
Partial Curve Matching under the Fréchet Distance∗

Sariel Har-Peled† Yusu Wang‡

Abstract

In this paper, we study the fundamental problem of measuring the partial similarity be-
tween curves. In particular, given two curves P and Q, we wish to maximize the total length of
portions of them that are close to each other, where the closeness is measured by the Fréchet
distance, a common global distance measure for curves. The resulting maximal length is called
the partial Fréchet similarity between P and Q, and we present various algorithms to com-
pute it. Speci�cally, under the L1 or L∞ metrics, we present an algorithm that computes, in
O(m2) time, the partial Fréchet similarity between a segment and a polygonal curve of size
m. We then develop an approximation algorithm that, in O((n + m)3/ε2) time, computes a
(1 − ε)-approximation to the optimal partial Fréchet similarity between two polygonal curves
of size n and m, respectively. Finally, we propose a third algorithm that, in near quadratic
time, computes a (constant) double-sided error approximation to the optimal partial Fréchet
similarity. To the best of our knowledge these are the �rst results on this problem.

∗Work on this paper by Sariel Har-Peled was partially supported by an NSF CAREER award CCR-0132901.
†Dept. of Comp. Sci, University of Illinois; 1304 West Spring�eld Ave., Urbana, IL 61801; sariel@cs.uiuc.edu.
‡Dept. of Comp. Sci. and Engineering, yusu@cse.ohio-state.edu.

0

http://www.uiuc.edu/~sariel/
http://www.cse.ohio-state.edu/~yusu/

1 Introduction

Measuring similarity between curves is a fundamental problem that appears in many �elds, including
computer graphics, pattern recognition, geographic information system, and structural biology.

A natural measure of similarity between two curves is the Fréchet distance . Intuitively, imagine
that a dog and its handler are walking on their respective curves with a leash between them. Both
can control their speed, but they can only go forward. The Fréchet distance of these two curves
is the minimal length of a leash necessary for the dog and the handler to move from the starting
points of the two curves to their respective endpoints. The Fréchet distance takes the inherent
order between points along the curves into consideration, making it a better measure of similarity
for curves than alternatives such as the Hausdor� distance [AG00, AKW04]. Furthermore, it is a
continuous measure, while most other curve similarity measures, such as the widely used root-mean-
square-deviation (RMSD) and the dynamic time warping (DTW), are discrete measures, considering
only vertices of input curves.

The Fréchet distance and its variants have been widely used in many applications [KP99, KKS05,
KHM+98, PP90]. Alt and Godau [AG95] presented an algorithms to compute the Fréchet distance
between two polygonal curves with n and m vertices, respectively, in O(nm log(nm)) time. E�cient
approximation algorithms have been developed for special families of curves [AKW04, AHK+06].
However, so far, no algorithm, exact or approximate, with running time o(nm) has been found for
this problem for general curves.

δ

Where the Fréchet distance falls short is when there are outliers and/or when
the two curves share only partial similarity. For example, two protein structures
(modeled as their backbone curves) may be similar around important functional
sites, but are dissimilar in other places. An interesting recent work by Efrat et al. [EFV07] combined
time warping to compute an integral (summed) version of the Fréchet distance, which can �smooth
out� the impact of some outliers. However, it does not fully resolve the issue of partial similarity,
especially when signi�cant parts of the curves are dissimilar. To this end, we investigate the partial
curve matching problem , where given two curves and a threshold δ, we wish to �nd the best
matching such that the largest possible fraction of the two curves are matched within (Fréchet)
distance δ.

The partial matching problem for point sets has been studied extensively, mainly under the
Hausdor� distance [CS98, IMV99]. Currently, in practice, the partial curve matching problem
under the discrete Fréchet distance or the RMS distance is usually computed, where only the
vertices of the input polygonal curves are considered. However, it is well known that these
discrete measures may fail to capture the �real� distance between input curves (see �gure on the
right). In this paper, we aim to develop a continuous partial similarity measure.

Other related work includes minimizing the Fréchet distance under various classes of transfor-
mations [AKW01, CM05, Wen02]. However the running times are high and practical solutions
remain elusive. Fréchet distance has also been extended to graphs [AERW03, BPSW05], to
piecewise smooth curves [Rot05], to simple polygons [BBW06], and to surfaces [AB05]. Finally,
it has also been used in context of high-dimensional approximate nearest-neighbor search [Ind02],
curve simpli�cation [AHMW05], and curve morphing [EHG+02].

Our results. As described above, current continuous curve similarity measures do not yet describe
partial similarity, while discrete measures may not re�ect the real similarity accurately. In this paper,
we extend the Fréchet distance to measure continuous partial curve similarity in a natural way,

1

and develop several e�cient algorithms to compute it. Computing the partial Fréchet similarity
also identi�es similar and dissimilar portions between curves, which is perhaps more interesting
than simply the similarity score itself. To the best of our knowledge, this is the �rst paper to study
the continuous partial curve matching problem.

More speci�cally, given a distance threshold δ, let D∂,δ(P,Q) denote the optimal partial Fréchet
similarity between two polygonal curves P and Q, which is the total length of the longest subcurves
of P and Q that are matched with Fréchet distance at most δ. (Note that the Fréchet distance can
be measured under any Lp norm.) In Section 3, for the case where P is a single edge, we compute
D∂,δ(P,Q) in O(m2) time, under the L1 or L∞ norms, where Q is a polygonal curve with m edges.

Unfortunately, the exact computation of D∂,δ(P,Q) seems to be challenging in general, and it
is unclear whether a polynomial time algorithm exists. We thus focus on e�cient approximation
algorithms for D∂,δ(P,Q) for general curves. Speci�cally, in Section 4, given two polygonal curves P
and Q of size n and m, respectively, we present two approximation algorithms for D∂,δ(P,Q), that
roughly run in O((n+m)3) time under the L1 and L∞ norms, and in O((n+m)4) time under any
other Lp norm. The �rst algorithm exploits a general framework combined with the exact algorithm
for the special case, and the framework is also used later in Section 5.

In Section 5, we present a more e�cient double-sided approximation algorithm for D∂,δ(P,Q),
where we also allow the distance threshold δ to be relaxed within a constant factor. The algorithm
runs in O((n + m)2 log2m) time for any Lp norm. We remark that even for the much simpler
matching problems such as computing the discrete Fréchet distance or the RMS distance, currently
there is no approximation algorithm that runs in sub-quadratic time for general curves¬.

We remark that compared to the original Fréchet distance for the global curve matching problem,
computing the partial Fréchet similarity appears to be signi�cantly harder. Some discussion as well
as open problems are presented in Section 6. Finally, details omitted from this extended abstract
due to space limitations can be found in the Appendix.

2 Preliminaries

Problem de�nition. A parameterized curve in IRd can be represented as a function f : [0, 1] →
IRd. A (monotone) reparametrization α is a continuous non-decreasing function α : [0, 1] →
[0, 1] with α(0) = 0 and α(1) = 1. A matching between f and g is simply a pair of monotone
reparametrizations (α, β) of f and g respectively, where the point f(α(x)) is matched to the point
g(β(x)), for any x ∈ [0, 1]. Given two curves f, g : [0, 1] → IRd, the Fréchet distance between them
under the Lp norm is de�ned as

D(f, g) := inf
α,β

max
t∈[0,1]

dp

(
f(α(t)), g(β(t))

)
,

where dp(x, y) denotes the distance between points x and y under the Lp norm, and α and β range
over all monotone reparametrizations.

Given a distance threshold δ > 0 and a matching (α, β) of curves f and g, the score of (α, β)
under the Lp norm, also referred to as the partial Fréchet similarity of f and g w.r.t (α, β) is
de�ned as

Sα,β(f, g) =
∫

dp(f(α(t)),g(β(t))≤δ
(||f ′(α(t))||+ ||g′(β(t))||)dt,

¬Although only single-sided approximation was considered for those problems, it seems that eventually our partial
matching problem meets a similar technical di�culty as them (which is some variant of the string matching problem)
even when double-sided approximation is allowed.

2

where ||v|| is the L2 norm of a vector v; namely, the score is the total length of the portions of the
two curves f and g that are matched with distance smaller than δ w.r.t. the matching (α, β). Natu-
rally, we would like to maximize the length of these portions, and the partial Fréchet similarity

between f and g for a threshold δ is de�ned as the maximum score of any matching of f and g;
that is, D∂,δ(f, g) := maxα,β Sα,β(f, g), where α and β range over all monotone reparametrizations.

Q

P

Free space diagram. For two polygonal curves P = 〈p1, . . . , pn〉 and Q =
〈q1, . . . , qm〉, an alternative way to view D∂(P,Q) is via the following free space

diagram M = Mδ(P,Q) [AG95]: M is an n by m map where its ith column
corresponds to the ith edge of P and has width ||pipi+1||, while its jth row
corresponds to the jth edge of Q and has width ||qjqj+1||. See �gure on the
right. For a set of segments X in the plane, let lenp(X) denote the length of the segments of X
under the Lp norm. Let f : [0, len2(P)] → IRd and g : [0, len2(Q)] → IRd represent the arc-length
parametrization of P and Q, respectively. Then every point (x, y) in M corresponds to a pair of
points f(x) ∈ P and g(y) ∈ Q. We abuse the notation slightly and use P (x) and Q(y) to represent
f(x) and g(y), respectively, from now on.

We say that a point (x, y) ∈M is good if dp(P(x),Q(y)) ≤ δ. By convexity of the Lp norm, the
good points within any cell M [i][j] of M form a closed and connected convex region. In particular,
this good region is the intersection between an ellipse with the cellM [i][j] under the L2 norm. For
curves in the plane, it is the intersection between a parallelogram with the cell M [i][j] under the
L∞ and L1 norms. For curves in IRd, the good region is the intersection between the cell M [i][j]
with a convex polygon of complexity O(d) (resp. O(2d)) under the L∞ norm (resp. the L1 norm).

Monotone paths. There is a one-to-one correspondence between all possible matchings of P and
Q, and the set of monotone paths in M from its bottom-left corner to its top-right corner, where
a monotone path in M is a path monotone in both the horizontal and the vertical directions.
Given any monotone path π of M , let πM denote its intersection with the good regions of M . Then
Sπ(P,Q), the partial similarity between P and Q induced by π, also referred to as the score of

π, is simply the L1-norm length of πM . To compute D∂,δ(P,Q), the goal is to �nd an optimal

monotone path whose score is maximized. This corresponds to an optimal partial matching

between P and Q.
Observe that any two pieces of monotone paths sharing the same starting and ending points

have the same L1-norm length. Hence in general, the set of entry and exit points of a monotone
path into the good regions completely decides its score. Now a monotone path π is conformal if
(i) its intersection with bad regions in M consists of only vertical and horizontal segments, and (ii)
the endpoints of horizontal/vertical segments of π lie either on cell boundaries or on boundaries of
good regions. The following observation is straightforward.

Observation 2.1 Any monotone path in M can be modi�ed into a conformal path without decreas-
ing its score.

Hence, in the remainder of this paper, we consider only conformal paths. Finally, given a distance
threshold δ ≥ 0, τ is an α-approximation of D∂,δ(P,Q) if αD∂,δ(P,Q) ≤ τ ≤ D∂,δ(P,Q); and τ
is a double-sided (α, β)-approximation of D∂,δ(P,Q) if αD∂,δ(P,Q) ≤ τ ≤ D∂,βδ(P,Q).

3 Partial Fréchet Similarity of A Segment and A Curve

3

P

QIn this section, we compute the optimal partial Fréchet distance between a segment
s and a polygonal curve Q with m edges under the L1 or L∞ norms. In this case,
for a �xed threshold δ, the free space diagram M = Mδ(s,Q) is a single column of
size m, and the good region within each cell M [j] is the intersection between M [j] and
some convex polygon of constant complexity (depending only on the dimension d of the
space). A conformal path π of M is critical if every vertical segment passes through
at least one vertex of some good region. See �gure on the right. The lemma below
suggests that we only need to consider critical paths to compute D∂(s,Q). The proof
is in Appendix A.1.

Lemma 3.1 Given an edge s and a polygonal curve Q, under the L1 or L∞ norms, there always
exists an optimal path π∗ that is critical.

Lemma 3.1 suggests a dynamic programming algorithm to compute D∂(s,Q). First, project the
vertices of the good regions from all the cells onto each of the horizontal grid edges of M . This
produces N = O(m) number of Steiner points on every horizontal edge. Next, consider the jth
cellM [j] ofM . Let pj [i] denote the ith Steiner point along the jth horizontal edge ofM , and S(i, j)
denote the optimal score for any critical path from p1[1] to pj [i]. Assume without loss of generality
that pj [i] is not in the good region (the other case is similar). It holds that

S(i, j + 1) = max{ S(i− 1, j + 1), max
1≤k≤i

{S(k, j) + WM[j](pj[k], pj+1[i])} },

where WC(x, y) is the score of the optimal path connecting x to y within a cell C and it is not
de�ned it there is no monotone path from x to y. In other words, the optimal critical path to pj+1[i]
either arrives from the left, or from one of the Steiner points on the lower boundary edge of M [j].
Observe that WC(x, y) is in fact the largest L1-norm length of any segment within the intersection
of the good region in C and the slab between lx and ly, where la denotes the vertical line passing
through point a; WC(x, y) is not de�ned if there there is no monotone path connecting x to y.

Consider a cell M [j], since we only consider conformal paths, it is not hard to show that each
S(i, j), for 1 ≤ i ≤ N , can be computed in O(N) time. In fact, by using an amortized analysis, we
have the following result (proof in Appendix A.2).

Lemma 3.2 Given S(1, j), . . . , S(N, j) for a �xed j, one can compute, in O(N) time, the values of
S(1, j + 1), . . . , S(N, j + 1), using O(1) space.

Since N = O(m), by using dynamic programming together with Lemma 3.2, we can show the
following.

Theorem 3.3 Given δ > 0, the partial Fréchet similarity between a segment s and a polygonal
curve Q of size m under the L1 or L∞ norms, D∂,δ(s,Q), can be computed in O(m2) time and
O(m) space.

4 Approximation Algorithms for Two Curves

In this section, we present two results on approximating D∂(P,Q) for two general polygonal curves
P and Q. The details are relative standard, and can be found in Appendix B. The �rst one uses a
general framework that converts some algorithm for the special case (where one input is a segment),
exact or approximate, to an approximate algorithm for the general case. When combined with the

4

algorithm in Section 3, this framework produces the following result. The framework will also be
used later in Section 5 to produce the faster double-sided approximation algorithm.

Theorem 4.1 Given two polygonal curves P and Q of size n and m, respectively, and a distance
threshold δ > 0, a 1

3 -approximation of D∂(P,Q) under the L1 or L∞ norm can be computed in
O((n+m)3) time and O((n+m)2) space.

The second result is a (1−ε)-approximate algorithm for D∂(P,Q) under any Lp norm, by adding
O((n+m)3/ε2) number of Steiner points to the good regions in the free space diagram.

Theorem 4.2 Given a parameter δ > 0 and two polygonal curves P and Q of size n and m,
respectively, one can compute, in O((n+m)4/ε2) time, a (1− ε)-approximation to D∂(P,Q), using
O((n+m)2/ε) space, for any Lp norm. For the L1 or L∞ norms, the running time of the algorithm
is O((n+m)3/ε2), and it uses O((n+m)2/ε) space.

5 Double-sided Approximation of D∂(P, Q)

In this section, we present a double-sided approximation algorithm for D∂,δ(P,Q). The output of
the algorithm is a number τ which is a (1

3+3
√

d
,
√
d)-approximation to D∂,δ(P,Q) for two polygonal

curves P and Q in IRd under the L2 norm; namely, D∂,δ(P,Q)/(3+3
√
d) ≤ τ ≤ D∂,

√
dδ(P,Q). Using

the same framework one can also compute a (1/(3+3
√
d), d)-approximation to D∂(P,Q) under any

Lp norm. In what follows, for simplicity of exposition, we assume that P and Q are polygonal
curves in the plane. Furthermore, We will only describe a (1

1+
√

2
,
√

2)-approximation algorithm for

the special case where P has only one edge. It turns out that combined with a similar framework
as in the proof of Theorem 4.1, the (1

1+
√

2
,
√

2)-approximation algorithm for the special case leads

to a (1
3+3

√
2
,
√

2)-approximation algorithm for the general case. Details omitted in this section due

to lack of space can be found in Appendix C.

5.1 Algorithm outline

Given a segment s and a polygonal curve Q = 〈q1, q2, . . . , qm〉 in the plane, the goal is to compute
a (1

1+
√

2
,
√

2)-approximation of D∂,δ(s,Q) under the L2 norm. Let Fδ,k : s → IR be the function

de�ned as Fδ,k(x) = D∂,δ(s[0, x], Qk), where s[0, x] is the subsegment of s from s(0) to s(x) and
Qk = 〈q1, . . . , qk〉 is the subchain of Q spanned by its �rst k vertices. The idea is to maintain Fk in
a bottom-up manner: start with k = 1, and in each round, update Fk to obtain Fk+1. In the end,
we have that Fm(1) = D∂(s[0, 1], Qm) = D∂(s,Q).

Unfortunately, the structure of Fk seems to be quite complicated. We conjecture that its descrip-
tive complexity is polynomial but currently we have no proof � we leave this as an open problem
for further research. Hence we consider approximating these functions.

sFirst, we approximate the distance metric by replacing the unit ball
with a unit square ψ such that one of its sides is parallel to the segment s
(see the solid square in the right �gure). Note that if we rotate s so that
it is parallel to the x-axis, then ψ coincides with the unit ball for the L∞
norm. Thus, from now on, we assume, without loss of generality, that s is the interval [0, 1] on
the x-axis, and our algorithm uses the L∞ norm to approximate the L2 norm. Note that this is
di�erent from using the L∞ norm for an arbitrary segment s, as for a general segment, we are using

5

a rotated unit square to approximate the unit disk. Furthermore, for any x ∈ s = [0, 1], we now
rede�ne Fk(x) to be the optimal partial Fréchet similarity between the segment [0, x] and the chain
Qk under the L∞ norm. Since the unit square always contains a unit disk and is always contained
inside a disk of radius

√
2 (and

√
d in IRd), we have the following.

Claim 5.1 Given an arbitrary segment ŝ and a polyline Q̂ of size m in IRd, let µ be the a�ne
transformation that transform ŝ to s = [0, 1], and let Q = µ(Q̂). Then, Fm(1) = D∂,δ(s,Q) under

the L∞ norm is a (1,
√
d)-approximation for D∂,δ(ŝ, Q̂) under the L2 norm. Furthermore, an α-

approximation for Fm(1) induces an (α,
√
d)-approximation of D∂,δ(ŝ, Q̂).

Fm(1) is also a (1, d)-approximation for D∂,δ(ŝ, Q̂) under any other Lp norm.

Let ŝ, Q̂, s, and Q be as de�ned in the claim above. The detailed structure of Fk for s and Q will
be described in Section 5.2. To further improve the e�ciency of our algorithm, we introduce a second
level of approximation in Section 5.3: in each round, instead of Fk, we maintain a simpler functionGk

that approximates Fk that is faster to maintain. In the end, Gm(1) provides a 1
1+

√
d
-approximation

for Fm(1), which, combined with Claim 5.1, implies that it is a (1
1+

√
d
,
√
d)-approximation to the

optimal partial Fréchet similarity between the original arbitrarily oriented segment ŝ and the polyg-
onal curve Q̂ under the L2 norm, i.e, D∂,δ(ŝ, Q̂)/(1 +

√
d) ≤ Gm(1) ≤ D∂,

√
dδ(ŝ, Q̂). From now on,

we will only focus on the segment s = [0, 1] and the polygonal curve Q.

5.2 The structure and computation of the Fks

e
s

Bδ(s)We describe the structure of Fks by studying the relation between Fk

and Fk+1. In particular, given Fk, we wish to compute Fk+1 when a new
edge e = qkqk+1 is added to subchain Qk = 〈q1, . . . , qk−1〉.

Let Bδ(X) =
{
y ∈ IRd | ∃x ∈ X s.t. d∞(x, y) ≤ δ

}
denote the δ-neighborhood of an object X

under the L∞ norm. Since only the intersection between e and Bδ(s) may contribute to the partial
matching between e and s, we assume from now on that e lies completely inside Bδ(s) (i.e., the
dashed piece of e in the �gure above is ignored). We also assume that the angle between e and s is
at most π/2 (s and e are oriented by their ordering along the two curves); the case where the angle
is obtuse is simpler and it is thus omitted.

a b x

Ib(x)

Ia(x)

x1 x2

x3 x4

Figure 1: Ia(·)

Since we are using the L∞ norm and s is horizontal, the good region in
the free space diagram of s and e is a parallelogram as shown in Figure 1, and
the slope of the diagonal sides of this parallelogram is

√
1 + ρ(e)2, where ρ(e)

is the slope of e. Now let Ia(x) denote the score of the best matching between
the edge e and the subsegment [a, x] ⊆ s. Geometrically, the function Ia(x) is
the maximum L1-norm length of any segment inside the good region that lies
between the two vertical lines `a and `x passing through a and x, respectively.
There are four critical values of x where the function Ia(x) may change its
behavior (the values x1, x2, x3 and x4 as depicted in Figure 1). For simplicity of exposition, we
assume from now on that x2 < x3, unless otherwise speci�ed.

x1 x2 x3 x4

Figure 2: V(·)

Let V(a) = Ia(a) be the length of the intersection of the vertical line `a
with the good region. Clearly, V(a) = 0 for a /∈ [x1, x4]. It is easy to verify
that within the range [x1, x4], V is a piecewise linear function of three pieces
(see Figure 2): V(a) =

√
1 + ρ(e)2(a− x1) for a ∈ [x1, x2], V(a) = V(x2) for

a ∈ (x2, x3], and V(a) = V(x2)−
√

1 + ρ(e)2(a− x3) if a ∈ (x3, x4].

6

ax1 x2 x3 x4

Ia

b

Ib
Ic

c

Figure 3: Ia, Ib, Ic.

If the vertical lines `a and `x both intersect the good region, then the
longest segment inside the good region is simply the segment connecting the
bottom feasible point on `a to the top feasible point on `x (dotted segments
in Figure 1). As Ia(x) is the L1-norm length of this segment, we have that
for a ∈ [x1, x3],

Ia(x) =

V(a) + ρI(x− a) if x ∈ [x1, x3]
V(a) + ρI(x3 − a) + (x− x3) if x ∈ (x3, x4]
Ia(x4) if x ∈ (x4, 1],

(1)

where ρI = 1 +
√

1 + ρ(e)2 is a constant that only depends on e. The case
for a ∈ [x3, x4] is similar and simpler. See Figure 3. Now we rewrite Ia(x) as Ia(x) = V(a) + Ra(x)
to simplify later expositions; geometrically, Ra(x) is the L1-norm length of the segment connecting
the top feasible point on `a to the top feasible point on `x.

Observation 5.2 (i) For any a, Ra(a) = 0, and for any x ≥ b ≥ a, it holds that Ra(x) ≥ Rb(x).
(ii) For any x ≥ b ≥ a it holds that Ra(x)−Rb(x) is a constant that depends only on a and b. (iii)
For any a, x ∈ [x1, x4] with a ≤ x, it holds that Ra(x) ≥ x− a.

Computing Fk+1 from Fk. It is easy to verify that the following holds.

Fk+1(x) =

Fk(x) if x ∈ [0, x1)
maxa∈[x1,x]{Fk(a) + Ia(x)} if x ∈ [x1, x4]
max{Fk+1(x4), Fk(x)} if x ∈ (x4, 1].

(2)

Indeed, the best way to match s up to the point x with Qk+1, is either the best way to match [0, x]
with Qk, or by matching some fraction [a, x] ⊆ s with the (k+1)th segment e of Qk+1. It is easy to
verify that Fk is a monotone piecewise linear (PL) function. Let N be the descriptive complexity
of Fk. Based on Eqn (2), below we show that Fk+1 has complexity N +O(1), and can be computed
in O(N) time.

The cases for x ∈ [0, x1) and x ∈ (x4, 1] are straightforward. We consider only when x ∈ [x1, x4].
Here for every x, we wish to compute the set of function values Fk(a) + Ia(x) for all x1 ≤ a ≤ x,
and then take the largest value. This is equivalent to that for every a ∈ [x1, x4], we compute the
function Fk(a) + Ia(y) for y ≥ a. Then for a �xed x, we simply take the largest value that such a
function can generate � hence the graph of the function Fk+1(·) is the upper envelope of the graphs
of functions Fk(a) + Ia(·) for all a ∈ [x1, x4].

We implement this goal in two steps. First, we compute the function f : [x1, x4] → IR de�ned as
f(a) = Fk(a) +V(a); note that Fk(a) + Ia(x) = Fk(a) +V(a) + Ra(x) = f(a) + Ra(x). As V(a) is a
piecewise linear function consisting of three pieces, and Fk(a) is also a piecewise linear function, the
function f(·) has complexity N + O(1) � we introduce at most four new vertices (i.e., x1, . . . , x4)
to the graph of the function f . We call this step the lifting stage .

The second step is called the enveloping stage , aiming at computing Fk+1(x) = maxa(f(a) +
Ra(x)) for any x. By Observation 5.2 we have the following claim.

Claim 5.3 If f(a) + Ra(x) = f(b) + Rb(x) for some a ≤ b and x, then f(a) + Ra(b) = f(b).
Furthermore, if f(a) + Ra(b) ≥ f(b), then f(a) + Ra(x) ≥ f(b) + Rb(x).

7

Ra(x)

a

q

f

y

Now for a point (a, f(a)) on the graph of f , consider the function ha(x) =
f(a) + Ra(x). Visually, this function is the result of �attaching� the graph of
Ra to the graph of f at the point (a, f(a)). See the right �gure. Let y be the
smallest value (larger than a) such that ha(y) = f(y). Claim 5.3 implies that
no point b ∈ [a, y] can generate a larger value for any x ≥ b than ha(x); that is,
f(b) + Rb(x) ≤ f(a) + Ra(x). Since Fk+1(x) = maxa∈[x1,x4]{Fk(a) + Ia(x)} =
maxa∈[x1,x4]{f(a) + Ra(x)}, there is no need to consider f(b) + Rb(x) for such
b ∈ (a, y) when computing Fk+1(x) (as their graph will not appear on the upper envelope). Thus
once we have attached the graph Ra at (a, f(a)), we only need to start from (y, f(y)) to �nd the
next position to attach the R graph. This leads to an algorithm to compute Fk+1(x) by sweeping
the graph of f(x) from left to right only once in O(N) time, and the resulting function Fk+1(x)
has descriptive complexity N +O(1). See Appendix C.1 for details.

In summary, our algorithm starts with F0 = 0 (i.e, k = 0). It then runs in m rounds, updating
Fk to Fk+1 in O(Nk) time in each round, where Nk is the complexity of Fk. Since in each round,
the complexity of Fk+1 increases by at most O(1), Fm is a monotone PL-function of complexity
O(m), and can be computed in O(m2) time. Combined with Claim 5.1, we conclude that:

Lemma 5.4 Given an arbitrary segment ŝ and a polygonal curve Q̂ of size m, one can compute, in
O(m2) time and O(m) space, a number τ , which is a (1,

√
2)-approximation to the optimal partial

Fréchet distance between ŝ and Q̂ under the L2 norm, that is, D∂,δ(ŝ, Q̂) ≤ τ ≤ D∂,
√

2δ(ŝ, Q̂).

5.3 Approximation algorithm for Fm(1)

In this section, we describe an e�cient near-linear time algorithm to 1/(1+
√

2)-approximate Fm(1).
It follows the ideas used in the previous section, and runs in m rounds. However, in each round,
instead of Fk, it maintains a simpler monotone PL function Gk, so that for any x ∈ s = [0, 1], we
have Fk(x)/γ − kξ∆∗/m ≤ Gk(x) ≤ Fk(x), where ∆∗ = Fm(1) and γ is a constant that will be
speci�ed shortly. In the end, Gm(1) provides the required approximation for Fm(1).

0

Gk

1

In particular, each Gk has the tridirectional property ; that is, each segment
in its graph is either horizontal, vertical or with slope 1. Vertices of the graph
of such a PL-function are called break points, and those connecting a diagonal
or a vertical edge with a horizontal one are base vertices (empty dots in the
right �gure). Given a PL function g, the base query for a real number x asks for the �rst base
vertex on the graph of g to the right of x. Our goal is to compute Gk+1 from Gk, in O(log2m)
amortized time (instead of in O(m) time, as in the case of Fks). To achieve this goal, we �rst need
a better data structure for representing a PL-function (details in Appendix C.2).

Lemma 5.5 Given a PL-function H : [l, r] :→ IR of complexity N , one can build a data-structure to
represent H so that the following operations are supported: (i) insert/delete a consecutive sequence
of k break points, (ii) evaluate H(x) for any x ∈ [l, r], (iii) base query if H is tridirectional, and
(iv) add H with a constant over an interval [a, a′] ⊂ [l, r]. The �rst operation can be performed in
O(k + logN) time, and the remaining operations can be performed in O(logN) time.

5.3.1 Updating the Gks

Given the function Gk, of complexity N , represented by an instance T of the data-structure of
Lemma 5.5, we wish to update T into representing Gk+1. Again, let x1, . . . , x4 be the projection

8

of the vertices of the white region onto s (recall Figure 1), and we describe only the case when
x ∈ [x1, x4]. Recall that Fk+1(x) = maxa∈[x1,x]{Fk(a) + Ia(x)} for x ∈ [x1, x4], and we have
separated the update of Fk into two stages, lifting Fk by V to function f (the lifting stage), and
then computing maxa(f(a)+Ra(x)) for each x (the enveloping stage). We follow the same two-stage
framework here to update Gk, but introduce approximation at each stage.

The Lifting stage. Previously, we �rst lift Fk(x) to Fk + V(x) for every x ∈ [x1, x4]. Here, we
approximate V (recall Figure 2) by the function V̂ speci�ed below.

x1 I2 I4 x2I3

For x ∈ [x2, x3], we set V̂(x) = V(x), which is a constant. For the interval
[x1, x2], we replace V by an exponential staircase function (see �gure on the
right, where we use the solid stair to approximate the dashed linear function):
First, let L = x2−x1, and ξ a constant to be speci�ed later. Subdivide [x1, x2]
into β = O(log(m/ξ)) intervals, with the ith interval Ii = [x1 + L/2β−i, x1 +
L/2β−i−1], for i = 1, . . . , β−1. Also, set I0 = [x1, x1 +L/2β−1]. For x ∈ Ii, we
set V̂(x) = miny∈Ii V(y) = V(x1 + L/2β−i) for i > 0 and V̂(x) = V(x1) = 0 for i = 0. The interval
[x3, x4] is handled in a symmetric manner. Since V is a linear function over the interval [x1, x2], it
is easy to verify that V̂(·) is a 1

2 -approximation to V(·) on [x1, x2], except for a small additive error

when x ∈ I0. In particular, V(x)/2− ξ∆∗/m ≤ V̂(x) ≤ V(x).
The lifting stage now consists of O(log(m/ξ)) modi�cations of Gk by adding to it the constants

de�ned above on the intervals I0, . . . , Iβ , respectively. Using the data-structure of Lemma 5.5, each
such update takes O(logN) time. Overall, the lifting stage takes O(log(N) log(m/ξ)) time, and
introduces O(β) = O(log(m/ξ)) new break points. The resulting PL-function H(·) still satis�es the
tridirectional property, and has complexity N +O(log(m/ξ)).

Enveloping stage. In this stage, we use R̂a(x) = x − a for x ∈ [x1, x4] to replace Ra and

approximate Fk+1(x) by Gk+1(x) = maxa≤x(H(a) + R̂a(x)). In particular, attaching the graph of

R̂a at the point (a,H(a)) now looks like shooting a ray of slope 1, referred to as a diagonal ray, from
the point (a,H(a)); and Gk+1 is the upper envelope of all such rays. It follows from Observation 5.2

(iii) that R̂a(x) ≤ Ra(x). Furthermore, Claim 5.3 still holds for R̂a.

Observe that only diagonal rays attached at base vertices may potentially ap-
pear on the upper envelope. Now, to compute Gk+1, we start with the �rst base
vertex of H, say (w1,H(w1)), and shoot a diagonal ray from it. The �rst inter-
section point (y1,H(y1)) between this ray and the graph of H is necessarily on
a vertical edge in the graph of H. By Claim 5.3, for any point (x,H(x)) with
w1 < x < y1, its ray will not appear on the upper envelope. Hence the next ray
on the upper envelope will be originated from the �rst base point, say w2, after y1. We then repeat
the same process starting from w2 until we reach x4. See the right �gure.

Easy to verify that the resulting function Gk+1 is still tridirectional, and this procedure does not
create any new break point. This fact, together with a global analysis, implies that the enveloping
stage takes O(logm log m

ξ) amortized time, and overall, we have: (proof in Appendix C.3).

Claim 5.6 It takes O(m logm log m
ξ) time to compute Gm.

The approximation quality of Gk is summarized in the following lemma, and details can be
found in Appendix C.4.

9

Lemma 5.7 For any 0 ≤ k ≤ m, we have that Fk(x)/γ − kξ∆∗/m ≤ Gk(x) ≤ Fk(x), where
γ = 2 +

√
2 and ∆∗ = Fm(1) is the optimal partial matching between segment s = [0, 1] and curve

Q under the L∞ metric.

By setting ξ = (
√

2 − 1)2/4, the above lemma implies that Gm(1) is a 1/4-approximation to
Fm(1). In fact, the approximation factor can be improved to 1

1+
√

2
without changing the asymptotic

time complexity by re�ning our approximation scheme. The same algorithm can be extended to
higher dimensions. Combining with Claim 5.1, we have the following result.

Theorem 5.8 Given an arbitrary segment ŝ and a polygonal curve Q̂ of size m in IRd, one can
compute, in O(m log2m) time, using O(m logm) space, a (1

1+
√

d
,
√
d)-approximation to the optimal

partial matching between ŝ and Q̂ under the L2 norm (i.e., D∂(ŝ, Q̂)). Similarly, one can com-
pute a (1

1+
√

d
, d)-approximation to D∂(ŝ, Q̂) under any other Lp norm in the same time and space

complexity.

Finally, we combine the above double-sided approximation algorithm with a similar framework
as the one used for the constant factor approximation algorithm in Theorem 4.1, and conclude with
the following result.

Theorem 5.9 Given two polygonal curves P and Q in IRd, of size n and m respectively, and an
error threshold δ, a (1

3+3
√

d
,
√
d)-approximation of D∂(P,Q) under the L2 norm can be computed in

O((n+m)2 log2(n+m)) time and O((n+m) log(n+m)) space. The same time and space complexity
holds for an (1

3+3
√

d
, d)-approximation algorithm of D∂(P,Q) under any other Lp norm.

6 Conclusions

In this paper, we studied the problem of computing partial Fréchet distance for two polygonal curves.
We presented several approximation algorithms for this problem. We believe that our work provides
an important �rst step in understanding the partial curve matching problem and its structure.

Compared to computing the Fréchet distance for the global curve matching problem, the partial
Fréchet similarity problem appears to be considerably harder. In some sense, the Fréchet distance
can eventually be modeled as a reachability problem (with some constraints) in a planar region,
while the partial Fréchet similarity problem asks for the path (under constraints) that maximize its
intersection with this region. Finding the longest path is not memoryless as in a reachability test.
Informally, to compute the optimal solution, it seems necessary to remember the score of the best
path to arrive at each possible point. The partial Fréchet similarity problem bears similarity to the
shortest path problem with obstacles. The di�erence is that instead of shortest path, it looks for
longest path with some constraints, and the characterization of such paths is not well understood.

Although our work has revealed several properties of the structure of an optimal partial curve
matching, there is still a lot of ground for further research. In particular, can one �nd an exact
algorithm to compute D∂(P,Q) for general curves that runs in polynomial time? Given any two
points in the free space diagram, consider the sequence of boundary edges that the best monotone
path π (i.e, with largest score) connecting them will pass through. Once this sequence is known,
π can be computed using linear programming. We recently observed that only polynomial number
of such sequences exist for all pairs of points. Is it possible to compute these polynomial number
of distinct sequences in polynomial time? A positive answer to this question will imply that we

10

can compute the optimal partial Fréchet similarity by making a polynomial number of LP-queries.
Finally, Can we develop better approximation algorithms, such as near-quadratic time algorithm
that approximates D∂(P,Q) in a single-sided manner?

References

[AB05] H. Alt and M. Buchin. Semi-computability of the Fréchet distance between surfaces.
In Proc. 21st Euro. Workshop on Comput. Geom., 2005.

[AERW03] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. J. Algorithms,
49:262�283, 2003.

[AG95] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
Internat. J. Comput. Geom. Appl., 5:75�91, 1995.

[AG00] H. Alt and L. J. Guibas. Discrete geometric shapes: Matching, interpolation, and
approximation. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Com-
putational Geometry, pages 121�153. Elsevier Science Publishers B. V. North-Holland,
Amsterdam, 2000.

[AHK+06] B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, and C. Wenk. Fréchet distance for
curves, Revisited. In Proc. 14th Annu. European Sympos. Algorithms, pages 52�63,
2006.

[AHMW05] P. K. Agarwal, S. Har-Peled, N. Mustafa, and Y. Wang. Near-linear time approximation
algorithms for curve simpli�cation in two and three dimensions. Algorithmica, 42:203�
219, 2005.

[AKW01] H. Alt, C. Knauer, and C. Wenk. Matching polygonal curves with respect to the fréchet
distance. In Proc. 18th Internat. Sympos. Theoret. Asp. Comp. Sci., pages 63�74, 2001.

[AKW04] H. Alt, C. Knauer, and C. Wenk. Comparison of distance measures for planar curves.
Algorithmica, 38(1):45�58, 2004.

[BBW06] K. Buchin, M. Buchin, and C. Wenk. Computing the Fréchet distance between simple
polygons in polynomial time. In Proc. 22nd Annu. ACM Sympos. Comput. Geom.,
pages 80�87, 2006.

[BPSW05] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle tracking
data. In Proc. 31st VLDB Conference, pages 853�864, 2005.

[CM05] M. Clausen and A. Mosig. Approximately matching polygonal curves with respect to
the Fréchet distance. Comput. Geom. Theory Appl., 30:113�127, 2005.

[CS98] D. Cardoze and L. Schulman. Pattern matching for spatial point sets. In Proc. 39th
Annu. IEEE Sympos. Found. Comput. Sci., pages 156�165, 1998.

[EFV07] A. Efrat, Q. Fan, and S. Venkatasubramanian. Curve matching, time warping, and
light �elds, new algorithms for computing similarity between curves. J. Mathematic
Imaging and Vision, To appear, 2007.

11

[EHG+02] A. Efrat, S. Har-Peled, L. J. Guibas, J. S.B. Mitchell, and T.M. Murali. New similar-
ity measures between polylines with applications to morphing and polygon sweeping.
Discrete Comput. Geom., 28:535�569, 2002.

[IMV99] P. Indyk, R. Motwani, and S. Venkatasubramanian. Geometric matching under noise:
Combinatorial bounds and algorithms. In Proc. 10th ACM-SIAM Sympos. Discrete
Algorithms, pages 457�465, 1999.

[Ind02] P. Indyk. Approximate nearest neighbor algorithms for Fréchet distance via product
metrics. In Proc. 18th Annu. ACM Sympos. Comput. Geom., pages 102�106, 2002.

[KHM+98] S. Kwong, Q. H. He, K. F. Man, K. S. Tang, and C. W. Chau. Parallel genetic-
based hybrid pattern matching algorithm for isolated word recognition. Int. J. Pattern
Recognition & Arti�cial Intelligence, 12(5):573�594, August 1998.

[KKS05] M.S. Kim, S.W. Kim, and M. Shin. Optimization of subsequence matching under time
warping in time-series databases. In Proc. ACM symp. Applied comput., pages 581�586,
New York, NY, USA, 2005.

[KP99] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping to massive dataset.
In Proc. of the Third Euro. Conf. Princip. Data Mining and Know. Disc., pages 1�11,
1999.

[PP90] M. Parizeau and R. Plamondon. A comparative analysis of regional correlation, dy-
namic time warping, and skeletal tree matching for signature veri�cation. IEEE Trans.
Pattern Anal. Mach. Intell., 12(7):710�717, 1990.

[Rot05] G. Rote. Computing the Fréchet distance between piecewise smooth curves. Technical
Report ECG-TR-241108-01, Freie Universität, Berlin, May 2005. To appear in Comput.
Geom. Theory Appl.

[Wen02] C. Wenk. Shape Matching in Higher Dimensions. PhD thesis, Dept. of Comput. Sci.,
Freie Universität, Berlin, 2002.

12

A Proofs Omitted from Section 3

A.1 Proof of Lemma 3.1

zy

x

zy′

x′

u u

w w

(a) (b)
Figure 4: Shifting

Given any optimal conformal path π of M , we modify it into a critical
path as follows. Let e = (x, y) be any vertical edge of π violating the
critical condition. Since π is conformal, the endpoints of e, x and y, lie
on the boundary of either some cell or some good region (see Figure 4
(a)). Imagine now shifting the edge e either to the left or right, with its
endpoints sliding along the corresponding boundaries. Let ∆(r) be the
change in the score of π induced by shifting e horizontally by distance r;
r < 0 means shifting e to the left.

Since e does not pass through any vertex of the good regions, it inter-
sects a set of boundary edges of the good regions in the interior. Let e′

be one such edge with slope ρ, and for simplicity, assume that it is not
the �rst/last one. When e shifts horizontally by distance r, the change
in the score induced by e′ is sign(e′)ρr, where sign(e′) is either +1 or −1,
depending on whether e′ is the upper or lower boundary edge of some good region. Note that this
change is solely determined by e′ and r and independent of the x-coordinate of the vertical edge
e. Most importantly, the change becomes −sign(e′)ρr if we shift e by distance −r (i.e, by r in the
opposite direction). Since ∆(r) is the summation of the changes induced by each boundary edge
intersected by e, it follows that ∆(r) = −∆(−r), as long as e intersects the same set of boundary
edges. Hence there is always a direction to monotonically shift e to increase (or maintain) the score
of the induced partial matching, until it reaches a vertex of a good region, or it merges with another
vertical edge (Figure 4 (b)). If it is the �rst case, then e is now critical and we are done. For the
second case, we continue shifting the new vertical edge (edge wy′ in Figure 4 (b)) until it eventually
reaches a vertex of a good region. Repeating this for every non-critical vertical edge in π, results in
a path π∗ which is critical, and Sπ∗(s,Q) ≥ Sπ(s,Q).

A.2 Proof of Lemma 3.2

Given a cell M [j], for simplicity, let U and B denote its upper and lower boundary edges, respec-
tively; U [i] = pj+1[i] and B[i] = pj [i]. We now project the vertices of the good region in M [j]
onto U and B, and subdivide U and B into constant number of intervals U1, . . . , Uc and B1, . . . , Bc,
respectively. We refer to such projected vertices as interval vertices, to distinguish them from
the set of Steiner points on each edge, although each interval vertex is also a Steiner vertex. Given
an entry point x ∈ B and an exit point y ∈ U , to �nd an optimal path path connecting x to y
within M [j], it turns out that only constant cases need to be inspected (a few examples are shown
in Figure A.2), since we only consider conformal paths. In fact, we have the following claim, which
can be proved by straightforward but tedious case analysis.

Claim A.1 Given any pair of entry/exist points (x, y) with x ∈ B and y ∈ U , the optimal score
W(x, y) can be computed in constant time. Furthermore, given any x, u ∈ Bi and y, v ∈ Uj, for
1 ≤ i, j ≤ c, we have that

W(x, y)−W(u, y) = W(x, v)−W(u, v),

if all four terms are de�ned.

13

Figure 5: Entry point x and exit point y decide constant number of con�gurations for optimal
critical path within a given cell, some examples are shown.

Above claim implies that each S(i, j) in O(N) time. To improve the time complexity, we compute
S(i, j + 1) for increasing value of i as follows. Let T(k, i) be the score by extending the optimal
critical path ending at B[k] to U [i]: i.e, T(k, i) = S(k, j) + W(B[k],U[i]) for k ≤ i, and T(k, i) = 0
otherwise. Thus S(i, j + 1) = max{S(i − 1, j),max1≤k≤N T(k, i)}. For each i, we maintain c IDs
Ii[1] ∈ B1, . . . , Ii[c] ∈ Bc, such that, for any l ∈ [1, c], it holds that Ii[l] = argmaxk∈Bl

T(k, i). This
implies that

S(i, j + 1) = max{S(i− 1, j + 1), max
1≤l≤c

T(Ii[l], i) }.

Given S(i, j+1) and Ii[l]s, if U [i+1] and U [i] lie in the same interval of U , then we can compute all
Ii+1[l]s (thus S(i+1, j+1)) in constant time. Indeed, by Claim A.1, the di�erence T(k, i+1)−T(k, i)
remains the same for all k ∈ Bl and k ≤ i. Hence either Ii+1[l] = Ii[l] or Ii+1[l] = i + 1, which
can be checked in constant time for every 1 ≤ l ≤ c. If U [i + 1] moves to a new interval, then we
recompute Ii+1[l]s from scratch, which takes O(N) time. Overall, the time complexity to compute
S(i, j)s, for all 1 ≤ i ≤ N is O(cN) = O(N), and the space complexity is O(c).

B Approximation Algorithms for General Curves

In this section, we outline the two algorithms corresponding to Theorems 4.1 and 4.2, to approximate
D∂(P,Q) for two general polygonal curves P andQ, of size n andm, respectively. The �rst algorithm
computes, in O((n +m)3) time, a 1

3 -approximation to the optimal partial matching under the L1

and L∞ norms. The second algorithm computes, in O((n+m)3/ε2) time, a (1− ε)-approximation
to the optimal partial matching under the L1 and L∞ norms. This algorithm works for any Lp

norm, but its running time then deteriorates to O((n+m)4/ε2).

B.1 Constant-Factor Approximation

Given a monotone path π in the free space diagram M = Mδ(P,Q), the set
of cells of M that π passes through form a trail . See the right �gure. We
subdivide the trail into three portions: (1) right-turning cells R(π), where the
trail makes a right turn; (2) left-turning cells L(π), where the trail makes a left
turn; and (3) remaining vertical/horizontal segments HV(π). In other words,
for every vertical / horizontal segment of the trail, remove the cells at both
ends, and add the remaining segment (if exists) into HV(π). The removed end-cells, i.e, the turning
cells (darker cells in the right �gure), will be added into sets R(π) and L(π) appropriately.

Let S(X,π) denote the score induced by the intersection of a path π and a collection of cells X,
and let S(π) = S(M,π). Now given an optimal conformal path π∗ that realizes D∂(P,Q), by the
pigeon hole principle, we have that

max{S(R(π∗), π∗), S(L(π∗), π∗), S(HV(π∗), π∗)} ≥ 1
3
D∂(P,Q).

14

In what follows, we will compute three monotone paths in M , π1, π2 and π3, such that S(π1) ≥
S(R(π∗), π∗), S(π2) ≥ S(L(π∗), π∗), and S(π3) ≥ S(HV(π∗), π∗). Clearly, max{S(π1), S(π2), S(π3)}
is a 1

3 -approximation of D∂(P,Q).

B.1.1 Computation of π1 and π2

The computation of π2 is the same as that of π1. Hence here we only consider π1. The following
observation is straightforward.

Observation B.1 For any monotone path π inM , no two cells in set R(π) shares the same column
nor the same row of M .

For any path π in M , set SR(π) = S(R(π), π) and let SR(i, j) denote the best SR-score for any
monotone path from M [1][1] to M [i][j] (but excluding M [i][j]). It is easy to see that:

SR(i, j) = max{SR(i, j− 1), SR(i− 1, j), SR(i− 1, j− 1) + W∗
M[i−1][j] },

where W∗
C denote the best score for any path within a cell C. The third term corresponds to the

case where cellM [i−1][j] is a right-turning cell. Note that W∗
C is the longest L1-norm length of any

segment contained within the good region Ω in cell C. Since Ω is convex and has constant complexity,
this optimal segment s∗ can be computed in constant time. (In fact, it is easy to verify that both
endpoints of s∗ are vertices of Ω.) It then follows that SR(n,m), as well as a path π1 to realize it, can
be computed in O(nm) time and space. Observe that S(π1) ≥ SR(π1) = SR(n,m) ≥ S(R(π∗), π∗).

B.1.2 Computation of π3

For any monotone path π in M , set SHV(π) = S(HV(π), π). Let SHV(i, j) be the best SHV-score for
any monotone path from M [1][1] to M [i][j]. We have that:

SHV(i, j) = max{max
1≤k≤i

{h(k, i, j) + SHV(k− 1, j− 1)}, max
1≤k≤j

{v(i, k, j),SHV(i− 1, k− 1)}},

where h(k, i, j) (resp., v(i, k, j)) represents the best score of any path contained within the subrow
from M [k][j] to M [i][j] (resp., subcolumn from M [i][k] to M [i][j]). The �rst term corresponds to
the case where the best path coming from left, with cellM [k−1][j] being a right-turning cell, while
the second term corresponds to the case that it comes from bottom.

We can pre-compute h(k, i, j) and v(i, k, j) for all i, j, ks. Consider the case for v(i, k, j); that
for h(k, i, j) is similar. Observe that each computation of v(i, k, j) is exactly one instance of the
special case that we considered in Section 3 � v(i, k, j) is the best partial Fréchet distance between
the ith edge of P and the subchain of Q between its kth and jth vertices. Hence it can be computed
in O((j− k)2) time. In fact, for �xed i and k, the computation for v(i, k,m) produces all v(i, k, j)s,
for j ∈ [k,m]. This implies that we can compute SHV(n,m), as well as a path π3 to realize it, in
O((n+m)4) time and O((n+m)3) space. Note that S(π3) ≥ SHV(n,m) ≥ S(HV(π∗), π∗).

Improving the time complexity. The time and space complexity for computing π3 can be
further improved. In particular, we �rst project the vertices of all good regions in each column to
every horizontal cell boundaries in this column, and perform similar projection for each row of M
as well. Afterwards, there are O(m) Steiner vertices on each horizontal cell boundary, and O(n)
vertices on each vertical cell boundary. We now re�ne SHV(i, j) as de�ned before to Sh(k, i, j) and

15

Sv(k, i, j), where Sh(k, i, j) (resp., Sv(k, i, j)) is the best SHV-score of any monotone path fromM [1][1]
to the kth point on the (i, j)th horizontal grid edge (resp., the kth point on the (i, j)th vertical
edge). Note that Sh(N1,n,m) (or Sv(N2,n,m))) gives SHV(n,m) where N1 (resp. N2) is the number
of Steiner points on the (n,m)th horizontal grid edge (resp. vertical grid edge).

Now given a path π, HV(π) has at most O(n+m) components (as separated by turning cells)
such that each component either lies within the same column or within the same row. We say that
π is critical if each component of HV(π) is critical (recall the de�nition of critical paths in Section 3
for the special case). By applying Lemma 3.1 to each such component, any conformal path can be
modi�ed into a critical path without decreasing its SHV-score. Hence we now only need to consider
critical paths.

Consider the cell M [i][j]. Assume that the Sv- and Sh-scores have already been computed for
the Steiner points on its left and bottom edges (i.e, the (i, j)th horizontal and vertical edges). We
now wish to compute Sh(k, i, j + 1) for all 1 ≤ k ≤ N , where N = O(m) is the number of Steiner
points. (The computation for Sv(k, i+1, j)s is symmetric.) To �nd the path with optimal SHV-score
to the kth point on the (i, j + 1)th horizontal edge, there are two possible cases: (i) cell M [i][j] is a
turning cell for this path, and (ii) it enters from bottom and leaves from top. For case (i), ignoring
the score that can be produced in this turning cell, we can take the largest score from left boundary
as Sh(k, i, j + 1). For case (ii), we inspect all potential entry points on the bottom cell boundary of
M [i][j], and return the one that induces the largest score. Overall, we have that

Sh(k, i, j + 1) = max{max
l

Sv(l, i, j) , max
1≤l≤k

{Sh(l, i, j) + WM[i][j](l, k) },

where WM[i][j](l, k) is the best score of any path within the cell M [i][j] that connects the lth point
on the bottom boundary of cell M [i][j], to the kth point on the upper boundary. For the �rst term,
we maintain the maximum score value for each vertical boundary edge. For the second term, we can
apply the same method as in the proof of Lemma 3.2 to compute Sh(k, i, j + 1)s, for all 1 ≤ k ≤ N ,
in O(N) = O(m) time. Overall, the dynamic programming procedure takes O((n+m)3) time and
O((n+m)2) space to compute π3. Putting everything together, we conclude with Theorem 4.1.

B.2 (1− ε)-approximation

We now describe a more general (1− ε)-approximation algorithm for D∂(P,Q) that runs in polyno-
mial time for any Lp norm (although its performance is better under the L1 and L∞ norms). For
simplicity, we use L∞ in what follows.

Given an error threshold δ > 0 and the corresponding free space diagram M =
Mδ(P,Q), consider a cell M [i][j] and the good region within it, denoted by Ω. We
subdivide ∂Ω, the boundary of Ω, into intervals of size εω/(c(n+m)) each, where
ω is the length of ∂Ω. Let ∆∗ = D∂(P,Q), and observe that since ω = O(∆∗),
one can choose the constant c appropriately, so that the L1-norm length of each interval is at most
ε∆∗/(4(n+m)). Next, project these subdividing points onto the four cell boundaries. If we perform
this for every cell in M , then every grid edge in M , say the (i, j)th horizontal edge, has two sets of
projections, once as the lower boundary edge of the cell M [i][j], and once as the upper boundary
edge of M [i][j − 1]. Hence the total number of Steiner points on each edge is N = O((n +m)/ε).
The diagram M together with these Steiner points is an augmented diagram M̂ . The following
observation is straightforward, where WC(x, y), as de�ned earlier, is the best score of any path
connecting x to y within cell C.

16

Observation B.2 Given any cell C = M [i][j] of M , let x be an entry point from the lower or left
boundary of C and y an exit point from the upper or right boundary edge of C. Let w be the length
of the boundary of the good region in cell C, and x′ (resp. y′) the closest Steiner points to the left
of or below x (resp. y). Then,

WC(x, y)− εω/(n + m) ≤ WC(x′, y′) ≤ WC(x, y) + εω/(n + m).

A constraint conformal path of M̂ is a conformal path of M such that its intersections with
the cell boundaries are either grid points of M , or Steiner points of M̂ . Since any monotone path in
M passes throughO(n+m) number of cells, the following lemma follows easily from Observation B.2.

Lemma B.3 Any conformal path π in the free space diagram M can be modi�ed into a constraint
conformal path π′ such that (1− ε)S(π) ≤ S(π′) ≤ S(π).

The optimal constraint conformal path in M can be computed, in O((n+m)4/ε2) time, under
any Lp norm using dynamic programing. The running time can be improved to O((n + m)3/ε2)
under the L1 or L∞ norms using the same technique as in Lemma 3.2. Hence we conclude with
Theorem 4.2.

C Proofs Omitted from Section 5

C.1 Time Complexity for Computing Fk

Lemma C.1 The lifting and enveloping stages can compute Fk+1(·) in O(N) time and the resulting
function has complexity N +O(1), where N is the complexity of Fk.

Proof: First, recall that the lifting stage can be implemented in O(N) time and the resulting function
f(x) = Fk(x) + V(x) is a PL-function of complexity N + O(1). We now focus on the enveloping
stage, the goal of which is to compute Fk+1(x) = maxa∈[x1,x4]{Fk(a) + Ia(x)} for x ∈ [x1, x4].

Our algorithm sweeps the graph of f(x) once from left to right. At each point x, we check
whether attaching the graph of Rx(·) to f at x, results in a larger value immediately to the right
of x or not. This decision can be made by considering the slope of the two graphs at this point. In
fact, since the two functions are piecewise linear, we need to perform this attachment decision only
at vertices of the two graphs. If the slope of f is larger, say at a vertex (w, f(w)), then we attach the
graph of Rw(·) to f(w), and compute the �rst intersection point, say q = (y, f(y)), of this attached
polygonal line with the graph of f(·) to the right of w; we call q a hitting point. Now, for any point
x ∈ [w, y], we update Fk+1(x) = f(w) + Rw(x). We then continue this sweeping process starting
from y, until we reach x4.

It is easy to verify that the resulting function is indeed the required Fk+1(x). We now bound its
descriptive complexity. First, observe that only constant new vertices of Fk+1(x) are created due to
the vertices of Ra(·) for all a ∈ [x1, x4], as this family of functions have at most three vertices, and
they are always at same coordinates for any a ∈ [x1, x4] (i.e, x1, x3 and x4, recall Figure 3). Since we
only need to attach the graph R at vertices of f , the only other new vertices are those hitting points
created. Consider the hitting vertex v = (z, f(z)) corresponding to the �rst intersection between
Rw attached at (w, f(w)) and the graph of f . Note that the portion of f between (w, f(w)) and
(z, f(z)) was replaced by the new polygonal chain of Rw(·). If Rw contains vertices between [w, z],
then we can charge the complexity of inserting the hitting vertex v to vertices of R, which is O(1)
for the entire interval [x1, x4]. Otherwise, the graph of Rw over [w, z] is a single segment, and as

17

such it hides at least one old vertex of f(x) which was removed, and we charge the new vertex to
this old vertex. It then follows that Fk+1(·) has complexity N+O(1) and can be computed in O(N)
time.

C.2 Proof of Lemma 5.5

Suppose that the PL-function H has N + 1 break points b1 = l, b2, . . . , bN+1 = r, with a linear
function hi : [bi, bi+1] → IR de�ned over the ith interval. We use a balanced binary tree T = T (H)
for representing H. More speci�cally, T is the following augmented balanced interval tree: From
left to right, the ith leaf of T , denoted by Li, corresponds to interval [bi, bi+1]. Every leaf node Li

stores a linear function fLi : [bi, bi+1] → IR, called the base function at leaf Li. Each internal node
v ∈ T is associated with an interval Iv = [bv1 , bv2+1] where v1 and v2 are the indices of the left-most
and right-most leaves of the subtree rooted at v, respectively. It also stores an additive constant

cv for the interval Iv. To obtain Hi, we �rst �nd the path from the root of T to Li; let Ai denote
the set of internal nodes along this path. We then have that Hi = fLi +

∑
v∈Ai

cv.
Clearly, for a PL function of complexity N , such a balanced binary tree representation has size

O(N), and supports each operation such as insertion/deletion, or computing Hi, in O(logN) time.
Given any interval [bi, bj], one can also identify O(logN) number of canonical and disjoint intervals
whose union forms [bi, bj], and each such interval corresponds to a leaf or an internal node of the
tree T . We call this set of intervals the canonical decomposition of [bi, bj].

Now suppose we wish to add a constant µ over an interval [a, a′]. First, we insert a and a′ if
they are not already break points of H. Next, we identify the set of nodes corresponding to the
canonical decomposition of [a, a′], and increase the additive constant cv associated with each such
node v ∈ T by µ. The entire process takes O(logN) time.

If the input function H also has the tridirectional property, then we can further modify T to
answer each base query in O(logN) time. The required modi�cations are standard and are thus
omitted.

C.3 Proof of Claim 5.6

For the kth iteration, as described earlier, the lifting stage takes O(logNk log(Nk/ξ)) time, where Nk

is the complexity of Gk. The output is a tridirectional PL-function H of complexity Nk +log(Nk/ξ).
We now focus on time complexity of the enveloping stage to updateH toGk+1. Let rk be the number
of new rays appearing in the upper envelope, and wk the number of break points of H covered by
such rays (which are then deleted). Since each base query can be answered in O(logNk) time, the
sweeping procedure described earlier updates H into Gk+1, as well as adjusting the corresponding
data structure T , in O(wk + rk logNk) time.

Observe that wk and rk can be Ω(Nk). However, each of the wk vertices covered by the diagonal
rays will be deleted from the list of break points forever. Since only the lifting stage can create
new break points, it is easy to verify that overall there are most O(m log(m/ξ)) break points ever
created. Hence we have that

∑m
k=1wk = O(m log(m/ξ)). To bound

∑
rk, observe that once an edge

becomes a diagonal edge, it will never becomes horizontal again until it is deleted. New break points
may be inserted into the corresponding interval later. But for the left endpoint of this interval, it
will never becomes a base vertex again. Since there are O(m log(m/ξ)) break points ever created,
we have that

∑m
k=1 rk = O(m log(m/ξ)) as well. Putting everything together, the total cost for the

18

m rounds of updates to compute Gm from G0 is

O(m log(m/ξ) +
m∑

k=1

(wk + rk logm)) = O(m logm log(m/ξ)).

C.4 Proof of Lemma 5.7

The proof is by induction. Indeed, G0(x) = 0 and as such G0(x) = F0(x) for x ∈ [0, 1]. Thus the
lemma holds for k = 0. Next, assume that, for any x ∈ [0, 1], Fk(x)/γ− kξ∆∗/m ≤ Gk(x) ≤ Fk(x).
We wish to show that Fk+1(x)/γ − (k + 1)ξ∆∗/m ≤ Gk+1(x) ≤ Fk+1(x). The right inequality is
straightforward. We now focus on the left inequality for x ∈ [x1, x3]; the cases for x < x1 or x > x3

are simpler and as such they are omitted.
For x ∈ [x1, x3], our algorithm approximates Ia(x) = V(a)+ρI(x−a) by Îa(x) = V̂(a)+(x−a),

where ρI = 1 +
√

1 + ρ(e)2 and e = qkqk+1 is the (k + 1)th edge of Q. Intuitively, as long as ρI

is relatively small, this is a reasonable approximation, as V̂(·) is a �decent� approximation to V(·).
Indeed, consider the error induced by V̂. If a ∈ [x2, x3], then V̂(a) = V(a). For interval [x1, x2], as
described earlier, V̂(x) ≥ V(x)/2− ξ∆∗/m.

e
s

δ{
p

q
x1 x2

x4x3

xp
xq

For the error induced by the enveloping stage, if |ρ(e)| ≤ 1, then
we have that ρI(x−a) ≤ (1+

√
2)(x−a). Combined with the approx-

imation factor from the lifting stage, this implies that, for any a < x,
we have that Îa(x) ≥ Ia(x)/(1 +

√
2) for an ξ small enough (the ξ we choose later will satisfy its

requirement here). The case for |ρ(e)| > 1 is more involved. In this case, the angle between e and
s is larger than 45 degrees. Observe that if xp and xq are the projections of the endpoints of e into
s, then x1 = xp − δ, x2 = xp + δ, x3 = xq − δ, and x4 = xq + δ (see �gure on the right). Now, if
the angle between e and s is more than 45 degrees, than the projection of e on the x-axis is shorter
than its projection on the y axis (which is 2δ). Hence in this case x3 < x2.

For x3 < x2, the shape of the graph of V(·) remains the same (as in Figure 2), but with the role
of x2 and x3 switched. Hence, for any x1 < a < x3, we have that V(x) = (ρI − 1)(x−x1). Together
with the fact ρI − 1 ≥

√
2, this implies that

Ia(x) = V(a) + ρI(x− a) = (ρI − 1)(a− x1) + ρI(x− a) = (ρI − 1)(x− x1) + (x− a)
≤ (ρI − 1)(x− x1) + (x− x1) ≤ (1 + 1/

√
2)V(x).

On the other hand, recall that we have subdivided [x1, x2] (or [x1, x3] if x3 < x2) into β + 1
intervals I0, I1, . . . , Iβ when approximating V. Now given x ∈ Ii = [l, r], for i > 0, we have that,
for any a ∈ [x1, x], it holds

Îx(x) = V̂(x) + R̂x(x) = V̂(x) = V(l) ≥ V(r)
2

≥ V(x)
2

≥ Ia(x)
2 +

√
2
.

If x ∈ I0 then a similar argument as the one for the lifting stage shows that Ia(x) ≤ ξ∆∗/m.
Finally, assume that Fk+1(x) is achieved by some a∗ ≤ x via Fk+1(x) = Fk(a∗) + Ia∗(x). Since

Gk is a monotone function, we have that Gk(x) + Îx(x) ≥ Gk(a∗) + Îx(x). Overall, combined
the above results with the facts that Gk+1(x) ≥ max{Gk(a∗) + Îa∗(x), Gk(x) + Îx(x)} and Gk(x) ≥
Fk(x)/(2+

√
2)−kξ∆∗/m, we conclude that Gk+1(x) ≥ Fk+1(x)/(2+

√
2)−(k+1)ξ∆∗/m. Therefore

by induction, we have that Fi(x)/(2 +
√

2) − (i + 1)ξ∆∗/m ≤ Gi(x) ≤ Fi(x), for any i ∈ [1,m].
This implies that Gm(1) ≥ Fm(1)/(2 +

√
2)− ξ∆∗ = (1/(2 +

√
2)− ξ)Fm(1).

19

	Introduction
	Preliminaries
	Partial Fréchet Similarity of A Segment and A Curve
	Approximation Algorithms for Two Curves
	Double-sided Approximation of P F Dist
	Algorithm outline
	The structure and computation of the f ks
	Approximation algorithm for Fm(1)
	Updating the g ks

	Conclusions
	Proofs Omitted from Section 3
	Proof of Lemma 3.1
	Proof of Lemma 3.2

	Approximation Algorithms for General Curves
	Constant-Factor Approximation
	Computation of path1 and path2
	Computation of path3

	(1-)-approximation

	Proofs Omitted from Section 5
	Time Complexity for Computing Fk
	Proof of Lemma 5.5
	Proof of Claim 5.6
	Proof of Lemma 5.7

