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ABSTRACT
Technological advancements have enabled many applications
to generate large amounts of data from scientific simulations
and experiments at an astounding pace. In enabling shar-
ing and effective use of this data for various classes of users,
especially within the web 2.0, it is important to be able
to support simple and intuitive interfaces. This paper de-
scribes a system that enables high-level queries over low-level
geospatial datasets. Our technique involves a combination
of natural language processing, machine interpretable meta-
data, and a service composition engine which dynamically
constructs workflows for answering queries based on service
and dataset availability. A specific contribution of this work
is the data-driven capability in which we provide a frame-
work to capture and utilize information redundancy that is
present in heterogeneous geospatial data sources. Our ap-
proach does not require a standarized format for storing all
data, or the implementation of a complex mediator-based
querying framework. We have evaluated our system using
several queries from the geospatial domain. Our results show
that our query planning (workflow composition) time is neg-
ligible as compared to the query execution time. Further-
more, the workflow composition time stay linear with both
the number of datasets and the total number of workflows.

1. INTRODUCTION
We have been observing an increasing amount of scientific
data generated by cutting edge applications and simula-
tions. This data can be collected using different measure-
ment units, different reference coordinates, and stored in a
variety of formats. This data could be extremely valuable for
both researchers and practioners. However, querying such
data poses several challenges: näıve users must interpret and
interact with potentially complex queries to retrieve data,
which is often returned in its original cryptic low-level for-
mat. Domain experts, on the other hand, are hindered by
the tedious workflow of manipulating multiple Web forms
in order to retrieve different types of data. In enabling the

sharing of this data for various classes of users, especially
within the emerging web 2.0 it is important to be able to
support simple and intuitive interfaces. This paper describes
such a system, which is driven by the geospatial domain.

In the geospatial community, data is gathered daily through
such devices as on-site sensors and satellites. Various classes
of users, ranging from those interested in purchasing a water-
front property to researchers trying to understand underly-
ing phenomenon, are interested in datasets for different time
periods and across disparate geographical regions. While
traditional database integration approaches like the use of
federated databases [33] or mediator-based systems [17, 34]
can be applied, we are interested in solutions which require
a significantly lower amount of effort. At the same time,
we need to be able to address the challenges arising due to
the characteristics of scientific data. As observed in geospa-
tial datasets, these characteristics include, but certainly not
restricted to:

• Massive Volumes — data may be collected in a con-
tinuous manner, e.g., gauge stations situated on coast-
lines transfer readings every few minutes.

• Low-level Format — data is normally stored in native
low-level format, rather than in structured databases,
and thus a standard method for data interaction is
lacking.

• Heterogeneous Data Sources — effective query results
might involve an integration of disparate data sources.

• Temporal-Spatio Domain — since geographical data
is highly volatile, rigorous maintenance of descriptors
such as location and date are imperative to provid-
ing accurate information. For instance, the shoreline
of Hawaii today is much different than what it was a
decade prior.

• Deep Web data — in many cases, datasets are nor-
mally stored as flat files in back-end file systems and
accessed via specific queries and user interaction with
Web forms. The National Oceanic and Atmospheric
Administration (NOAA [26]) provides one such por-
tal.

We have developed a system that enables high-level queries
over low-level geospatial datasets. Our technique involves a



combination of natural language processing, machine inter-
pretable metadata, and a service composition engine which
dynamically constructs workflows for answering queries based
on service and dataset availability. A specific contribution of
this work is the data-driven capability in which we provide
a framework to capture and utilize information redundancy
that is present in heterogeneous geospatial data sources. Be-
cause new data sources and services may be introduced often
in a distributed/shared GIS environment, such heuristics to-
wards dynamic service composition might therefore help al-
leviate some hardships by actively searching for novel ways
to approach queries.

Particularly, our approach is driven by the following ob-
servations. First, there is a growing trend towards meta-
data standards in various scientific domains, including the
geospatial domain. As an example, CSDGM (Content Stan-
dard for Digital Geospatial Metadata) has been developed
by FGDC (Federal Geographic Data Committee)[15]. The
second observation is that sharing of tools and programs as
Web services is becoming popular. A considerable move-
ment towards integrating geographical data with the Web
in both industry [18, 23, 19, 40] and academia [24, 6, 37, 11,
3] can be seen in recent developments.

Much of the success that Web services have achieved can
be attributed to its platform independent protocol which
provides a simple communications medium across heteroge-
neous systems. In addition to enabling interoperation be-
tween cross-platform machines, services enable distributed
access to code, datasets, devices, etc., making them avail-
able to a broad range of users. Aside from the applica-
tions that individual services can already provide, support
for more complex applications, e.g., integrated business pro-
cesses and large scale scientific analysis, may benefit from
a collaborative execution of services into the form of work-
flows. This process is generally known as workflow or service
composition, an area of research that has received significant
attention.

There exist several methods of service composition, most no-
tably, static, user-guided, and dynamic (automatic). Static
service composition is a process where specific workflows res-
ident in a system are preprogrammed. Although static work-
flows are efficient for handling certain requests, the system
can only handle a small set of specialized queries. Further-
more, addition, modification, or unavailability of services
and datasets may require schedules to be reprogrammed.
User-guided service composition seeks to involve users by al-
lowing them to manage the construction of a workflow to
answer their specified query. This is typically done by offer-
ing users an interface that features some graphical “building
block” construction of workflows. To better guide the user,
the usable set of building blocks goes through a semantic
filtering process each time a block is set in place by the
user. While these systems offer customization, the composi-
tion process still involves the identification of the correct ser-
vices and datasets, which may seem daunting to non-experts
whom might only be interested in casual queries.

The goal of dynamic workflow composition is to maximize
transparency by eliminating intermediate user intervention
altogether. Systems that employ dynamic workflow compo-

sition maintain an index and metadata of the available ser-
vices by using some service discovery or registration method.
Upon query requests, it generates execution paths on-demand
through an exhaustive semantic and schema matching heuris-
tic. Compared to the static approach, this is expectedly
more time consuming than simply executing a prescheduled
sequence, however, it offers multiple execution paths to pro-
vide more flexibility when approached with the aforemen-
tioned adversities. Against the user-guided approach, it may
lack the personalization of the exact workflow, but saves the
user from its construction.

We believe that dynamic workflow composition can be com-
bined with machine-interpretable metadata, a domain on-
tology, and a natural language interface to offer simple and
intuitive tools for querying a variety of scientific datasets,
which are stored in low-level formats. Our approach does
not require a standarized format for storing all data, or
the implementation of a complex mediator-based querying
framework. Besides expecting the availability of tools and
programs as Web services, our approach requires that all
data be annotated with a standard metadata.

Our system was evaluated using several queries from the
geospatial domain. Results show that our query planning
(workflow composition) time is negligible as compared to
the query execution time. Furthermore, the workflow com-
position time stay linear with both the number of datasets
and the total number of workflows.

The remainder of this paper is organized as follows. An
overview of our system is presented in Section 2. In Section 3
we discuss technical details of the system. An evaluation of
the system is given in Section 4. We compare our work with
related research efforts in Section 5, and finally, we conclude
and discuss future directions in Section 6.

2. SYSTEM OVERVIEW
A conceptual view of our system is shown in Figure 1. We
present a quick overview of each component’s requirements.

Query Parser — Among our system’s goals, one is to pro-
vide some provision of user-friendliness. To this end, we
want to support high-level user queries, which implies that
a somewhat sophisticated natural language parser should be
included. Specifically, the query parser takes a query and
parses its relevant portions into concepts in our scientific
domain.

Workflow Construction Engine — Given that a well-defined
query, appropriate services and datasets are selected for use
and their composition is reified dynamically through consul-
tation with the ontological data. This component outputs
a set of possible orderings on a sequence of services. Cor-
rectness is imperative in this feature, that is, all generated
sequences of service execution must produce the targeted
result. Discussed next, enriching available datasets and ser-
vices by describing their interrelationships, along with rel-
evant domain information, enables semantics matching to
help guarantee workflow correctness.

Services and Data Annotations — Semantic descriptions of
the available data and services including their interrelations
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Figure 1: Overview of the System

must be provided to the system. First, for geospatial datasets,
metadata is specified in CSDGM (Content Standard for Dig-
ital Geospatial Metadata), as required by the Federal Geo-
graphic Data Committee (FGDC) [15]. CSDGM annotates
data files with such descriptions as coverage, date of cre-
ation, coordinate system, etc. For services, their interface is
typically described in WSDL. In addition to data type de-
scriptions, our annotations also include domain information
that will aid in supporting automatic determination of cor-
rectness such as dependencies and context suitability. Effec-
tive classification of geographic datasets and services along
with a description of their interrelationships will help filter
the set of services to those suitable for execution. We use
a standard ontological descriptor, Web Ontology Language
(OWL) [8], for this purpose.

3. TECHNICAL DETAILS
For clarity, we feel that it is necessary to first understand
how the system captures the available data, services, and
their methods of interoperation. We propose an ontology,
depicted in its general form in Figure 2, which consists of
three classes:

1. Domain Concept Class — Domain entities such as lo-
cation, shoreline, parcel, etc., are classified as instances
of this class.

2. Data Class — Data instances are represented as a pair
containing the URLs to its content and metadata de-
scription.

3. Service Class — Each service instance encapsulates its
WSDL file location and other semantic information
such as preconditions on its parameters.

Domain
Concepts

Services Data

derivedFrom

derivedFrom derivedFrom

needsInput

derivedFrom

Figure 2: Ontology for Domain Specific Semantic
Description

Having defined the top-level classes in our ontology, the next
issue involves defining how each entity relates to one an-
other. This step is imperative to our workflow construction
engine, since our methodology for ensuring the workflow’s
semantic correctness is based directly on the decomposition
of domain concepts into services and datasets. We designed
two relationships:

1. concept derivedFrom (service or data) — This rela-
tionship states that concept instances contain outgoing
derivedFrom links to either data or service instances.
This denotes that high-level domain concepts can be
somehow derived by some types of data or is the prod-
uct of some service. Each concept must contain one
or more derivedFrom links, or else there is no reason
for the concept to exist in the system. For exam-
ple, if there does not exist any sequence of services or
data that can somehow return results on the concept
of “wind,” then the system cannot answer any queries
involving wind.

2. service needsInput concept — Instances in the service
class may contain zero or more needsInput links back to
domain concepts. This relationship is necessary for the
system to understand each service parameter’s mean-
ing. For example, assume some service S maintains
two parameters, a and b. While it is simple to deduce
(perhaps from S’s WSDL description) the data types
of both parameters, without domain information, it
becomes intractable to determine just what they rep-
resent.

The ontology’s design, admittedly simple, serves a purpose
for future developments. While this paper specifically in-
volves the geospatial domain, the ontology’s open structure
allows us to believe that it can be easily generalized to many
other scientific domains. Since it is the semantic core of our



system, it is realistic to assume the possibility of our system
supporting “plug-and-play” domains without involving too
much effort.

We lead into the discussion of the technical specifications of
each system component through a simple working example.
For the remainder of this section, let’s assume that the on-
tology as depicted in Figure 3 is given to the system. The
first item to note is that it has been “unrolled” from the gen-
eral form for visualization purposes. The nodes labeled C,
S, and D correspond to concept, service, and data instances
respectively. From the top, the waterLevel concept contains
three service methods of derivation: getWL, WLFromALT,
and retrieveData. Each of these service instances contains
links back to domain concepts. For instance, retrieveData
requires two parameters, whose concepts are coord and wa-
terGauge. Focusing on the coord path, the system can un-
derstand that it can be derived by either immediate data
(exact coordinates are given by user) or a service call to lo-
cation2coord, which eventually sinks into an immediate data
instance where the user must at least provide the location
in the query.
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Figure 3: Example Ontology

The coord concept’s subgraph itself exposes the much de-
sired feature that multiple workflows can be generated to
answer the same query. We mentioned earlier in the in-
troduction that one of our goals is the provisioning of an
intuitive user interface for all classes of users. Here is one
such example. Whereas the näıve user might only supply
a general location to the query, the domain expert may be
able to provide the exact coordinates. Although one more
service call is needed for conversion of a general location to
approximate coordinates, the transparency of this process is

the ultimate objective. Having described the example on-
tology, for the remainder of this section, assume that the
following query has been submitted to the system:

‘‘return water level at Lake Erie on 10/2/2007’’

3.1 Query Parser
The objective of the natural language parser is to extract
and attach domain information to the user given data. We
want to not only uncover the final target concept of this
query (water level), but also correctly decompose the user
given data into the following concept=value pairs: loc=Lake
Erie, date=10/2/2007. Using Stanford NLP [20] the query
is broken into distinct grammatical relations as shown in
Figure 4(a). Each relation represents a candidate of pro-
viding relevant data towards a machine interpretable query
structure. To reify each relation into a specific domain con-
cept, we perform synonym matching using WordNet [14] to
look for materializations of domain concepts. Together with
the semantics of each grammatical relation, we can expect
the extracted immediate values in Figure 4(b).

return

water level

(direct object)

10/2/2007

on

Lake Erie

at

(a) Query Parse Tree

Immediate Data = imm[...] = 

waterlevel

Concept

Query Target

{
loc→ {LakeErie}
date→ {10/2/2007}

(b) Immediate Data

Figure 4: Query Parsing Process

These pairs of user-provided (immediate) data are stored in
a hashtable imm[. . . ] and input into the service composition
engine along with the target domain concept waterLevel.
This table is keyed by concept instances, and each key points
to linked list of given values that has been parsed under that
concept.

Next, we define the workflow composition problem, and de-
scribe in-depth our solution.

3.2 Problem Statement
Under our framework, a workflow w is recursively defined as

w =

(
d

(s, Ps)

such that d is a data instance and (s, Ps) is a tuple where s
denotes a service and parameter list Ps is an n-tuple (p1, . . . , pn)
and each pi is a sub-workflow. In other words, a workflow
is either a single data element or a service whose parame-
ters are themselves products of workflows. Presumably, the
execution of a workflow reduces it to a base data element,
which is ultimately its final product. A workflow can also be
represented as its (possibly) more familiar form of a directed
acyclic graph (DAG) if we let vertices denote services and
data elements, and directed edges denote the flow of data.



The best-effort aspect of this problem is akin to most dy-
namically natured systems in that upon faults it persistently
attempts alternative, albeit potentially less optimal or ap-
proximate, solutions. To this end, we propose an algorithm
that enumerates all workflow candidates from the given re-
sources (services and data) in our system. The system then
executes workflows within this set, iterating through candi-
dates as needed.

3.3 Workflow Enumeration Algorithm
Domain concept derivation is the basic goal behind con-
structing each workflow. The algorithm takes a target con-
cept, in our case target = waterLevel, and the set of im-
mediate data, imm[. . .], as input and outputs a set W of
unique workflows that are capable of returning the desider-
ata for the target concept. From target concept, we simply
traverse every outgoing edge until we reach a data node —
recall from the problem statement that every well-defined
workflow must somehow default to a data component, and
thus, all sink nodes in the ontology are base data elements.
Each workflows is built recursively from the bottom up with
each split at a concept node defining a unique path (a new
workflow) towards solving the target concept. This proce-
dure, detailed in Algorithm 1, is akin to depth-first search
on the ontology.

Returning to Figure 3, we can see that the waterLevel con-
cept contains at least 3 workflows, as it is directly derivable
by three types of services/data. In this case, waterLevel
is derivable by three distinct services, i.e., (Line 7) assigns
B ← {getWL, WLFromALT, retrieveData}. Without loss
of generality we focus simply on the getWL path. This par-
ticular service consists of two parameter concepts: (Line 21)
of the algorithm thus assigns P with two parameters of con-
cept types date and coord respectively.

(Lines 22-31) build a running set, ∆, of sub-workflows that
can be used derive all parameters in P by calling the algo-
rithm recursively on each parameter’s concept. That is, each
δ ∈ ∆ denotes a set of candidate sub-workflows that derives
each corresponding parametric concept. Notice that a re-
cursive call is avoided through memoization (Lines 24-25) if
the concept node has already been visited and solved. Oth-
erwise, we are forced to make a recursive call (Lines 28-29)
on the given concept node with a potentially narrowed set of
immediate data. The motivation behind redistributing the
set of immediate data will be discussed later.

To further our example, ∆ is built by making consecutive re-
cursive calls on date and coord. Here, date has a single path
of derivation through immediate data while coord can be de-
rived through both immediate data or calling the loc2coord
service, and ∆ is thus assigned {{(imm[date])},
{(imm[coord]), (loc2coord, (imm[loc]))}}.

In substantiating the service parameter list we must ac-
count for all combinations of the sub-workflows contained
in ∆. We compute the cross product of all δ ∈ ∆ (Line
32) to obtain a set of distinct parameter lists Params =
{(imm[date], imm[coord]), (imm[date], loc2coord(imm[loc]))}.
Each element in Params is then coupled with the original
service, getWL, to obtain the set of unique workflows. The
process continues for the remaining services used to derive

Algorithm 1 enumWF(target, imm[. . . ])

1: W ← ∅
2: /* static arrays for memoization */
3: global visited[. . . ]
4: global subWorkflows[. . . ]
5:
6: /* B denotes the set of all data/service elements that

can be used to derive target concept */
7: B ← derives(target)
8: for all β ∈ B do
9: if β is a data element then

10: if β is immediately available from query then
11: W ←W∪ imm[target]
12: else
13: /* β denotes dataset */
14: for all file ∈ getF iles(β, imm[. . . ]) do
15: W ←W ∪ file
16: end for
17: end if
18: else
19: /* β is a service element */
20: /* P denotes the set of service params */
21: P ← getServiceParams(β)
22: ∆← ∅
23: for all p ∈ P do
24: if visited[p.concept] = true then
25: ∆← ∆ ∪ subWorkflows[p.concept]
26: else
27: /* redistributing immediate data of each

param may be necessary for correctness */
28: imm′[. . .]← redistribute(β, p, imm[. . . ])
29: ∆← ∆ ∪ enumWF(p.concept, imm′[. . . ]))
30: end if
31: end for
32: Params← crossProduct(∆)
33: for all pm ∈ Params do
34: W ←W ∪ (β, pm)
35: end for
36: end if
37: end for
38: visited[target] ← true
39: subWorkflows[target] ←W
40: return W

the original concept to obtain the set W of candidate work-
flows, shown in Table 1. This example extracts w3 and w4.

Of course, it is expected that not all candidates in W can be
materialized due to a lack of provided immediate data. Af-
ter all, it would make little sense for the user to provide both
a location specific coordinates in the same query. Assuming
that only the location is given, and each dataset element
identifies only a single file url, then the true workflow can-
didates are uncovered, W = {w2, w4, w6}.

3.4 Data Identification
One abstraction with data handling is the getFiles(. . . ) sub-
routine on (Line 14) which crawls through the system’s index
on data files given the immediate data list (which contains
geospatial properties as required by the user) and returns
a set of URLs to the relevant data. In order for this rou-
tine to operate accurately, our system requires each file to



Table 1: Workflows for Deriving “Water Level”
W
w1 (retrieveData, (imm[coord], url[gaugeData]))
w2 (retrieveData, (loc2coord, (imm[loc])),

url[gaugeData])
w3 (getWL, (imm[date], imm[coord]))
w4 (getWL, (imm[date], (loc2coord, (imm[loc]))))
w5 (WLfromALT, (imm[date], imm[coord],

url[altimetryData]))
w6 (WLfromALT, (imm[date],

(loc2coord, (imm[loc])), url[altimetryData]))

be coupled with the federal standard metadata description,
CSDGM, as mentioned in the previous section. CSDGM an-
notates each file with information such as its area of coverage
and date of relevance.

Specific to the metadata standard, the date (or range of
dates) is given by the CSDGM element <timeinfo>. In our
datasets, each file contains a single date of relevance, e.g.,

<timeinfo>

<sngdate>

<caldate>20050708</caldate>

</sngdate>

</timeinfo>

The spatial coverage, denoted in <spdom>, is given by us-
ing 4 boundary lines. The graphical representation of this
information is provided in Figure 5:

<spdom>

<bounding>

<westbc>0</westbc>

<eastbc>78.89</eastbc>

<northbc>42.87</northbc>

<southbc>0</southbc>

</bounding>

</spdom>

The brute force solution for identifying the correct data files
is to linearly match user requirements against each file’s cor-
responding metadata description on its spatial coverage and
time of relevance. Linear search, however, will undoubtedly
dominate our algorithm’s response time. Instead, we de-
cided on a multilevel index on each file’s spatial coverage
and date. Although this multilevel index is enough for run-
ning experiments on our small experimental datasets, more
sophisticated spatio-temporal indices [31, 4] should be used
in practice due to the fine granularity of both properties.

3.5 Mapping Immediate Data
The other complication with data involves those that are
user provided. Notice that the workflow enumeration al-
gorithm does little to guarantee any form of correctness
of its generated workflows. We use another application-
driven example to expose this problem. Consider a service,
getDiff(L1, L2), that returns the land surface change be-
tween two topological data files L1 and L2 (assume that

northbc
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tb
c

southbc

e
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tb
c

Figure 5: CSDGM Spatial Bounding Information

these files each contain a single matrix). Description of this
service is simple. It assumes that L1 is a dataset obtained
at an ealier time than L2, and that they both belong to
the same geographical region; the service simply outputs
L2 − L1.

In order for the service to make these assumptions, we must
ensure that the data given as are reliable. We draw on well-
established solutions for program correctness by requiring
that a set of preconditions be met before allowing the exe-
cution to be deemed valid. It should be clear that the fol-
lowing precondition must be captured in order to implement
the above semantics: (L1.date ≤ L2.date∧L1.loc = L2.loc).
Staying in line with our example, assume that the query
parser outputs the following immediate dataset:

imm[. . . ] =

(
loc→ {(x, y)}
date→ {10/2/2007, 12/3/2004}

To satisfy our precondition, we distribute the values ac-
cordingly down their respective parameter paths. Called
on (Line 28) of the algorithm, this procedure is illustrated
in Figure 6. Notice that if no possible assignment exists, the
workflow candidate is implicitly discarded by the recursive
call in (Line 29) because imm′ would not contain enough
immediate data to substantiate the workflow.

3.6 Complexity Analysis
In terms of time complexity, recalling that our proposed
ontology is a semantically glorified DAG, the enumeration
algorithm is reducible to Depth-First Search (DFS). We can
observe that, by initiating with the target concept node, it
is necessary to traverse all intermediate nodes until we reach
the sinks (data), leaving us with a number of distinct paths
and giving our algorithm the same time complexity as DFS,
O(|E| + |V |). For clarity, we decompose its set of vertices
into three familiar subsets: concepts nodes C, services nodes
S, and data nodes D, i.e., V = (C ∪ D ∪ S). Since the

maximum number of edges in a DAG is |E| = |V |∗(|V |−1)
2

,

our algorithm yields an O((|C| + |D| + |S|)2) worst case
upper bound. Although theoretically sound, we argue that
this measure is excessively conservative, and a recount of the
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defined structure of our ontology help justify this claim.

1. (@(u, v) : u, v ∈ K|K ∈ {C, S, D}) No edges exist
within its own subgraph.

2. (@(u, v) : u ∈ S ∧ v ∈ D) Edges from service to data
nodes are not allowed.

3. (@(u, v) : u ∈ D) Data nodes are sinks, and thus con-
tain no outgoing edges.

A more accurate measurement of the maximum number of
edges in our ontology should be computed with the above

constraints, in which we obtain |E| = |C| ∗ (|S|+ |D|
2

), and
thus giving us a significantly tighter upper bound.

4. EXPERIMENTAL RESULTS
The experiments that we conducted are geared towards ex-
posing two particular aspects of our system. We show that
our workflow enumeration algorithm is efficient compared
to workflow execution time. We also present our system’s
capability for scaling to large amounts of available data and
services. Our system was evaluated on a Linux machine run-
ning off Pentium 4 3.00Ghz Dual Core with 2GB of RAM.
In order to somewhat stabilize workflow execution time all
available data files that are required by queries are local,
and the geospatial Web services are provided on a separate
server located across our campus’ network. While it is in-
conceivable to suggest that all indexed datasets reside on the
local machine, we argue that local data access will only bias
(by possibly shortening) workflow execution time, which is
not the focus of these experiments.

Three application driven queries, as outlined in Table 2,
were provided to us by domain experts at the Department
of Geodetic Sciences here at Ohio State. While the type
of queries that one can issue is innumerable, these were es-
pecially designed to capture our performance evaluation re-
quirements while still pertaining to practical applications.

Our first query, Query 1, involves the interoperation of 4
distinct services to retrieve Deep Web data from NOAA.

Table 2: Experimental Queries
Query 1 “return water level of at (x, y) on 07/08/2004

at 06:18”
Query 2 “return surface topology difference at (x, y)

from 07/08/2003 to 07/08/2005”
Query 3 “return shoreline extraction at (x, y) on

07/08/2004 at 06:18”

These services include (S1) GetGSList: performs a lookup
that retrieves a list of all currently available water gauge
stations, (S2) GetClosestGS: given coordinates and a list of
gauge stations this service extracts the ID of closest gauge
station, (S3) GetWL: extracts the waterlevel at the given
gauge station ID and date (returns a list of readings de-
limited by time), and (S4) GetTimeWL: extracts the exact
reading at the given time. Our system is actually capable of
generating three correct workflows to solve this query:

• w1 = S4(S3(S2(S1()))) — this workflow uses S1 to
fetch the gauge station list from Deep Web, which
guarantees that the most up-to-date list of gauge sta-
tions is always used. This is significant since the result
of S2 directly relies on this list.

• w2 = S4(S3(S2(DATAgaugeList))) — this workflow
will search the system’s data index for a cached list
of gauge stations. This is useful if either S1 or if the
gauge station list residing in Deep Web is unavailable.

• w3 = S4(S3(imm[GSID])) — this workflow takes the
gauge station ID directly from the user, saving 2 su-
perfluous service calls. This one may be preferred by
domain experts who are only interested in a particular
gauge station’s readings. Note that since GSID is not
given in the query, this particular workflow would not
have been enumerated. However, for completeness, we
decided to list its possibility.

The results for Query 1 are shown in Table 3. The execu-
tion times reported for each workflow is an average of 10
distinct runs, and as expected, are proportional to the num-
ber of service calls (although this may not always be true in
general). Compared to the execution times, the runtime of
our enumeration algorithm is diminutive. We believe that
these results suggest that our system is capable of efficiently
streamlining a potentially complex process through service
composition that may have taken a user several steps to com-
plete. Moreover, it has the option to dynamically attempt
various workflow candidates upon initial faults/exceptions,
and thereby supplying robustness to the user.

Table 3: Results for Query 1
Workflow Enumeration Time

5.0× 10−4 sec

Workflow Execution Time
w1 w2 w3

2.401 sec 2.127 sec 1.234 sec



The second and third queries were designed to deal with
geospatial datasets that are indexed on their temporal-spatio
metadata information. Query 2 is interested in the surface
difference between some location in a 2-year span. It in-
volves a service, GetDiff, which is given two separate digital
elevation model (DEM) files dold and dnew. These files must
be correctly identified using the given time and location. For
correctness, our workflow construction engine differentiates
these two parameters by distributing the dates correctly to
its parameters using the methods discussed in Section 3.5.
Query 3 extracts shoreline information by using a service
GetShoreline, which takes as input the results of Query 1
combined with a DEM file pertaining to the same location.
This is a two-step process; it must first construct the exact
Deep Web extraction workflow as Query 1 to retrieve a wa-
ter level value, and then correctly identify the resident DEM
file.

Query 2 and 3 are used to expose system scalability. Be-
cause Query 1 does not involve data identification, it is not
included in these evaluations. Note that the average work-
flow execution times for both queries are shown in Table
4. It is well-expected that the execution time for Query 3
will take much longer due to its Deep Web access, whereas
Query 2 involves a single service invocation. In our first ex-
periment, we synthetically generated an increasing number
of DEM files that must be searched. For our experiments,
the size of each file was 1 KB. The workflow enumeration
times that are shown in Figure 7 suggest that the algorithm
scales linearly against the varying amount of available data
candidates. Furthermore, the line for Query 2 appears to
dominate Query 3 because it needs to access an additional
DEM file.

Table 4: Execution Times for Queries 2 and 3
Query Execution Time

Query 2 0.772 sec
Query 3 2.41 sec
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Figure 7: Scaling to Data File Candidates

Our next evaluation examines scaling to the number of work-
flow candidates, |W |. The results, depicted in Figure 8, show
that the system again scales linearly to the size of workflow
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Figure 8: Scaling to Workflow Candidates

candidates. To obtain |W | = |D| ∗ |S|, we fixed |D| = |S|
for |S| = 50, 100, 150, 200, etc. Admittedly, as |W | gets very
large, e.g., |W | > 1M , the system will begin to thrash since
the amount of storage needed to store the candidates satu-
rates system memory. But again, we stress that the expected
size of |W | in practice is very small compared to these ex-
tremities.

5. RELATED WORK
The call for a semantic-conscious Web has been addressed by
such specifications as the Resource Description Framework
(RDF) and its complement the Web Ontology Language
(OWL) [22, 8]. These specifications allow for a standard
framework for injecting metadata into any variety of appli-
cations. This supplies common machine-readable resources
with a means of machine-understanding and interpretabil-
ity. In our proposed system, we utilize RDF to formalize a
general ontology which describes the relationships between
certain domain-specific concepts and resources (datasets and
services) available over the Web. This resource description
is imperative to our system, as it semantically drives our
workflow/service composition algorithm.

Service composition [13, 30, 27] is deeply rooted in legacy
workflow management systems, where a streamlined execu-
tion of well-defined “processes” are used to define complex
tasks in business and scientific operations. In fact, to com-
plement the growing need for interoperability and data in-
tegration, many prominent workflow managers [9, 28, 2, 21]
have evolved into service-oriented systems. These systems
typically allow domain experts to define static workflows
through a user-friendly interface, and map the component
processes to known Web services. By itself, service compo-
sition have become prevalent enough to warrant such indus-
trial standards as the WSBPEL (Web Service Business Pro-
cess Execution Language) [38] to describe the orchestration
of service execution. Implementations of WSBPEL engines
have already sprawled into realms of proprietary and open-
source communities, an auspicious indication of the high
optimism for the movement towards composite service so-
lutions.

Static composition systems (e.g., Microsoft BizTalk Server



[5]) are effective with the absence of changes in the comput-
ing environment such as the introduction or replacement of
services. Such systems typically exist under proprietary do-
mains, where the set of workflow processes and their compo-
nents are rigorously defined and maintained. These systems,
however, are inadequate in the face of a dynamic comput-
ing environment where new services are made available and
reimplemented on a daily basis.

Many systems have been proposed to alleviate the painstak-
ing task of maintaining consistency and correctness of the
composite services under this environment. For instance,
[7, 25, 12] describe a hybrid support for static workflows
under dynamic environments. In HP’s eFlow [7], a work-
flow’s structure (known as a process schema) is first de-
fined by some authorized users, but the instantiation of
services within the process is dynamically allocated by the
eFlow engine. It is also worth noting that eFlow also sup-
ports high level modification of schemas when necessary.
Sirin et al. proposed a user interactive composer that pro-
vides semi-automatic composition [35]. In their system, af-
ter each time that a particular service is selected for use
in the composition, the user is presented a filtered list of
possible choices for the next step. This filtering process is
made possible by associating semantic data with each ser-
vice. SELF-SERV [32] is also user-guided but at a more
abstract level where the actual instantiation of services is dy-
namically chosen. Traverso et al. discussed the importance
of exploiting semantic and ontological information for au-
tomating service composition [36]. Their approach generates
automata-based “plans”, which can then be translated into
WSBPEL processes. The goals and requirements for these
plans, however, must be expressed in a formal language,
which may be cryptic for the average user. Other planning-
based systems [29, 39] also require similar complexity in ex-
pressing workflows. Fujii and Suda [16] proposed a 3-tier
architecture for semantics-based dynamic service composi-
tion. The system uses natural language processor to parse
queries into “components”, and performs semantic matching
to assure that a composed service satisfies the semantics of
the query.

More pertinent to our work, the impetus and merits behind
geospatial service composition have previously been high-
lighted in [1]. Di et al. described their system for ontology-
based automatic service composition [10]. Here, workflows
are composed via a rule-based system, and correctness is
kept through backwards reasoning. However, base rules that
are needed to generate a specific geospatial concept must ex-
plicitly defined in the system.

6. CONCLUSION AND FUTURE WORK
In this paper we have presented a system which supports
simplified querying over low-level geospatial datasets. The
entire process is enabled through a combination of effective
indexing over metadata information, a system and domain
specific ontology, and a workflow construction algorithm ca-
pable of alleviating all tiers of users of the difficulties one
may experience through dealing with the complexities of
scientific data. Our experiments have shown that the work-
flow construction algorithm is indeed capable of enumerating
all possible composite services efficiently. Even under ex-
treme circumstances of maintaining large numbers of data

and workflow candidates, our results show that the enumer-
ation time is insignificant compared to the actual workflow
execution time.

It is difficult, nonetheless, to ignore the looming possibility
of a large workflow candidate set. As we mentioned in the
end of Section 4, the enumeration algorithm will not scale to
massive amounts of workflows to answer one ad hoc query.
While the paper addresses the possibility of efficiently enu-
merating all possible workflows, often in practice, it is an
unnecessary and time consuming task. We are currently in
collaboration with experts in the Department of Geodetic
Sciences to implement a cost model that includes, among
others, a predictive accuracy model for geospatial datasets.
This accuracy model involves an acute understanding of each
geo-data source and the possibility of propagation errors.
Combined with a method that calculates network and com-
putational latencies, our goal is to infuse this model with the
enumeration algorithm to obtain a cost-effective heuristic for
workflow optimality.
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