only the root node writes the
file data. In the read phase of the benchmark, all the processes attempt to read from the file. Again, as with the multi-client
experiments (Section 5.4), the Read and Write portions, as well the portions for each record size are separated with barriers.

We measure the read latency, with and without IMCa and compare with Lustre-1DS (Cold). With IMCa, we use one MCD.
The read latency is shown in Fig. 10. At 32 nodes, there is a 45% reduction in latency with IMCa over the NoCache case.
Also, as may be seen from Fig. 10, IMCa provides benefit, that increases with an increase in the number of nodes. Since we
are using a single MCD, with all the clients trying to read the data from the MCD in the same order, we see that the time even
with IMCa increases linearly. With a greater number of MCDs, we expect better performance. IMCa with 1 MCD provides
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slightly higher latency compared to Lustre-1DS (Cold) upto 16 nodes. However, at 32 nodes, IMCa with 1 MCD has slightly
lower latency than Lustre-1DS (Cold).



6 Related Work
In this Section, we discuss related work. Dahlin, et.al. proposed using client side caching to perform cooperative

caching [9, 11]. The client caches are tied together to form a single large file system cache taking advantage of low net-
work access latencies. Our work differs from their work in that we maintain a layer or bank of cache server nodes that are
independent of the client side caches. This helps reduce the impact of scalability issues with a coordinated client side cache
and coherency problems with an uncoordinated client side cache. R. Arpaci-Dusseau, et.al. [5] studied the impact of parti-
tioning the file buffer page cache when disks of different performance characteristics are used. They compare the proposed
partitioning scheme to traditional LRU mechanisms. Our work differs from their in that we use a set of cache nodes which
are independent of the file system page buffer cache on the server. Our caching mechanism can potentially lessen the load
on the server node and reduce the need for the caching partitioning schemes proposed in this paper. S. Jiang, et.al. [4, 6, 7]
proposed in this paper. S. Jiang, et.al. [6] proposed enhancements to the buffer caching algorithms on the file system servers.
Our work is different from their work in that we propose an intermediate hierarchy of caching nodes that are independent of
the file system buffer cache. Each cache server implements LRU, but overall the cache replacement algorithm is based on
the interaction of the client access patterns and the CRC32 hashing algorithm used for locating the data in most cases. Jiang,
et.al. [8] proposed using prefetching on the file system server cache to reduce buffer cache contention in network file servers.
We use an independent layer of cache servers and only perform prefetching to these cache servers on an OPEN, READ and
WRITE operation; not based on the access patterns at file server. Since the number of cache servers is large and there is more
memory on each server, the impact of cold misses addressed by Jiang, et.al. is less in our case. Banks of servers running
MemCached [3] are used to scale the performance of internet websites with significant amount of dynamic content such as
LiveJournal.com, facebook.com and mytube.com. These MemCached servers spread the Read requests across the servers
and propagate the Write requests to the back-end database server. MemCached servers have also been used to reduce the
performance impact of making database servers such as MySQL ACID compliant [3]. Our work has attempted to study the
advantages of using a bank of MemCached servers to scale file system performance transparently to the applications using
this file system. A low overhead distributed sharing substrate for scalable data-centers is proposed by Vaidyana, et.al. [14].
The distributed sharing substrate is based on put and get operations from multiple processes which are matched and ordered
based on different levels of coherence, namely Strict, Write and Read Coherence. Our work differs from this work in that we
have designed the cache to work transparently as part of a file system. Coherency is achieved mainly by serialization at the
file system server, and propagating the updates to the MemCache servers as soon as the Writes complete at the server.

7 Conclusions and Future Work
In this paper, we have proposed, designed and evaluated an intermediate architecture of caching nodes (IMCa) for the

GlusterFS file system. The cache consists of a bank of MemCached server nodes. We have looked at the impact of the
intermediate cache architecture on the performance of a variety of different file system operations such as stat, Read and Write
latency and throughput. We have also measured the impact of the caching hierarchy with single and multiple clients and in
scenarios where there is data sharing. Our results show that the intermediate cache architecture can improve stat performance
over only the server node cache by up to 82% and 86% better than Lustre. In addition, we also see an improvement in the
performance of data transfer operations in most cases and for most scenarios. Finally, the caching hierarchy helps us to
achieve better scalability of file system operations.

As part of future work, we plan to investigate different hashing algorithms for distributing the data across the cache
servers. In addition, we would also like to look at how network mechanisms like Remote Direct Memory Access (RDMA) in
InfiniBand can help reduce the overhead of the cache bank and also provide stronger coherency. We also plan on researching
how the set of cache servers may be integrated into a file system such as Lustre, where it can potentially interact with the
client and server caches. Finally, we would also like to study the relative scalability of a coherent client side cache and a bank
of intermediate cache nodes.
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