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Abstract

Feature selection has been widely studied in supervised datamining applications. In these supervised learning domains,
the typical goal is to create effective natural clusters through the selection of a reduced attribute set that maximizes
classification accuracies. However, an approach based on such a goal is not appropriate if the end goal is to preserve inter-
attribute relationships,the data is unlabelled, and is in time-series format. All of these are typical characteristics of clinical
trials data sets. In this paper, we introduce performance metrics and methods for feature selection over unlabelled time-series
with the aim of preserving inter-attribute relationships. The proposed performance metrics estimate the effectiveness of a
given feature set with respect to representation quality by measuring the nearest neighbors before and after feature selection.
The proposed methods select features based on the time-series relationships between attributes through the incorporation of
a technique that measures inter-attribute movements over the time-series. We provide techniques to combine and compare
data from non-standard variable-length time-series sources and provide a mechanism to inject expert opinion into the feature
selection process. The methodologies and comparative results are presented in the context of a real pharmaceutical database
application.
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1 Introduction

Feature selection is the problem of selecting a subset of attributes based on an end goal. It is typically performed for the
classification task where the problem reduces to finding a subset of attributes that categorizes the given objects as well as
the full attribute set. However, little work has been performed for unlabelled data. As there are no class labels that assign
similarity between objects exist in such data sets, the targeted task for this type of data is typically clustering. Each cluster
is then accepted as a class label. This work introduces techniques to perform feature selection for unlabelled multivariate
time-series data where the end goal is preserving the relationships between objects. The study is performed in the context of
real clinical trials data and additionally provides techniques targeted to handle issues that arise with these, and many other
real-world data sets.

Feature selection is a particularly important endeavor in pharmaceutical clinical trial studies. In such studies, an analyte
is a measurable substance in the blood or urine such as hemoglobin, calcium or phosphate. Each clinical trial has a set of
required analytes that need to be observed for every patient in the sample. This set varies according to the target disease of
the study. Analytes are measured by various analytical chemistry methods where one or more chemical reactions produce
some physically measurable quantity that has been shown to be highly correlated with the analyte concentration. In Vitro
Diagnostic Devices(IV D) are hospital instruments used to measure analytes. Miniaturization of these devices is made
possible with the recent technological advances in solid phase chemistry [1]. As a result, diagnostic testing is lead from out
of central laboratories which enables a steady testing environment at sites close to patients, such as nursing homes, alternate
care centers, and patient’s home [2].

The most commonly marketed home-useIV Ds have been the ones used to diagnose non-serious conditions (e.g.
pregnancy) or to monitor conditions after diagnosis (e.g. diabetes monitoring). In the latter case, home monitoring is a
continuum of the treatment [3]. A potential application of these devices is drug safety monitoring at home. A patient taking
a drug with potential side effects could use such a device to get real time feedback on the effect of the drug on their health
state. The patient could use this real-time knowledge in order to know if additional medical guidance is needed or if the
drug should be discontinued. To this end, the relationship between analytes are important to monitor patient status.

Data interpretability and device capacity are key reasons to limit the number of analytes measured by a home-use
IV D. In order for such devices to be economically feasible for home use, they will need to be affordable, and thus, limited
in the number of analytes they can measure. Analyte measurements should only be included in the device if they pass a
cost/benefit test. Since such devices will often be used by non-technical personnel, interpretation of results is an issue [4].
As the number of observed analytes increases, interpretation of results becomes more difficult and complex. Only the most
useful analytes should be measured to maximize the accuracy of interpretation of the results. As the required set of analytes
varies for different diseases, disease dependentIV Ds should be developed that monitor a minimum set of analytes that is
explicitly meaningful for that target disease.

Determining the minimal set of analytes that is appropriate to represent a particular disease is a feature selection task.
The two main components of a typical feature selection technique are (1) performance metric and (2) the stopping criteria.
The performance metric is used to select the attributes and this metric is chosen to be appropriate for the end goal. The
feature selection algorithms are developed to find the subset of features that optimize this metric. The stopping criteria
determines the size of the selected set. As the end goal of our task is to find the attributes that preserve the relationships
between the objects, i.e. patients, the performance metric is based on how theK Nearest Neighbors (KNN ) of an object
(which are determined by using all attributes) are preserved on average after the feature selection task. The stopping criteria
is based on the expected change on the performance metric when adding a new attribute. For real world analyte selection
tasks, the subset should be selected using a combination of medical expertise and data analysis.

In this paper we discuss the data analysis component of selecting sets of analytes appropriate to monitor the overall
health of patients with a particular disease or condition. Since all patients in the study have the disease, there is no further
classification task to perform. The task is to find a global panel of analytes that represents well the overall health state
of persons with that condition. We first discuss the challenges associated with clinical trial data and then propose a
novel approach for preprocessing information from the clinical trial databases to facilitate feature selection. The overall
approach involves transforming variable-length, time-series data into a high-dimensional constant size feature vector, and
determining selected features based on processing this set of feature vectors. Attributes are selected as features based
on their relationships with other attributes and the existing selected features. Attributes that have high correlation with
unselected attributes and low correlation with selected attributes are favored with respect to the feature selection process.
We also discuss how to incorporate expert opinion into this feature selection process.

The primary contributions of this work are:



• A feature selection technique that considers the relationships between attributes when determining appropriate
features

• A technique to transform and compare non-standard time-series data sets

• Metrics to estimate the representation quality of a feature set for unlabelled data

• An approach that combines the speed of filter feature selection techniques with the greater accuracy afforded by the
feedback associated with wrapper techniques using lightweight ‘measure of goodness’ computations

• A mechanism by which to incorporate expert opinion into the feature selection process.

The rest of the paper is organized as follows: First we explain our data transformation method. We define our
representation quality metric and describe feature selection techniques. We present results and findings of the proposed
algorithms. These algorithms and techniques are applicable to other data domains with similar characteristics, either dealing
with feature selection for unlabelled data or combining heterogeneous data.

2 Challenges Associated with Clinical Trial Data and Unifying the Information for Each Patient: Data
Transformation
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Figure 1: Overall Approach Architecture

Figure 1 shows a block diagram of our overall feature selection system. For our case, variable-length time-series data
is transformed into a format that exposes important inter-attribute relationships and can be used to compare different data
objects. After the data has been transformed, two approaches for feature selection, described in Section 4, were applied to
select features such that the inter-attribute relationships of the selected features approximately represent all the inter-attribute
relationships.

2.1 Challenges Associated with Clinical Trial DataThere are a number of challenges in dealing with non-standard
time-series clinical trial data [5]. The challenges addressed are the result of either:

1) Different intervals between measurements in the time series. Due to differences in patient/treatment availability or
patient start conditions, the intervals between measurements can vary between patients.

2) Differences introduced by variability in data sources. These differences can be introduced because the trial is
occurring at multiple sites, multiple clinical laboratories are participating, different evaluation techniques are used, or drugs
are targeting patients with different sets of conditions.

3) Differences due to data mining or analysis techniques.

2.2 Transforming Time-Series Data for AnalysisThe proposed techniques address the characteristics of the data due
to these challenges. The left portion at Figure 2 shows sample clinical trials patient data. For each patient, each analyte
included in the trial is measured at various time intervals and a potentially different number of times. Data is transformed
in order to eliminate the differences between the interval and the number of patient time-series readings. The patients
participating in the same clinical trial have readings for the same set of analytes depending on the drug and the disease
under the study. The number of relationships between analytes is the same for all of these patients. Differences resulting
from different data sources or analysis techniques are handled by measuring therelationshipsbetween attributes rather than
true attribute values. The goal of this particular task is not to find attributes and attribute values to classify patient state, but
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Figure 2: Patient data to Feature Vector

it is to find a global panel of analytes to effectively represent the health state of a patient having a given condition. It is
necessary to generate a representation for each data object that contains the same amount of information in order to compare
the objects.

Due to our particular problem domain, we selected a data transformation technique that measures relationships between
attributes for each data object (patient). The inter-attribute distance metric is called the Qualitative Metric. It is meaningful
for measuring inter-attribute distances of short time series and it reflects the way in which doctor’s actually interpret patient
data (comparing new readings to previous readings). Details about computation of the distance metric are provided in the
next section.

2.3 Inter-Attribute Distance Metric: Qualitative Metric This metric [6, 5] compares movements between all possible
(i, j) pairs which means, for a series of lengthn, it compares movements from first entry to each one of remainingn − 1
entries, from second entry to each of remainingn − 2 entries, and so on. The sum of the distances between all pairs is
divided to the total number of pairs, which isn ∗ (n− 1)/2 and returned as the Qualitative distance.

The qualitative metric has been shown to be effective for short time series [6, 5]. It captures the similarity between
patterns of changes of time series regardless of whether the nature of the dependence between them is linear or non-linear [6].
Qualitative distance uses a local distance function to compare the relationship betweenith andjth entries of seriess1 to the
relationship between same entries of seriess2. So, the local metric must be capable of comparing the relationship between
the movements. We have proposed Slope-Wise Comparison (SWC) [5], to make this comparison. This local metric,SWC,
takes four inputs:s1(i), s1(j), s2(i) ands2(j) and compares the relationship betweens1(i), s1(j), ands2(i), s2(j). The
method is called slope-wise comparison but instead of the duration, the sum of the absolute values ofs1(i), ands1(j) is
used to find an artificial slope. Let’s callAS1 to the artificial slope betweens1(i), ands1(j) andAS2 to the one between
s2(i) ands2(j).

AS1 = s1(i)−s1(j)
|s1(i)|+|s1(j)| andAS2 = s2(i)−s2(j)

|s2(i)|+|s2(j)|

These artificial slopes are compared to positive threshold (pt) and negative threshold (nt) in order to determine the distance
between these two pairs. In case an artificial slope is less than 0, it is compared withnt. If it is less thannt then a value
of -2 is assigned for that pair otherwise -1 is assigned. In the nonnegative case, if the slope is less thanpt 1 is assigned
otherwise 2 is assigned. The absolute value of the difference between the assigned numbers divided by 4 is assigned by the
SWC metric as the difference between these pairs. Hence, there are five possible distances which can be assigned to a given
time entry pair:0, 0.25, 0.5, 0.75 and 1. The SWC metric checks if the ratio between two measurements of the same series
are greater than a threshold or not. This is how the doctors compares the measurements of a patient. They compare current
value of each analyte to their past values. Hence, we choice SWC as the inner metric. SWC returns if both analytes have
similar behavior or not.

Because we are interested in inter-attribute relationships and can not directly compare our data objects, we transform
each data object into a feature vector consisting of the inter-attribute relationship values. Figure 2 shows an example of raw
clinical trial patient time-series data and how we transform it in order to perform data analysis. As is typical for clinical
trials data, all analytes that are required to be measured for that trial are recorded at each observation point. The number
of and intervals between observation points varies by patient. Although it is difficult to gain insights about relationships



between patients using analyte measurements, the analytes of the same patient can be compared to each other. The result
of these comparisons can be represented as a matrix containing the qualitative metric computed for each analyte pair. A
feature vector for the data object is generated by taking each unique pair of attributes from the matrix.

For our particular case, a clean subset of data was selected where each patient has at least 5 observations for each of 29
analytes that were measured as part of the clinical trial study. This data set consisted of time-series measurements for857
Diabetic Neuropathy1 patients for a industry sponsored clinical trial study. After data transformation, each patient has the
same amount of information in their qualitative matrix.

Although we selected a particular metric to handle the heterogeneous, short time-series data, different transformations
could be applied. For example, if the data has longer time-series and each data object has the same number of readings, a
feature vector consisting of the correlation between each attribute pair could be used and may be more appropriate.

3 Feature Selection

In this paper, we define our task as: The goal of feature selection fromn analytes is to find the subset of sizek such that the
relationships between thesek analytes will best represent the relationships betweenn analytes. The two main components
of feature selection are (1) the performance metric and (2) the stopping criteria. The typical feature selection performance
metric is determined with respect to measuring classification accuracy for a given classification task. In our case, where
there are no data categories, the metric must reflect representation quality rather than classification accuracy. The result set
should contain the minimum number of analytes that represent the remaining well. Hence, setting the stopping criteria is an
important issue.

3.1 Elements of Feature Selection
(1) The Inter-Attribute Relationship Performance Metric: As the performance metric is a measure for representation

quality of the selected features with respect to all attributes, the selected metric should be a comparison between the
representation using the original feature set and the selected feature set. We used the average of the starting index of
theK nearest neighbors (K-NN) after removing the outliers (SIKNO) in this distribution.

We find the K-NN of a data object using all features and compare the position of the first occurring K-NN object using
the selected features. K-NN of an objecto using all features can be defined as:

KNN(o) = {i|dist(o, i) ≤ dist(o, j)}, j 6∈ KNN(o)},

where|KNN(o)| = K. The distance of each object to objecto is then calculated by only using the features in the selected
subset. The objects are sorted based on this distance in increasing order and the rank of each object in theKNN(o) set is
calculated. The starting index of the K-NN for an objecto, SIKNN(o) is defined as:

SIKNN(o) = min(Rank(i)|i ∈ KNN(o)).

We perform this for all objects and find an average value of the first occurring object among the nearestK neighbors over
the entire set of data objects by

ASIKNN =
∑
∀o SIKNN(o)

TotalNumberofObjects
.

Intuitively, if an object is close to another object using both the selected features and all features, then the selected features
provide a good representation of the distance relationships between data objects.

A variety of alternative metrics can be used that measure the preservation of distance relationships of the selected
feature set. Outlier data objects can be removed before analysis or not. We can vary theK under analysis. We can also
record the end index of theKth nearest neighbor. We used the inter quartile range (IQR) based method to remove outliers
from the distribution of the starting index of K-NN [7]. By discarding the effect of outliers on the resulting feature set, we
find the set that is appropriate for the typical data objects in the dataset. Our performance metric,SIKNO, is calculated by
the following formula.

SIKNO =

∑
o|LL≤SIKNN(o)≤UL SIKNN(o)

|{o|LL ≤ SIKNN(o) ≤ UL}|

1Diabetes is a life long disease marked by high levels of sugar in the blood. Diabetic Neuropathy is a common complication of diabetes in which nerves
are damaged as a result of high blood sugar levels [9].



whereLL, andUL are the lower and upper limits of the non-outliers set by theIQR based method. The denominator of
this equation seeks for the number of objects havingSIKNN value within the normal range and the dividend is the sum
of such values. In caseLL andUL equals to the minimum and the maximum of theSIKNN distribution, i.e. there is no
outliers in the distribution,SIKNO andASIKNN are equivalent to each other.

Because of the initial heterogeneity of our data set, we can not directly compare data objects against each other. We
therefore measure similarity of patients as the Euclidean distance of their qualitative feature vectors. The feature vectors are
in the unit hyper-cube, i.e. any value is within the[0, 1] range. Hence, Euclidean distance is a natural choice between the
qualitative feature vectors to give greater weight to greater distances within this range.

As an example, at the beginning there are 29 analytes, so the total number of analyte-analyte relationships is28 ∗ 29/2,
which is equal to 406. The K-NN is found using these 406 relationships. For the selectedk features, the total number of
relationships will be(k − 1)k/2. For example, fork = 6 there will be15 relationships. In such a case the new indexes of
K-NN will be found by using these 15 relationships for each patient.

(2) Stopping Criteria: The stopping criteria determines the size of the selected subset. This chosen subset should
meet the following two requirements: (1) The size of it should be as small as possible. Where as (2) addition of a new
attribute should not lead a big change on the performance metric. There exists an analogy between selecting the number
of features for this task and picking significant principle components for a factor analysis technique. Both should satisfy
similar requirements. Our stopping criteria is inspired by the Kaiser Criterion [10]. This criteria picks the factors having
Eigen values greater than 1. It is perhaps the best known and the most used criteria. In our case, if the expected decrease in
theSIKNO by an additional attribute is1K , hereK is the number of nearest neighbors used inSIKNO calculations, then
our feature selection algorithms terminate. ForK equals 1, whereSIKNO is calculated based on the closest neighbor,
our algorithms terminate atk attributes if theSIKNO is less than or equal tonumberofattributes− k for the selectedk
features. For considering the closestK neighbors, they terminate when it is less than or equal tonumberofattributes−k

K .
In the next section the algorithms will initially be introduced in a way that the size of the subset,k, is given. Then we

will discuss how to perform feature selection when the subset size is not set initially.

3.2 Feature Selection ApproachesFeature selection algorithms can be categorized as either filter or wrapper [12]
approaches. The filter approach preselects the features according to some calculated ‘goodness’ measure. Whereas,
the wrapper approaches incorporate the measure of goodness that has been used in an iterative feature search and
selection [12, 11]. Feature selection for unlabelled data, is a relatively recent [11] research activity. The measure of
goodness for both approaches for unlabelled data feature selection is based on the effectiveness of resultant clustering (i.e.
maximum intra-cluster similarity and minimum inter-cluster similarity). Dy and Brodley [11] defined the goal of feature
selection for unsupervised learning as finding the smallest feature subset that best uncovers “interesting natural” clusters
according to given criteria in a static data set. In their technique, features are pruned if they do not add to the effectiveness of
clustering metrics. Our situation differs in that we are not dealing with a ordinary time-series data set where each dimension
has a single value for each object, but rather a multivariate time-series data set. Since we are interested in finding those
analytes whose behavior is related within a data group, we instead focus on finding correlations between attributes. Because
of the time required to compute clustering metrics, the existing work uses heuristics to prune some attributes based on some
estimated measure of their effect on the clustering metrics. Our metric is not as computationally intensive, and we do not
eliminate any attributes before analysis.

4 Proposed Feature Selection Algorithms

We explored two approaches, a forward-searching wrapper approach and a hybrid approach that combines a global feature-
aware selection criteria and minimal performance computation. Our instance of the wrapper approach has been modified
appropriately for the issues associated with handling attribute relationships. The performance metricSIKNO, which is a
measure indicating distance preservation, is computed over the relationship feature vectors. For the hybrid approach, we
combine an initial filtering step to seed a wrapper step that uses a much less computationally expensive measure of goodness
that is not tuned to the end performance metric.

4.1 Wrapper Based Approach The idea behind the wrapper approach is to evaluate the selected feature set at each
iteration of analysis and select the minimum set that leads to the most desired output for the feature set selection criteria.
This approach was inspired by Kohavi and John [13] for feature selection in supervised learning. As the final goal is
selectingk features out ofn, we start with a subset of sizek. This subset can be determined randomly, or by merging
selected sets of size smaller thank. This discussion is left to the Experimental Results Section. We refine the set at each



Algorithm 1 :Wrapper Approach(k)
1 //k = number of features to select
2 selectedFeatures=Selectk features randomly
3 minScore = SIKNO(selectedFeatures)
4 lastChange = k

5 for iteration 1 todk/2e
6 for i 1 tok
7 if lastChange == i
8 returnselectedFeatures
9 currentFeature = selectedFeatures[i]
10 minForNi = infinity

11 for each featureni not inselectedFeatures
12 selectedFeatures[i] = featureni

13 curScore = SIKNO(selectedFeatures)
14 if curScore < minForNi
15 minForNi = curScore
16 featuremin= featureni

17 if minForNi < minScore
18 selectedFeatures[i] = featuremin

19 minScore = minForNi
20 lastChange = i
21 else
22 selectedFeatures[i] = currentFeature

23 returnselectedFeatures

iteration by attempting to change one of the selected ones with an unselected one. To do this, the wrapper algorithm replaces
that selected feature with each of the unselected features and calculates theSIKNO score for the new set. If no unselected
feature leads a lesser score than the feature in the set, the feature in the set is not updated and the algorithm continues with
another feature in the set. If more than one feature yields a smaller score, then the one that results in the minimum score
replaces the feature currently under analysis. The algorithm stops when we can not gain any improvement by replacing
an attribute in the selected feature set. Algorithm 1 depicts the details of this algorithm. Primary differences between this
adapted version and the original algorithm [13] are that (1) the performance metric in the original version is the classification
accuracy where as it isSIKNO in this version. (2) The original algorithm is designed for single point data and this version
is devoted to multi-variate time series data. (3) Hence, replacing each attribute is equivalent to replacingk−1 relationships.

At each iteration of the outer loop,SIKNO is calculated O((n − k)k) times. Hence, in the worst case,SIKNO is
calculated O((n− k)k ∗ dk/2e) times.

4.2 Light-Weight Hybrid Approach The final goal is to select thek features where the relationship between those
features best represent the ones between the initial set ofn features. A filter step is followed by a wrapper one in the
proposed hybrid algorithm. In the filter step an initial set ofk features is selected and this set is refined by the wrapper
approach. The measure of goodness of the selected set,SIKNO, is calculated only after feature selection for comparative
purposes. The criteria used in the wrapper step is not the computationally expensiveSIKNO as before, butr2 as described
in the following section.

r2: A Measure of Goodness-of-Fit for Linear RegressionThe distance between data objects is calculated by the
Euclidean distance which seeks for the closeness in the hyperspace. Assume that the relationship r1 is selected but not
the r2. If by knowing r1 we can predict r2, then we can represent r2 by r1. This will decrease the difference between the
Euclidean distances before and after the feature selection between two data objects.

The goal of linear regression is to adjust the values of slope,a, and intercept,b, to find the line that best predictsY
from X. This regression is formulated byY = aX + b. The slope and the intercept are selected in a way that the sum of
the square of the regression error is minimized.r2, the square of the Pearson correlation coefficient [8], is the measure of
goodness of fit for this prediction and it is calculated by:



[
∑m

i=1(Xi − µX)(Yi − µY )]2∑m
i=1(Xi − µX)2

∑m
i=1(Yi − µY )2

.

Filter Step Initially the selected feature set is empty. In this step, the features are added one by one to the selected set.
As the feature set of a patient no longer contains the readings of the features but the relationship between feature pairs, the
first 2 features,f1 andf2, are inserted into the selected set. These two features are selected such that the sum of the square
of r2 metric between the relationship,f1 − f2 and others is maximum. This is summarized in Lines 6-14 of the algorithm
shown in Algorithm 2.

Algorithm 2 :Filter Step(k)
1 //k= number of features to select
2 selectedFeatures = empty
3 f1, f2 //First selected Features
4 fnext //Next selected Feature
5 max score = 0

6 for each relationshipfi − fj

7 sum = 0
8 for each relationshipfk − fl

9 sum = sum+(r2(fi − fj , fk − fl))
2

10 if sum > max score
11 max score = sum
12 f1 = fi

13 f2 = fj

14 ADD f1 andf2 to selectedFeatures

15 forai = 3 tok
16 max score = 0
17 for each feature,ani, not inselectedFeatures
18 score = addCriteriaScore(fni)
19 if score > max score
20 max score = score
21 fnext = fni

22 ADD fnext to selectedFeatures

23 returnselectedFeatures

The intuition behind adding new features is to maximize the correlation of a newly selected feature to the set of
unselected features (i.e. maximize the representation of unselected features) while minimizing the correlation of the newly
selected feature to the already selected features (avoid redundancy). As an example, when adding the3rd feature,f3, a
number of new relations represented by the added relationships are considered. Thef1 − f2 relationship is already in a
list of current relationships, and the new relations inserted are:f1 − f3 andf2 − f3. f3 is selected such that the linear
dependencies between these new relations and the already selected relationship,f1 − f2 are minimum and, that between
unselected ones are maximum. For a given featuref3, theaddCriteriaScore function, used in Line 17, first calculates the
sum of the square ofr2 between any possible pair of the relationshipsf1 − f2, f1 − f3 andf2 − f3. This sum is named as
the sum of the square of intra-dependency,SSRD. Then, the sum of the square ofr2 between new added relationships to
unselected relationships are calculated and named as the sum of the square of inter-dependency,SSED. The desiredf3 is
the one having the minimumSSRD and the maximumSSED. Hence,addCriteriaScore returns the ratio between these
two sums:SSED/SSRD.

Wrapper Step At the end of the filter step, there arek features in the selected features set. The algorithm for the
wrapper step is identical to the one shown in Algorithm 1, with 3 differences. These are, (1) the initial seeding of the feature
set is derived from the filter step, (2) the metric used for the measure of goodness of the current feature set is computationally
less expensive, and (3) we are maximizing rather than minimizing the metric. The features in the selected set are refined one
by one. At each iteration of the inner loop starting at Line-6 (Algorithm 1), the ith feature in the selected set is replaced with



an unselected feature. This replacement is performed based on theHybridCriteria, the measure of goodness for this task.
The details of this criteria can be found in Algorithm 3. The basic understanding behind it is that an unselected feature is
represented by its nearest feature in the selected set. For a given feature set, this measure first finds all possible relationships
between the features of this set. Then for each unselected relationship, the representor relationship is found in the selected
ones. The sum of ther2s between the unselected relationships and their representatives forms the value of the criteria.
The wrapper algorithm tries to find the feature set having the maximum value for theHybridCriteria. While adding the
new features,fi, the measure utilized in the previous subsection,addCriteriaScore, aims to maximize the number of new
relations represented by the added relationships. Hence, these two measures are similar to each other.

Algorithm 3 :Hybrid Criteria(selectedFeatures)
1 selectedRelations = All pairs betweenselectedFeatures
2 Score = 0
3 for each relationship,rl, between the initialn features
4 max = 0
5 for each relationship,srl, in selectedRelations
6 if r2(rl, srl) > max
7 max = r2(rl, srl)
8 Score += max
9 return Score

The hybrid approach considers the correlations between the features and it tends to select the features that have the
highest sum of correlation between the unselected ones. If the selected features can explain the unselected ones linearly,
then there should be a correlation between the Euclidean distance between two objects using all attributes and that with
using only the selected ones. Hence, our hypothesis is that the hybrid approach will return a similar value for theSIKNO
compared to the wrapper approach.

Both of these approaches have their own strengths and weaknesses. The wrapper approach will return a set having
a smallerSIKNO value then the hybrid approach for a given number of features,k. However, the running time of the
hybrid approach will be much smaller than the wrapper one. Wrapper approaches can get stuck in a local minima hence,
the result of the wrapper approach may change depending on the initial seed. Where as, due to the filter step, the hybrid
approach always return the same set. On the other hand, both approaches can be modified to embed expert knowledge. An
expert may identify a subset of the selected analytes, denoted byea, and ask for the analytes that improve the representation
quality of the other relationships given the expert-selected ones. For the wrapper approach, the first|ea| analytes are set
to these analytes. The remainingk − |ea| are randomly selected and at each iteration of the outer loop of the algorithm
in Algorithm 1 only the remaining are refined but not the first|ea|. Similar modifications should be applied to the hybrid
approach.

In this section we introduced two main components, i.e. the performance metric, and the stopping criteria, that we
supplied for the targeted feature selection task. We introduced two feature selection approaches build to optimize the
performance metric for a given number of selected features,k. These approaches can be modified in a way thatk is
increasing one by one until the stopping criteria is met. Thek is first set to 2 and at each iteration the obtainedSIKNO is
compared to the stopping criteria. If it is greater than the value returned by the criteria, thenk is increased by one and the
new feature set is selected. For the wrapper approach, we can utilize the resulting sets of the smaller values while selecting
the initial seed. Whereas, the filter step will only add a new analyte while increasing thek by one for the hybrid approach.

5 Experimental Results

We executed both techniques on our data set varyingK to check the effect ofK on the size of the resulting set returned
by the stopping criteria. Recall thatk is the number of attributes in the selected feature set andK is the size of the nearest
neighbor set for which we are looking for the closest index in our performance metricSIKNO. The dataset contains 857
patients and for this set of experiments the wrapper approach is seeded randomly for each value ofk. Results shown in
Figure 3 depict that the two techniques yield nearly identical performance with respect to our inter-attribute relationship
preservation metricSIKNO. However, the hybrid approach yields the same performance in much less time. In our case,
because of the computationally intensive nature of the nearest neighbor computations, the wrapper approach takes several
hours to compute a feature set. In contrast, the hybrid approach takes just a few seconds, an improvement on the order



of 3 orders of magnitude. The results also show thatSIKNO becomes much lower as we increaseK. This result is
obvious since we are increasing the size of the set of data objects that qualify as a nearest neighbor. We also see substantial
improvements in the first few features we add, and very little improvement after a certain number,8, and the algorithm stops
adding new analytes at this point. Our stopping criteria leads our algorithms to return 8 analytes for the casesK equal to 1,
5, and 10 and they return 7 analytes forK = 50.
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Figure 3: Relationship Preservation for proposed techniques as parameters vary

As mentioned at the end of Section 4, the wrapper approach may get stuck in a local minima. Hence the result set it
returns depends on the initial seeds. ForK = 1 andk = 8, we run the algorithm 100 times and we obtain only 8 different
SIKNO scores: 19.835, 20.079, 20.196, 20.212, 20.213, 20.352, 21.077, and 21.097. The greatest two are greater than the
one hybrid approach returns which is 21.021.

We then performed this using smaller values ofk and analyzed the relationships between the result sets for consecutive
values ofk by fixing K = 1. By doing this we expect to decrease the run time and to increase robustness of the wrapper
approach. Generally the analytes in the result sets do not vary too much for different runs using the same value ofk. For
a pair of result sets from different runs using the samek, k − 2 of them are common and only 2 of them are different. In
addition we were able to map each result set for runs using size k to a result set of sizek − 1. In these mappings, at most,
one or two of the analytes in the selected set are replaced by another analyte while increasing the size of the set by 1. For
example, assume that the algorithm returns the set analyte1, analyte2, and analyte3 for k = 3, then at most two of them
are altered for the mapped resulted set ink = 4. Hence, fork > 2 seeding the wrapper approach with the result set from
thek − 1 run and an additional random analyte from the unselected set seems reasonable. We ran the wrapper approach,
for K = 1, applying this seeding strategy multiple times and each time we obtained the same result set havingSIKNO =
19.835. This is the overall minimum we previously achieved. Hence, the wrapper approach with the new strategy also stops
at 8 analytes forK = 1.

We also compared the wrapper and the hybrid approaches against a technique where we randomly select a feature set
1000 times, compute the performance metric and select the best result. Both the hybrid and wrapper approaches yield better
results than the best result out of 1000 random trials fork = 8. Table 1 shows the results for each of the approaches. The
random and wrapper approaches take hours to complete while the hybrid approach finishes in a few seconds.

K Wrapper Hybrid 1000 Random

1 19.8 21.0 23.7

5 4.4 4.4 5.6

10 2.7 3.1 3.6

Table 1: K-NN Index for size 8 feature set

We also examined the effect of performing each step of the hybrid approach alone. Results were obtained from using
only the result of the filter step and from applying the lightweight wrapper step to a randomly seeded initial feature set.
As shown in Table 2, both the filter and wrapper steps contribute to the effectiveness of the hybrid approach. While each
technique by itself performs well (they both yield results that are in the top 1% of the 1000 random feature selections),



executing the steps in sequence yields results that are better than the top result out of the random selections at minimal
additional execution cost. Each technique runs in about a second by itself compared to hours for the 1000 random and
wrapper approaches. The filter step helps the wrapper step avoid getting trapped in a local minima, while the lightweight
wrapper step refines the feature set seeded by the filter step. When we combine the filter and lightweight wrapper steps, even
though we are not using a feedback metric tuned to the end performance metric, we achieve nearly the same performance
as when we do use the more computationally intensive metric.

It is important to note that although the size of our feature set is 8 out of 29, the number of relationships we are selecting
to represent is28/406 (< 7%). We achieve much better relationship representation quality than with using some arbitrary
feature set. We can also obtain results very quickly using a metric that is not directly related to the end performance goal.

K Wrapper Hybrid Filter Alone Hybrid Wrapper Alone

1 19.8 21.0 36.7 31.7

5 4.4 4.4 6.7 4.6

10 2.7 3.1 3.8 3.1

Table 2: K-NN Index for size 8 feature set

Maintaining the Liver Hepatotoxicity Information Liver hepatotoxicity is determined by using the values of liver an-
alytes. These analytes are Aspartate Transaminase (AST ), Alanine Transaminase (ALT ), and Alkaline Phosphate (ALP ),
Lactate Dehydrogenase (LDH), Gamma-Glutamyl Transpeptidase (GGT ), Serum Albumin(SA), Total Bilirubin(TB), and
Total Protein(TP ).

Each of the rules used to determine the liver hepatotoxicity considers the values of a single liver analyte, hence there
are named as single analyte rules. The followings are the rules considering the values ofSA.

SA < 4.4 or SA > 6.6 or
SA.Dayk < SA.Day0 ∗ 0.8 or SA.Dayk > SA.Day0 ∗ 1.2

Here, the first two rules imply that if the level ofSA is less than 4.4 or greater than 6.6, which are 0.8 and 1.2 times upper
limit of normal forSA, then the patient is accepted as hepatotoxic. The other 2 rules are comparing theSA levels under the
influence of drug to the level ofSA at the last day without the drug. Day 0 means the day just before the drug is induced.
The days after that day is indexed based on their day difference to it.

There have been few attempts [14, 15] to change the rules for liver hepatotoxicity. For example “Hy’s Rule” [14]
requires the crossing of at least two of the 8 thresholds (TB and ALT are the ones examined in [14]). Otey et al. [15]
proposed to apply Principle Component Analysis on the correlation matrix of the liver analytes for each patient. They used
the first principle component as the feature vector, and defined the distance between two patients based on them. Their basic
assumption is that the correlation between analytes are more important then the single analyte values for determining the
liver hepatotoxicity. They implemented a basic outlier detection algorithm [16], KSUM, on top of these distances. This
algorithm has 2 steps: In the first step the sum of the distances to theK closest objects is calculated for each object, and
in the next step it sorts these sum of distances in descending order and declares the first couple of them as outliers. They
computed these sums and checked the cumulative number of patients under the drug and placebo within the top portion of
the sorted sums. They compared these values against the expected cumulative number of subjects for each rank. The basic
assumption in this work is that if there is a hepatotoxic effect of the drug, then at top ranks the number of subjects on the
drug should appear more than the expected. In Figure 4 we plot the cumulative number of subjects on drug and on placebo
for the top 80 rankings by using all 29 analytes and the selected 8 analytes forK = 10 (ThisK is theKSUM algorithm’s
input not the SIKNO’s one). We used the result set of the hybrid approach for these experimentsby replacingAST with
ALT as suggested by our expert2. ALT andAST are two most useful measures of muscle injury. Hence, these analytes
are highly correlated. 100% ofALT is produced in liver, whereasAST has various sources, such as liver, skeletal muscle,
and cardiac muscle. AsALT is a direct measure of the liver injury, the remaining experiments are done on the resulting set
with this replacement.

The top two and the bottom two lines of Figure 4 express the cumulative number of patients on drug and on placebo
given the ranking, and the middle two lines plot the expected cumulative number of subjects. The dataset we are using is
a subset of Otey et al.’s D1 dataset. We got similar results, approved by an expert, as our colleges for the same dataset. As
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Figure 4: Outlier rankings for all analytes and the selected 8 analytes

can be seen from the figure, the hepatotoxicity content of all analytes is maintained by the selected 8 analytes using this
technique. Additionally, the top 3 patients using all analytes appeared in the top 10 for the selected ones.

Another issue on liver hepatotoxicity for feature selection is to model the data to check if the hepatotoxicity information
of the liver analytes is kept by the selected 8 analytes or not. The single analyte rules consider the minimum and the
maximum of the values of the analytes and the minimum and the maximum of the ratio of these values under the drug
to their values on the last day without the drug. Hence, for the selected 8 analytes we convert the data in a way that the
result dataset has the following attributes: Drug, Sex, isHepatotoxic, Mini, Maxi, MinRatioi, MaxRatioi. Here, Drug is a
categorical variable having two values: drug, and placebo. Sex is the gender of the patient. isHepatotoxic is the binary class
variable. Its value is determined by the single analyte rules. The term i gets values between 1 to 8 corresponding to the
selected analytes. After fitting the data to a very simple logistic regression model where the correlations between drug and
sex and other variables are considered, we get the following confusion matrix:

Actual↓ / Predicted→ TRUE FALSE

TRUE 47 19

FALSE 1 790

Females and males respond to the drugs differently and the drug does have a hepatotoxic effect hence this model is
reasonable. As can be seen from the confusion matrix, even a simple model can explain this dataset with 71% accuracy for
the hepatotoxic patients and 99.9% accuracy for the non-hepatotoxic ones. It is important to note that, while our techniques
are designed to select a general purpose panel of analytes, the liver hepatotoxicity information maintained by the single
analyte rules and the correlation based rule are also maintained by the selected set.

6 Related Work
This work is related to dimensionality reduction, as initially studied in statistics and existing feature selection research.

6.1 Statistical Methods Factor Analysis seeks to discover if the observed variables can be explained in terms of a much
smaller number of variables called factors [18]. These factors are not necessarily the observed variables. The input of these
analysis techniques is either correlation or covariance matrix between the variables. The main applications of them are (1)
dimensionality reduction and (2) to detect structure in the relationships between variables [17] . The covariance matrix is
decomposed into two portions, C and U. C is the common portion which is explained by the factors and U is the unexplained
portion. Covariance matrix is the sum of these two matrices (U+C).

The aim of Multi-dimensional Scaling analysis is to detect meaningful underlying dimensions to explain observed
similarities or distances between the investigated objects [19]. Any kind of similarity (dissimilarity) matrix can be analyzed
using these techniques. In general, these techniques attempt to arrange the objects in a lower dimensional space in a way
that preserves the order of observed distances between them. In other words, objects are arranged in lower dimensional
space such that similar objects in the complete space are close to each other while dissimilar objects are far away from
each other [20]. The problem we are targeting is similar. Our purpose of feature selection on the pharmaceutical data is to
reduce the number of observed analytes in a way that preserves theNN relationship between inter-attribute relationships



for patients.
At the end of analysis, the underlying dimensions discovered by these statistical techniques are not the actual

dimensions anymore. However, the resultant dimensions of these techniques are combinations of the observed ones. So,
to find out the corresponding values of these new dimensions, one needs to observe most of the actual analytes. Our work
differs in that we select features that are a direct subset of the initial feature set.

6.2 Feature SelectionThe feature selection problem can be divided into two categories based on the characteristics of
the data they are applied on: supervised and unsupervised. In supervised feature selection [21, 22] , a feature set is selected
such that the classification accuracy for the dataset improves or is maintained compared to the accuracy using all features.
If there is a high correlation between the featuresa andb in the case of selectinga/b, selectingb/a is accepted as redundant.
Method introduced by [22] take takes into account the correlations between attributes and does not add two highly correlated
attributes to the feature set. In the filter step of our hybrid approach we try to find the set with minimum redundancy but for
the unclassified data.

Yoon et al. [23] proposed aPCA based feature selection technique for multivariate time series data for classification.
Their technique finds the principle components of each dataset separately and then combine the firstp of them from each
dataset for a particular class and find the descriptive ones for each class. These descriptive PCs got for each class separately
are then clustered and the features contributing the most to the centroids of these clusters are taken as the selected features.
As we are not getting the correlation matrix but the qualitative matrix, and our data is unlabelled, this technique is not
applicable to our problem.

Unsupervised feature selection is a relatively new problem. The measure of goodness is the quality of the clusterings
with the selected features. The aim is to select the features that discriminates the best. The basic assumption is that not
all the dimensions at the beginning are informative. Whereas, we assume in this paper that all of them are. For more
information we refer to [11]. Our work also differs in that we look to preserve relationships between objects and their aim
is to find the features that minimize intra cluster dissimilarity and maximize inter cluster dissimilarity.

7 Conclusions

In this work, we have developed and applied a series of steps to perform feature selection that is targeted toward preserving
the similarity of inter-attribute relationships between data objects. Heterogeneous time-series data with different numbers of
readings for different data objects is transformed by generating feature vectors that capture measurements of relationships
between pairs of attributes for each data object. This is performed in part to capture the inter-attribute relationships and in
part to generate a homogeneous data set that allows comparison between data objects.

A performance metric is introduced so that inter-relationship distance before and after feature selection can be
measured. Two Feature selection techniques are described. One is a wrapper approach that is tuned to this metric. Another,
the hybrid approach targets inter-attribute correlation as the improvement measure of interest. A mechanism to inject expert
input for feature selection is included so that known, important correlated inter-attribute relationships can be included in the
selected feature set.

The hybrid technique, which uses a filter-type approach to arrive at an initial feature set, followed by a wrapper step
using lightweight distance preserving estimate works nearly as well as the wrapper method which is tuned to utilize the
specific measure of interest and works better than selecting the best feature set out of a large number of random permutations.
The slight degradation in performance comes with substantial gains in execution time. We achieved about 3 orders of
magnitude improvement using the hybrid approach.

Although the techniques included in this paper were developed for a specific problem domain involving unlabelled,
heterogeneous, time-series data where inter-attribute relationships are more important for comparative monitoring than
attribute values themselves, many of the ideas presented can be applied in a more general context. The proposed metric
could be used in any feature selection application for unlabelled data, since the metrics are applicable to compare distances
using any subset of features. The feature selection techniques can be easily modified in order to capture attribute value
distances and correlations rather than relationship comparisons and correlations. Expert opinion can also be incorporated
using the techniques provided in cases where certain attributes are desired in the selected feature set.

A recent data stream management systems (DSMS) design challenge focuses on maintaining some forms of Quality of
Service (QoS) such as timeliness and data accuracy [24]. Most stream applications observe varying data arrival rates. Due to
the vast number of continuous input data, i.e. streams, system resources (CPU, storage) may be consumed at highly variable
rates, which leads to overloading and imminent degradation of QoS. Therefore recent DSMS designs and implementations
employ sampling in order to overcome this issue [25, 26]. Within the data points arrived during the same time interval



sampling involves selecting a subset of them. The hybrid approach can be utilized as a sampling method in DSMS in cases
where the relationships between streams should be preserved. This technique meets the requirements of the corresponding
applications as it is fast and accurate.
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