
A Placement Service for Data Mining Centers

Gregory Buehrer
The Ohio State University

Columbus, OH USA

buehrer@cse.ohio-state.edu

Srinivasan Parthasarathy
The Ohio State University

Columbus, OH USA

srini@cse.ohio-state.edu

ABSTRACT
In this article we describe a placement service for distributed
data mining centers. We seek to provide a service with suffi-
cient generality to suit a variety of web mining and machine
learning algorithms, yet one which offers properties beyond
typical robustness, lookup, and extraction support for gen-
eral applications. To accomplish this, we design the service
to incorporate locality of placement based on the similar-
ity of records in the input data. Specifically, we propose to
leverage hashing techniques with low compute complexities
to form small, highly similar groups of records which can
then be assigned to a machine in the cluster based on the
data currently residing on that machine. The subsequent
increase in local neighborhoods for the resulting machine
partitions can improve mining executions for pattern dis-
covery, nearest neighbor searching, and efficient graph com-
putations, among other applications. We provide the details
of the programmer interface and offer an empirical evalua-
tion of the proposed placement techniques. As an examples,
we maintain over 40% of the local neighborhood of a large
document corpus derived from the web when distributing
it over 1024 machines. For large web graphs, we reduce the
edge cuts by half when compared to URL ordering over 1024
machines. For fault tolerance, we leverage the local similar-
ity in the partitions to improve indexable compression ratios
by over 450%.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining; H.4.m [Information Systems]: Miscella-
neous

General Terms
Locality, Placement

Keywords
Data Mining Service, Data Placement

1. INTRODUCTION
Advances in data collection technology have led to the cre-

ation of large scale data stores. Examples abound ranging
from astronomical observational data to social interaction

Copyright is held by the author/owner(s).
WWW2008, April 21–25, 2008, Beijing, China.
.

data, from clinical and medical imaging data to protein-
protein interaction data, and from the multi-modal content
on the World Wide Web to business and financial data rou-
tinely collected by enterprises. A fundamental challenge
when working with very large data is the need to process,
manage and eventually analyze it efficiently. A commodity
cluster of nodes with a low-latency, high-bandwidth inter-
connect and with high-capacity commodity disks offers a
cost-effective solution to this challenge. However, leverag-
ing the features of such clusters or data centers to deliver
end-to-end application performance is still fraught with dif-
ficulties.

Three of the most significant issues when employing dis-
tributed clusters for data mining are i) localizing computa-
tion (maximizing independent computation and minimizing
communication), ii) generating a balanced workload, and iii)
the need to be fault tolerant (data loss, hardware failures).
The placement of data onto a tightly coupled system area
network can have a significant impact on the performance
of the application in all three of the challenges above, and
is therefore the target of this article.

There are several orthogonal dimensions to consider when
developing data placement policies. For example, a place-
ment policy might attempt to place closely related pieces of
data together to facilitate localized computation. Along an-
other dimension, a policy might favor redundant data place-
ment to facilitate fault tolerant computing. This replication
may also be used to improve computation runtimes. A third
dimension is disk balance. Support for flexible placement
policies is thus highly desirable. In this article we describe
the design, development and evaluation of such a flexible
placement service for next generation data analysis centers.
While the placement service is fairly general-purpose, in
this article we place emphasis graph and network structured
datasets. Such datasets are fairly ubiquitous, and processing
and analyzing them is particularly challenging. For exam-
ple, computing betweenness on the web graph, which is con-
servatively estimated to be on the order of 20 billion nodes
and 500 billion edges, requires a combination of distributed
computation, distributed placement, and clever compression
techniques.

The central features of our proposed placement framework
include

• low-complexity policies to improve similarity between
records on a machine,

• efficient, indexable data redundancy

• a flexible hashing mechanism for placement which al-

lows user-specified similarity metrics

• a simple-to-use programming interface which supports
a variety of data input types

We evaluate our placement framework on several large,
real datasets drawn from the web domain. We show the ser-
vice maintains neighborhoods when moving from a global
data structure to the partitioned data for both document
data as well as graph data, up to 65% more than typical
distribution strategies. Also, it reduces the cuts in a dis-
tributed graph from 99% using a round robin scheme to
only 7% on 1024 machines. For pattern mining, the local
partitions contain over 10-fold more closed patterns at the
same support levels. Finally, we illustrate the effectiveness
of the placements schemes when compressing the data, re-
ducing the data footprint over 14-fold while still maintaining
indices into each record.

2. PRELIMINARIES
In this section we describe the target environment for our

service, as well as the existing approaches.

2.1 Model
We develop this placement service for a distributed cluster

of PCs executing a variety of data mining applications. The
input data is assumed to be in a flat file (two or three files,
as described later) which can be accessed by at least one
node in the cluster. The challenge is to distribute the data
to local disks in the cluster such that a) the load is relatively
balanced (from a bytes per node perspective), while b) ap-
plications making use of the data have lower runtimes than
simple uniform random placement provides. In addition,
we would like to incorporate robustness in the placement
so that if one node in the cluster is unavailable, that the
data can be rediscovered with minimal processing time, au-
tomatically in the best case. We assume the existence of a
low-level API to address communication between nodes. In
our implementation, this interface is MPI.

2.2 Related Research
Distributed data placement has been studied widely in a

variety of domains. The peer-to-peer community has studied
the challenge extensively. This work usually seeks to afford
low costs for discovering the location of a data source, as well
as high availability of the data source in the presence of node
failures [24, 26, 30]. These works offer improved reliability
and discovery over the service we describe in this article,
but do not attempt to lower compute times of the using ap-
plication via localized placement of records within the data
sources. For example, CHORD is a distributed hash table
for peer-to-peer networks. CHORD arranges peers in a unit
circle, using consistent uniform hashing. It is scalable, de-
centralized, and highly fault tolerant. Most operations have
O(log n) complexity, such as resource discovery.

The grid computing community has studied data place-
ment in detail [2, 27, 20, 23]. This community seeks to es-
timate the cost of moving computation to the data source,
or vice versa, and to provide general tools for reliable data
placement. They typically do not attempt to partition the
data such that applications leverage which records in the
data reside on which nodes in the cluster. For example,
GridFTP [2] is a mechanism by which grid applications can
transfer data reliably and quickly. It has been shown to be

highly scalable when using a specialized FTP server, and is
provided for download as part of the Globus toolkit. It is
a general purpose transfer tool, and does not aid in making
locality-specific decisions for applications. A key property
of these works is that they target general applicability of the
placement services, so they have utility for almost any appli-
cation, including domains outside data mining. In addition,
these works must manage cross-cluster communication and
security, challenges we have not addressed here. Our target
use case is a tightly connected cluster of PCs residing under
a single security.

Many researchers have leveraged clusters of workstations
[8] for data mining. Zaki provided a survey of the work
[29]. Agrawal and Shafer were the first to address the chal-
lenge of frequent itemset mining on shared-nothing archi-
tectures, proposing Count Distribution (CD) and Data Dis-
tribution DD[1]. Both DD and CD are based on Apriori.
Decision Miner [25] was proposed by Schuster and Wolff.
It reduces the communication costs of CD by pruning can-
didates which cannot be frequent. The work is similar to
FDM, but also provides theoretical bounds for the amount
of communication reduction. As does FDM, Decision Miner
makes the same number of full data set scans as Apriori.
Zaki, Parthasarathy, Ogihara and Li parallelized Eclat for
distributed memory systems [28]. They place TID lists such
that communication is minimized. In all these works, the
placement of data is particular to the exact algorithm pro-
posed.

Several researchers have looked at the problem of systems
support for distributed data mining algorithms. JAM[22],
BODHI[18] and Info-sleuth[19] are high level agent-based
distributed systems (in user-space) that support such algo-
rithms. Bailey, Grossman, Sivakumar, and Turinsky devel-
oped a data mining framework called Papyrus[14] Papyrus
is a layered system of services for distributed data mining
and data intensive scientific applications. They define three
key data movements, namely move data (MD) move mod-
els (MM), and move results (MR). These three operations
facilitate interaction amongst nodes in a cluster. The paper
presents results for C4.5, a common decision tree classifier.
The system is designed to allow large data sets to be approx-
imated with a model, so that data transfer is less expensive
(the model being much smaller than the data). The tradeoff
is a loss of information. The Kensington[7], FreeRIDE[16],
and Intelliminer[21] systems look at the problem in terms of
clients, and compute and storage servers and implemented
basic system level services for data transfer and scheduling of
parallel tasks. Jin and Agrawal has several works targeted at
solving parallel data mining workloads [16, 17]. They imple-
ment a framework for fast prototyping of data mining work-
loads on shared memory systems. For data placement, they
use the general-purpose ADR1 framework. These works do
not preallocate records to generate improved locality for a
variety of workloads.

Several works use min-hashing to process data efficiently.
Minimum hashing was first proposed by Cohen [9] to esti-
mate the size of transitive closure and reachability sets. The
technique was generalized to k-way minimum hashing by
Broder and Charikar [4]. The algorithm afforded by Cohen
et al [10] leverages the k-way hashing technique to discover
association rules with high confidence. The authors seek to

1http://www.cs.umd.edu/projects/hpsl/ResearchAreas/ADR.htm

find interesting implications (A → B) with very low sup-
port, where A and B are both singletons. This restriction
allows for column-wise comparisons for rule detection, but
only discovers itemsets of length two. In addition to these
smaller patterns, we seek to find very long patterns in the
data set. Interestingly, because they are seeking to find two
similar items, their matrix is hashed orthogonally to ours.
Finally, the authors note that increasing their algorithm to
more than 3 columns (and hence patterns of length 4 or
more) would suffer exponential overheads. However, their
techniques clearly exhibit the general scalability of minimum
k-way hashing. Indyk and Motwani [13] used hashing to
find nearest neighbors in high dimensional data, developing
the LHS technique. Goinis, Indyk and Motwani [15] subse-
quently improved the idea. They use hashes as signatures
to localize data for answering queries in databases. They il-
lustrate the benefits of the technique over sphere/rectangle
trees when the number of dimensions is high. Gibson, Ku-
mar and Tomkins [11] use min-hashing to generate large
communities in web graphs. They implement a H(c, s) shin-
gling mechanism which effectively uses smaller shingles in
the min hash matrix to construct higher level signatures.
The work does not find itemsets.

3. PLACEMENT ALGORITHMS
We now describe the details of the proposed placement

algorithms. Generally the goal is to group similar nodes to-
gether, where similarity is a function of the intersection be-
tween records. However, as noted below, the hashing mech-
anism is designed to allow any user-specified measure.

3.1 Hashed-based Placement
Hashed-based placement uses a hash function to produce

a signature for each record in the data set. The signature
is typically a fixed width of size K2. Users may provide a
hashing function, or use one of the several described below.
We hash each of the M records of the input data K times
to produce an M ∗ K matrix. We then sort M lexicograph-
ically. This sort is typically quite fast since M is designed
to fit in RAM3. Next we traverse the matrix column-wise,
grouping rows with the same value. When the total num-
ber of rows drops below a user-provided threshold, or we
reach the end of the hash matrix, we box the record Ids as
a partition of the data, and assign it to a machine in the
cluster. For example, suppose in the first column there is a
contiguous block of 200,000 rows with the same hash value.
We then compare the second column hashes of these 200,000
rows. For each distinct hash value in the second column, we
inspect the number of rows with that value. If cardinality
is below a user-defined threshold, we pass it to a partition
assigner ; otherwise we inspect the third column hash val-
ues for the selected rows, and so on. The lexicographic sort
biases the sampling left-wise in the matrix, but affords log-
linear complexity. Pseudo code is provided as Algorithm
1.

2In practice we use values between 8-32, noting that larger
values limit subsequent bias.
3If it doesn’t, we make multiple Ms that do, performing the
partitioning process on each M

Algorithm 1 Hash

Input: Data set D
Input: Hash family h()
Input: Number of hashes K
Output: A partition P = {p1, p2 . . . pN}
1: Matrix M
2: for all rec ∈ D do
3: vector v
4: for all k ∈ K do
5: Hash h = h(rec, k)
6: vk = h
7: end for
8: Mrec = v
9: end for

10: Sort M Lexicographically
11: start = 0
12: end = 0
13: col = 0;
14: currentHash = HashTable[end][col]
15: while end ≤ |D| do
16: while currentHash == HashTable[end][col] do
17: end + +
18: end while
19: GetList(start, end, col + 1)
20: start = end
21: end while

Here we assume the input is a data set of sets – we de-
scribe data representations in Section 4.1. Lines 2-9 build
the M ∗K matrix, which is then sorted in line 10. Lines 15-
21 generate lists of consecutive indices in the matrix with
the same hash value, which are then processed by Algorithm
2. at line 19.

In Algorithm 2, line 1 checks the size of the partition.
If the list is large, lines 5-10 scan the next column in the
matrix for equal hash values. For each distinct hash value,
it generates a recursive call. However, if the index range is
below a threshold, a call to a partitioning algorithm is made.
Several assignment algorithms are available, depending on
the data type (see Section 4.1. We describe mechanisms for
graphs and flat records provided as Algorithms 3 and 4.

Algorithm 2 GetList

Input: StartIndex st
Input: EndIndex end
Input: Index index
1: if end− start <THRESHOLD or index = K − 1 then
2: AssignPartition(st,end)
3: return
4: end if
5: currentHash = HashTable[st][index]
6: while st < end do
7: while currentHash==HashTable[st][index] do
8: st++
9: end while

10: GetList(st, end, index + 1)
11: end while

The AssignPartitionForGraphs algorithm provided in Al-
gorithm 3 chooses an appropriate machine for a set of records.
In lines 2-13 a histogram is built of the locations of the items
of each record passed. Note that these items in the record

correspond to outlinks in the graph. Thus it is desired to
locate the machine with the greatest number of outinks, and
assign the passed records to that machine. Line 4 derefer-
ences from the hash table index to a record in the data set.
Full machines cannot contribute to the histogram. List P re-
tains the record Ids, and the loc array stores the assignment
of each record in the data set. Lines 15-21 send the records
to the machine with the most weight in the histogram and
update the weights of that machine.

The AssignPartitionForTrans algorithm distributes small
groups of items based on a histogram of the elements on
each machine. Although seemingly similar to the previous
algorithm, we do not dereference items in the records to
discover their location, because the items are not assumed
to be references to other records. Instead, we maintain a
running multiset of each machine’s current records. We use
a heuristic extension of a well-known algorithm in statistics,
which selects any element from a stream of elements with
equal probability by selecting the first element and then for
every subsequent element, replace the existing element with
probability 1/N , where N is the number of elements seen
thus far. We generate our multiset by maintaining a buffer
of up to W elements. When the buffer reaches size W , we
remove elements with 1/2 probability. Then, the next record
inserted onto the machine updates adds its elements to the
multiset with 1/2 probability. Subsequent halving of the
multiset lower the probability of a record adding its elements
to the multiset by P/2. This set is then used as a signature
for the machine. A set of records’ distance to the machine
is defined as the intersection between the union of the items
in the records and the machine’s signature set.

Algorithm 3 AssignPartitionForGraphs

Input: startIndex st
Input: endIndex end
1: List P
2: Histogram h
3: while st < end do
4: RecordId t =HashTable[st].recId
5: for each e ∈ t do
6: Machine m = loc[e]
7: if m > −1 and weight[m]<MAX then
8: h = h ∪ e
9: end if

10: end for
11: p = p ∪ t
12: st + +
13: end while
14: Machine m = Max(h)
15: for each t ∈ p do
16: Send Tran[t] to m
17: loc[t] = m
18: weight[m]+ = |t|
19: end for

We briefly review the pseudo code in Algorithm 4. Lines
4-10 build a set S of elements of the records to be assigned.
Lines 13-19 find the machine with the largest intersection
with S. Sig is an array of the multiset signatures. Lines
20-24 send the records to the proper machine and update
the proper signature by calling Algorithm 5, UpdateSigna-
ture. In line 1, this algorithm first calculates the possibility
of adding elements to the multiset by using Prob[m], which

essentially stores the number of times the signature has been
divided. Lines 2-9 perform the (approximate) window halv-
ing. Lines 10-12 then add the elements

3.1.1 Min Hashing
The framework for hash-based distribution allows for any

user-defined hash function, such as Cosine, Jackknife, etc.
We provide two predefined functions. The first is min-hashing[4],
uses probabilistic sampling on the data set. Min-wise K-way
hashing is a process by which a pseudo random element is
chosen from a set with consistency. One uses K indepen-
dent permutation functions to select k elements from the
set. Each permutation function places a different order on
the elements in the set, and the first element is considered
the signature of that set for that permutation. Performing
k permutations arrives at a signature of length k. It has
been shown elsewhere [4] that min-hashing approaches the
Jaccard coefficient, given below.

j =
A ∩ B

A ∪ B
(1)

Thus if two elements have many similar hash values, then
the probability that they have many items in common is
high. For many data mining applications, such as graph
clustering, etc, this similarity measure is desired.

Algorithm 4 AssignPartitionForTrans

Input: StartIndex st
Input: EndIndex end
Input: Histogram centers[]
1: List P
2: Histogram h
3: Set S
4: while st < end do
5: RecId t = HashTable[st].recId
6: P = P ∪ t
7: for each e ∈ t do
8: S = S ∪ e
9: end for

10: end while
11: maxid = −1
12: max = −1
13: for each m ∈MS s.t. weight[m]<MAX do
14: prox=Intersection(S,Sig[m])
15: if prox > max then
16: max = prox
17: maxid = m
18: end if
19: end for
20: for each t ∪ P do
21: Send Tran[t] to m
22: weight[m]+ = |t|
23: UpdateSignature(t,m)
24: end for

3.1.2 Approximate Hashing
Approximate hashing provides a mechanism to partition

data such that a prefix tree can be constructed in multiple
parts independently [6]. The idea is to sample the data to
create a histogram, then on a subsequent full pass use a
geometric binning procedure to move each transaction into
a particular bin. All the items in bin bi sort before items in
bi+1. If the data is highly skewed, which can be obtained

from the initial scan, then each item in the sorted histogram
receives twice the storage as the following bin.

Since transactions typically contain many items, the sec-
ond item in a transaction partitions the sub-bins as it par-
titioned the original bin space. For example, suppose items
a and b are the two most frequent items in the data set.
If bin b1 . . . b10 were assigned to item a and b11 . . . b15 were
assigned to item b, then bins b1 . . . b5 would contain trans-
actions having both a and b. We generalize the procedure
to fit our hashing model above. For approximate sorting,
the kth hash function selects the kth most popular item for
the hashed transaction. The algorithm runs in linear time
in the size of the data set and log-linear in the size of the
sample.

Algorithm 5 UpdateSignature

Input: Machine m
Input: RecId t
1: if rand()%Prob[m] = 0 then
2: if |Sig[m]| > W then
3: for each w ∈ Sig[m] do
4: if rand()%2 = 0 then
5: Sig[m] = Sig[m] \ w
6: end if
7: end for
8: Prob[m]∗ = 2
9: end if

10: for each e ∈ t do
11: Sig[m] = Sig[m] ∪ e
12: end for
13: end if

3.2 Other Placement Routines
Sorted The interface provides for an arbitrary sorting

routine to be used. The mechanism is to then sort the data
per the passed function, and partition the data evenly based
on the total number of bytes assigned to each machine (sub-
ject to record boundaries).

Round Robin It may be the case that the user desires a
relatively uniform distribution of data on each machine. The
round robin scheme is advantageous in this case, because
unlike randomly choosing a machine for each cluster, the
pattern is regular. Therefore, no index file is needed, and
each node can calculate at runtime the machine mapping for
every record.

3.3 Redundancy
We address fault tolerance by adding a replicated but

compressed form of each partition. The default placement
of the compressed partition is the next machine Id in the
mapped cluster. For example, define the partitioned data
as

P = {p1, p2, p3 . . . , pN} (2)

where i is the machine id for subset pi. Then the com-
pressed data is defined as

C = {c1 = f(pN), c2 = f(p1), . . . cN = f(pN−1)} (3)

where f(p) represents the compressed form of p.
Two compression schemes are provided. The first uses

approximate frequent itemsets in records to locate redun-

dancy, and then compresses these itemsets into a pointer to
the set. By maintaining only one copy of the itemset, all
but one occurrence of the pattern can be stored using one
4 byte value (if there are less than 4 billion records). The
algorithm is efficient when compared to traditional itemset
mining – it runs in O(E log E) compute complexity. In ad-
dition, it affords compression ratios up to 15-fold for many
large data sets. Further details can be found elsewhere [5].
Two caveats are that i) the mechanism is dependent on cor-
relation of items to be effective, and ii) the order of elements
within a record is not respected. This latter issue acceptable
for adjacency lists and transactional data but will offend in-
put data where order implies information, such as bitwise
feature vectors. In addition to affording improved compres-
sion rates over other methods, it also allows direct indexing
into the records in compressed form, since all compression
patterns exist within the boundaries of a record. Thus, for
space conscious users, this format can serve as both the main
data file as well as the backup file.

The second compression scheme is to compress the parti-
tions using traditional techniques such as LZ77. The place-
ment location of the compressed chunk is the same as the
previous method. LZ77 often provides excellent compres-
sion ratios for a variety of data. The main drawback is that
the compressed file must be fully uncompressed to be used.

4. PLACEMENT SERVICE API
In this section we present the service interface to the pro-

grammer. A high-level overview is provided as Algorithm
6.

4.1 Data Representation
The user provides input data as transactions (or records)

using two or three files. The first input file is a binary string
of the elements in the records. The second input file is an
index which stores offsets for each record. For example,
the ith value in the offset file is the starting address of the
ith record in the record file. The length of the ith record
is simply index[i + 1] − index[i]. The last record uses the
length of the record file as the secondary boundary. The
optional third file is an XML meta data file. Each record in
this third file is of the form <Rec>text</rec>. Child nodes
of <Rec> may be added, as they simply pass through our
representation unaltered. We now describe how the first two
files are used to represent the many input formats of typical
data mining stores.

One large graph or tree can leverage the above input for-
mat via an adjacency list, where each index is a consecutive
node in the graph. Urls and other meta data are stored in
the meta file. A set of graphs uses the index file to position
each graph in the record file. The record file first lists V val-
ues representing node labels, then a ’−1’, followed by E tu-
ples in the form of SourceNode,DestinationNode,EdgeLabel.
A set of trees follows the same format. If an index file only
has one value, then it is assumed that each record has length
of that value.

Currently 6 data types are available. These include 1
byte, 2 byte, 4 byte, 8 byte, 4 byte float and 8 byte floats.
We require this size for the elements in a record for hashing
purposes. Again, any ASCII data is stored in the meta file
and is not hashed.

4.2 Bootstrapping

The service is started with by calling Ss :: StartService().
The save path and input data filename must first be pro-
vided. Currently, it is assumed that the index file can be
obtained by appending ’ index’ and the meta data file can
be obtained by appending ’ meta’. Each registered data in-
put is maintained in the user’s Manifest file. The manifest
file is an XML file containing the pertinent parameters nec-
essary to verify the full data set is present. It includes the
filename, the save path used, the number and names of the
machines used for the original partitioning, the distribution
type, the data type, the local data sizes and the index type.

Algorithm 6 Placement Service Programmer Interface

1: bool StartService(int rank,int nTasks);
2: bool ShutDown();
3: void PrintManifest();
4: void ResetManifest();
5: bool SetFilename(std::string filename);
6: bool SetSavePath(std::string filename);
7: bool AddData(int indexMode, int distMode, int data-

Size, int dataType);
8: bool AddData(int indexMode, int distMode, int data-

Size, int dataType, void* Comparator);
9: bool ReplicateData(bool UseHashCompression);

10: bool DeleteData();
11: bool DataExistsInAnyManifest(std::string filename);
12: bool RetrieveData(File* data, File* index);
13: bool RetrieveData(File* data, File* index, File* meta-

Data);
14: bool VerifyData();
15: bool VerifyDataFilesExist();
16: bool VerifyNumberOfServers();
17: enum {Transactions,Graphs,Trees,OneGraph,OneTree};
18: enum {Range,LocalItems,GlobalKnowledge};
19: enum {SingleMachine, Random, RoundRobin, Min-

Hash, Hashed,ApproxHash, Sorted, Euclidean, Serial};
20: enum {1byte,2byte,4byte,8byte,4byteF,8byteF};

4.3 Adding Data
Users add data by calling one of the two AddData() func-

tions on lines 7 and 8. They provide a distribution mode
(line 19), an index mode (line 18), a data size (line 20), a
data type (line 17), and possibly a function pointer.

Distribution Modes There are eight distribution modes,
which are specified during the function call using the enu-
meration on line 19. Single Machine stores all the records on
a single machine. Random places records randomly on the
cluster. It requires either the Local or Global index types,
as ranges are not practical. Round robin places record r on
machine r modulo M . It does not require an index. Min
hashing uses the distribution algorithm outlined in the pre-
vious section, as does Approximate sorting. Hashed allows
for a custom hash function family. Data added in this man-
ner must use the function on line 1, and pass the hashing
function family as function pointer which accepts a record
id and K and returns a pointer to the hashes. Serial par-
titions the data evenly across the cluster starting with the
first |D|/M records being placed on machine 0. Sorted does
not hash, but sorts the data directly, based on the compara-
tor passed. This comparator may access meta data from
the meta data file by accessing the field service.meta[i]. Eu-
clidean uses standard kMeans to distribute the data set.

Index Modes The index mode determines the amount of
information stored at each machine regarding the location
of the records. Four index modes are available. Ranged pro-
vides the ranges of records for each machine. All machines
have knowledge of the location of every record. This mode is
most efficient for the Serial distribution mode. Local items
provides in the mapping file each local item id, which maps
in order to the index file. The user must query the other ma-
chines for knowledge of records off the local machine. Lastly,
in the Global knowledge index mode, each machine has the
location of each file in the data set.

Algorithm 7 Example Program Adding Data

1: Mpi Init(&args, &argv);
2: Mpi Comm size(Mpi Comm World, &nTasks);
3: Mpi Comm rank(Mpi Com World, &myRank);
4: std::string inputFile(argv[1]);
5: Ss service;
6: service.SetFilename(inputFile);
7: service.SetSavePath(“/scratch/buehrer/”);
8: service.StartService(myRank,nTasks);
9: service.AddData(Ss::MinHash, Ss::GlobalKnowledge);

10: service.PrintManifest();
11: if myRank==0 then
12: cout << ’Size=’ << nTasks << endl;
13: end if
14: File *data, File *index;
15: bool res = service.RetrieveData(data,index);
16: UInt64 size = GetFileSize(index);
17: for int i=0;i<size;i++ do
18: vector<int> *rec = GetRec(data,index,i);
19: Process Rec(rec);
20: end for
21: service.ShutDown();
22: Mpi Finalize();
23: return 0;

4.4 A Typical Use Case
We provide a simple example to illustrate the utility of

the proposed service API, as shown in Algorithm 7. Note
that there is currently no install procedure – the user simply
includes the C++ header files for the service. Lines 1-3 are
typical to MPI programs. In line 6 the programmer provides
a pointer to the input data. Line 7 sets the save path for
partitioned data. This path must be accessible by each node
in the cluster. The example uses local scratch space. Line
8 starts the service. This call opens the local manifest file
on each machine, which stores the relevant information for
all data sets which have been assigned to each node. Line 9
adds the data set to the cluster. The user chooses a Service
state is maintained on a per-user basis. Each data object
is stored in an XML file in the user’s local scratch space on
the cluster 4. Subsequent calls to process the data use the
Retrieve() function without adding the data source.

5. EVALUATION
In this section, we evaluate the algorithms empirically.

All algorithms were implemented on Linux in C++. In all
cases we use 8 hashes; more provided little compression ben-
efit, and incurred a linear cost in execution time. The data

4We do not address security issues at this time

 30

 40

 50

 60

 70

 80

 90

 8 16 32 64 128 256 512 1024

P
er

ce
nt

 N
ei

gh
bo

rs

Machines (NLM)

MinHash
ApproxHash
RoundRobin

Figure 1: The ability of the placements algorithms
to maintain neighborhoods for the NLM data set.

 20

 30

 40

 50

 60

 70

 80

 8 16 32 64 128 256 512 1024

P
er

ce
nt

 N
ei

gh
bo

rs

Machines (WEBDOCS)

MinHash
ApproxHash
RoundRobin

Figure 2: The ability of the placements algorithms
to maintain neighborhoods for the Webdocs data set.

sets [3] used are presented in Table 1. The web graphs are
publicly available5. Each is a graphical representation of
a portion of the world wide web, where a node is a web
page and a hyperlink represents a directed edge. NLM is a
2006 snapshot of the National Library of Medicine’s MED-
LINE/PubMed database (English documents only) of ab-
stracts. There are about 8.5M documents included here,
normally distributed in length. Each record is a document,
and each item is a word id (stop words have been removed).
The Webdocs data set was obtained from the FIMI Reposi-
tory[12]. It is a collection of web documents, using word Ids
as the items in each record. Most general-purpose place-
ment middlewares will use either i) user-directed placement
or ii) a random or round robin placement. Therefore, in
this section we will make use of the round robin placement
scheme for comparison purposes.

5.1 Maintaining Neighborhoods
We evaluate the placement service to maintain nearest

neighbors when distributing the data set. The premise is
that if similar documents are partitioned onto the same
machine, then local classification will produce more accu-
rate results with nearer neighbors, potentially lowering the
need for inter machine communication. First the 20 nearest

5http://law.dsi.unimi.it

 20

 30

 40

 50

 60

 70

 80

 90

 100

 8 16 32 64 128 256 512 1024

P
er

ce
nt

 N
ei

gh
bo

rs

Machines (EU2005)

MinHash
ApproxHash
RoundRobin

Figure 3: The ability of the placements algorithms
to maintain neighborhoods for the EU2005 data set.

neighbors are found for 1000 random records in the data set.
The Jaccard coefficient is used for similarity, and the top 20
scores are summed for each record. These sums are then
summed to produce a final value. We then distribute the
data, with both min-hashing and round robin. Again these
1000 records are located, and their 20 nearest neighbors are
found – with the constraint that the neighbor must be on the
same machine as the record in question. These values are
then summed as before. We divide the sum from each par-
titioning by the global sum to obtain a ratio of maintained
neighbors. Although straightforward, this experiment cap-
tures precisely what we hope to achieve, which is to group
similar items onto the same machine, with little overhead.

These values are plotted for various machine cluster sizes
operating on the NLM, webdocs and EU2005 data sets in
Figures 1 2, and 3 respectively. In all cases, local neigh-
bors are better maintained by min hashing. For example,
with the webdocs data set, the ratio drops from 62% at 8
machines to 28% on 1024 machines using the round robin
scheme. This is understandable, as the neighborhood is es-
sentially evenly distributed, and finding new local neighbors
with high similarity is unlikely. However, using min-hashing
the ratio only drops from 68% to 44% over the same range
of machines. The reason is that many of the local neighbors
are assigned to a machine together when they are passed
to Algorithm 4. NLM exhibits similar behavior, degrading
from 84% to 62% using min-hashing whereas round robin
degraded from 75% to 41%. The EU2005 data set has the
largest disparity between hashing and round robin, because
it is a web graph and the each node has several highly sim-
ilar neighbors which are found easily by hashing but lost in
the round robin scheme. We note the difference between ap-
proximate hashing and min-hashing was modest. Also, the
load was well distributed, with standard deviations of local
sizes below 50% of the average load.

5.2 Partitioning Large Graphs
We also analyze the ability of our hashing to partition a

large web graph data on a cluster. The quality metric used
is the percentage of graph edges that reside on the local ma-
chine divided by the total number of edges in the graph. So
a percent cut of 25 means that 3 out of every 4 links point to
vertices residing on the local machine. We use two graphs,
namely EU2005 and UK2002. Figure 4 depicts the results

Data Set Records Items Item/Rec size Type

UK2002 18,520,487 298,113,762 16.09 1.2GB web graph
ARABIC2005 22,744,080 639,999,458 28.13 2.4GB web graph
EU2005 862,664 19,235,140 22.29 77MB web graph
NLM abstracts 8,509,325 588,802,208 69.2 2.2GB documents
Webdocs 1,692,000 397,000,000 234 1.48GB documents

Table 1: Data sets.

 20

 40

 60

 80

 100

 120

 8 16 32 64 128 256 512 1024

P
er

ce
nt

 C
ut

Machines (EU2005)

MinHash
URLsorted

RoundRobin

Figure 4: The percent cuts for partitioning the
EU2005 data set.

 1

 10

 100

 8 16 32 64 128 256 512 1024

P
er

ce
nt

 C
ut

Machines (UK2002)

MinHash
URLsorted

RoundRobin

Figure 5: The percent cuts for partitioning the
UK2002 data set.

of partitioning EU2005. In this figure, min-hashing is com-
pared to round robin as well as a custom sorting function,
which is to sort the graph by the URL. We include URL or-
dering because it is a popular and effective custom sorting
routine for grouping similar nodes in web graphs. As can be
seen, hashing results in a lower number of cut edges when
compared to the other two methods. For example, hash-
ing incurs less than half the edge cuts for EU2005 on 1024
machines (32% vs. 68%).

However, unlike the neighborhood study in the previous
experiment, it does suffer load imbalance. We inspected this
challenge by using four different balance factors and measur-
ing the load distributions. Roughly speaking, the balance
factor is the probability that we assign the the records passed
to Algorithm 3 to the location with the highest outlink cor-
relation. The graphs in Figure 8 provide the standard de-
viation (and the average) of the load for a given balance

 2

 4

 6

 8

 10

 12

 14

 1 4 16 64 256 1024

C
om

pr
es

si
on

 R
at

io

Machines (ARABIC2005)

MinHash
RoundRobin

Figure 6: Compression ratios as a function of the
cluster size for the ARABIC2005 data set.

factor, as well as the percent edge cut. It can be seen that
the standard deviation can be controlled, but at the cost of
increased edge cuts. There is clearly a tradeoff between the
balance of the load and the improvement in placement. Still,
in all cases the total number of cut edges is vastly lower than
what is offered by a round robin placement scheme. Another
point to consider is that 1024 machines is a large number of
machines to use to partition the smallish (77MB) EU2005
graph.

5.3 Compression Support
We evaluate our compression technique for its ability to

compress the data set as we distribute it across the clus-
ter. The procedure is as follows. We partition the data
onto the cluster. Next, we compress the data on each ma-
chine, and move this compressed replication to its proper
machine. We then sum the sizes of the compressed files and
divide the original filesize by this sum to arrive at a com-
pression ratio. We present the results in Figures 6 and 7, for
the ARABIC2005 and EU2005 data sets, respectively. In
the figures, Machines=1 equates to compressing the full file
on one machine. This value will be a compression maximum
for the data set, since it can make maximum use of repli-
cated itemsets. We present two curves in each, which are
the compression ratios when partitioning with min-hashing
and with round robin.

First let us consider Figure 6. The maximum compression
for ARABIC2005 is a 14.3-fold reduction when compressed
on a single machine. As we partition the data, it is clear
that min-hashing maintains a larger percentage of its local-
ity, degrading only to a ratio of 14.1-fold when distributing
over 1024 machines. However, round robin degrades to a
compression ratio of only 5.3-fold, because it does not keep
similar records on the same machine.

Next we consider Figure 7. The maximum compression

 1

 2

 3

 4

 5

 6

 7

 8

 1 4 16 64 256 1024

C
om

pr
es

si
on

 R
at

io

Machines (EU2005)

MinHash
RoundRobin

Figure 7: Compression ratios as a function of the
cluster size for the EU2005 data set.

EU2005 is a 7.3-fold reduction when compressed on a sin-
gle machine. As we partition the data, again min-hashing
maintains a larger percentage of its locality, degrading only
to a ratio of 7.1-fold when distributing over 1024 machines.
However, round robin degrades to a compression ratio of
only 1.53-fold, because it does not keep similar records on
the same machine. Hashing offers more than 450% more
compression. Some degradation can be attributed to the
small size of the input data as well.

We also compressed the input data using gzip (LZ77),
which does not provide record level access but may be ac-
ceptable to many users. The ARABIC2005 data set com-
pressed 14.2-fold and the EU2005 data set compressed 8.6-
fold. When partitioned across the cluster, the hashing parti-
tioning schemes provided better gzip compression than round
robin, typically around 1.75-fold better 6.

5.4 Frequent Patterns
In our final set of experiments, we briefly explore the local

partitions for frequent itemsets. It is well known that min-
ing for global itemsets in a distributed environment is an
expensive operation. Thus, we seek to group similar trans-
actions so that relevant patterns can be discovered locally,
while maintaining the same support threshold. The benefit
is that local patterns can be mined without communication
of meta data or portions of the data set. To evaluate this
operation, we first mine the data set at a given support on
a single machine. Then, we partition the data set and mine
each local partition at the same relative support. If we have
increased the relative associativity in the data set, we can
discover interesting patterns which would require a much
smaller support threshold if mined globally.

We use the EU2005 data set at a support of 20%. It con-
tained 25 global closed patterns. When we partitioned it
using min hashing on 8 machines, using the same relative
support, we discovered 3852 closed patterns. When using
round robin distribution, we discovered 132 closed patterns.
In fact, discovering more patterns through hash-based place-
ment occurred n all cases we tested.

6. CONCLUSION

6graphs omitted for space purposes

In this article we engineer an API for data distribution
on large data mining centers. The interface and algorithms
are sufficiently general so as to support a variety of com-
mon data mining workloads, while providing the potential
for improved application performance through locality sen-
sitive placement. We demonstrate this potential for several
key mining workloads. For classification, we demonstrate
our methods maintain better local neighborhoods that other
placements schemes, allowing similar records to be placed
on the same machine at low cost. Also, we demonstrate the
ability to lower inter-machine links when distributing large
web graphs. Third, we present a distributed fault tolerant
compression mechanism, for large graphs which affords com-
parable compression to traditional full compression schemes,
while still affording node level access in the compressed form.
Finally, we are in the process of implementing and testing
several full applications using the proposed service and look
to present these efforts in future work.

7. REFERENCES
[1] R. Agrawal and J. Shafer. Parallel mining of association

rules. IEEE Transactions on Knowledge and Data
Engineering, 1996.

[2] William Allcock, John Bresnahan, Rajkumar Kettimuthu,
and Michael Link. The globus striped gridftp framework
and server. In SC ’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, page 54, Washington, DC,
USA, 2005. IEEE Computer Society.

[3] Paolo Boldi, Bruno Codenotti, Massimo Santini, and
Sebastiano Vigna. Ubicrawler: A scalable fully distributed
web crawler. In Software: Practice & Experience,
number 8, pages 711–726, 2004.

[4] Andrei Z. Broder, Moses Charikarand Alan M. Frieze, and
Michael Mitzenmacher. Min-wise independent
permutations. In Journal of Computer and System
Sciences, volume 60, pages 630–659, 2000.

[5] Gregory Buehrer and Kumar Chellapilla. A scalable
pattern mining approach to web graph compression with
communities. In To appear in the first international
conference on web search and data mining, 2008.

[6] Gregory Buehrer, Srinivasan Parthasarathy, and Amol
Ghoting. Out-of-core frequent pattern mining on a
commodity pc. In KDD ’06: Proceedings of the 12th ACM
SIGKDD international con ference on Knowledge discovery
and data mining, pages 86–95, New York, NY, USA, 2006.
ACM Press.

[7] J. Chattratichat, J. Darlington, Y. Guo, S. Hedvall,
M. Koller, and J. Syed. An architecture for distributed
enterprise data mining. In HPCN europe, pp.573-582, 1999.

[8] A. Cheung and A. Reeves. High performance computing on
a cluster of workstations. In Proceedings of the Symposium
on High Performance Distributed Computing (HPDC),
1992.

[9] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. In Journal of Computer
and System Science, volume 55, pages 441–453, 1997.

[10] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. Ullman, and C. Yang. Finding interesting
associations without support pruning. In IEEE
Transactions on Knowledge and Data Engineering,
volume 13, 2001.

[11] D. Gibson, R. Kumar, and A. Tomkins. Discovering large
dense subgraphs in massive graphs. In Proceedings of 31st
International Conference on Very Large Data Bases
(VLDB), 2005.

[12] B. Goethals and M. Zaki. Advances in frequent itemset
mining implementations. In Proceedings of the ICDM
workshop on frequent itemset mining implementations,
2003.

 0

 10

 20

 30

 40

 50

 60

 8 16 32 64 128 256 512 1024

P
er

ce
nt

 C
ut

Machines (EU2005)

BF=1
BF=2
BF=3
BF=4

 10000

 100000

 1e+06

 8 16 32 64 128 256 512 1024

S
ta

nd
ar

d
D

ev

Machines (EU2005)

BF=1
BF=2
BF=3
BF=4
AVG

 4

 6

 8

 10

 12

 14

 8 16 32 64 128 256 512 1024

P
er

ce
nt

 C
ut

Machines (UK2002)

BF=1
BF=2
BF=3
BF=4

 100000

 1e+06

 1e+07

 8 16 32 64 128 256 512 1024
S

ta
nd

ar
d

D
ev

Machines (UK2002)

BF=1
BF=2
BF=3
BF=4
AVG

Figure 8: Percent cuts and the load imbalance as a function of the balance factor for the EU2005 (top) and
UK2002 (bottom) data sets.

[13] A. Goinis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proceedings of the
International Conference on Very Large Data Bases, 1999.

[14] R. Grossman, S. Bailey, A. Ramu, B. Malhi, and
A. Turinsky. The preliminary design of papyrus: A system
for high performance, distributed data mining over clusters,
meta-clusters and super-clusters. In Advances in
Knowledge Discovery and Data Mining, 2000.

[15] P. Indyk and R. Motwani. Approximate nearest neighbor:
Towards removing the curse of dimensionality. In
Proceedings of the 30th Annual Symposium on Theory of
Computing, pages 604–613, 1998.

[16] R. Jin and G. Agrawal. A middleware for developing
parallel data mining implementations. In Proceedings of
SIAM International Conference on Data Mining (SDM),
2001.

[17] R. Jin and G. Agrawal. Shared Memory Parallelization of
Data Mining Algorithms: Techniques, Programming
Interface, and Performance. In Proceedings of the Second
SIAM International Conference on Data Mining, 2002.

[18] H. Kargupta, B. Park, D. Hershberger, and E. Johnson.
Collective data mining: A new perspective toward
distributed data analysis. In Advances in Distributed and
Parallel Knowledge Discovery, Kargupta and Chan ed.,
2000.

[19] G. Martin, A. Unruh, and S. Urban. An agent
infrastructure for knowledge discovery and event detection.
In Microelectronics and Computer Technology Corporation
Tech. Rep. MCC-INSL-003-99, 1999.

[20] Sivaramakrishnan Narayanan, Tahsin Kurc, Umit
Catalyurek, and Joel Saltz. Database support for
data-driven scientific applications in the grid. In Parallel
Processing Letters, volume 13, pages 245–271, 2003.

[21] S. Parthasarathy and R. Subramonian. Facilitating data
mining on a network of workstations. In Advances in
Distributed and Parallel Knowledge Discovery, Kargupta

and Chan ed., 2000.
[22] Andreas L. Prodromidis, Philip K. Chan, and Salvatore

Stolfo. Meta-learning in distributed data mining systems:
Issues and approaches. In Advances in Knowledge
Discovery and Data Mining, 2000.

[23] Kavitha Ranganathan and Ian Foster. Decoupling
computation and data scheduling in distributed
data-intensive applications. In 11th IEEE International
Symposium on High Performance Distributed Computing,
2002.

[24] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenke. A scalable content-addressable
network. In Proceedings ACM SIGCOMM, 2001.

[25] Assaf Schuster and Ran Wolff. Communication-efficient
distributed mining of association rules. In SIGMOD ’01:
Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, pages 473–484, New
York, NY, USA, 2001. ACM Press.

[26] I. Stoica, R. Morris, D. Karger, F. Kasshoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings ACM
SIGCOMM, 2001.

[27] George Kola Tevfik. Run-time adaptation of grid data
placement jobs.

[28] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel
algorithms for discovery of association rules. In Scalable
High Performance Computing for Knowledge Discovery
and Data Mining, 1998.

[29] Mohammed J. Zaki. Parallel and distributed association
mining: A survey. In IEEE Concurrency, special issue on
Parallel Mechanisms for Data Mining, volume 7.4, pages
14–25, 1999.

[30] Ben Zhao, Ling Huang, Jeremy Stribling, Sean Rhea,
Anthony Joseph, and John Kubiatowicz. Tapestry: A
resilient global-scale overlay for service deployment. In
IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS, volume 22, pages 41 – 53. IEEE,
2004.

