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Abstract

The concept of ideal binary time-frequency masks has received attention recently in monaural and
binaural sound separation. Although often assumed, the optimality of ideal binary masks in terms of
signal-to-noise ratio has not been rigorously addressed. In this paper we give a formal treatment on this
issue and clarify the conditions for ideal binary masks to be optimal. We also experimentally compare
the performance of ideal binary masks to that of ideal ratio masks on a speech mixture database and a
music database. The results show that ideal binary masks are close in performance to ideal ratio masks
which are closely related to the Wiener filter, the theoretically optimal linear filter.
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I. INTRODUCTION

Recently monaural and binaural sound separation have received considerable attention. A
promising approach to the problem, called computational auditory scene analysis (CASA) [25],
is inspired by the perceptual theory of auditory scene analysis (ASA) [2], which attempts to
explain the remarkable capability of the human auditory system in segregating an acoustic signal
into streams that correspond to different sound sources. The majority of CASA systems developed
so far [3], [24], [20], [15] have applied binary time-frequency (T-F) masking to extracting a target
sound. Typically, in such systems a signal is first transformed to a T-F representation such as
a spectrogram or a cochleagram. Then an element of such a representation, called a T-F unit
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corresponding to a certain time and frequency, is assigned 1 if its energy is considered as from
the target or 0 otherwise. Hu and Wang [11], [10] proposed a binary mask where a T-F unit is
assigned 1 if in that unit the target energy exceeds the interference energy and 0 otherwise. They
called such a mask the ideal binary mask (IBM) because it represents the computational objective
of their system and its construction requires the premixing target and interference signals. The
IBM has several desirable properties as the computational goal of CASA systems [23], such as the
flexibility of selecting targets and the well-definedness. Human speech intelligibility experiments
have also shown that target speech reconstructed from the IBM gives high intelligibility scores,
even in very low SNR conditions [20], [1], [4]. Several CASA algorithms that directly estimate
the IBM [20], [10] have produced good results in speech separation.

A widely used metric for performance measure in sound separation is signal-to-noise ratio
(SNR). For sound separation it is defined as

SNR = 10 log10

∑
n x2[n]∑

n(x̂[n]− x[n])2
, (1)

where x[n] is a target signal and x̂[n] is the estimated target signal. It has been noted that the
IBM is locally optimal in the SNR sense, i.e., flipping a T-F unit’s assignment in the IBM always
yields a lower SNR for that T-F unit. It has also been assumed that the ideal binary mask is
globally optimal, i.e., the IBM produces an output with the highest SNR gain among all binary
masks [23]. There exist two arguments for the global optimality of the IBM. Hu and Wang [10]
argue for the global optimality based on its local optimality. At each T-F unit, the IBM either
maximally retains target energy or removes interference energy. As a result, the sum of missing
target energy that is discarded by the mask and interference energy that gets through the mask,
i.e., the denominator in (1), is minimized. Therefore the IBM would achieve the highest SNR.
This argument is flawed in that SNR calculation is nonlinear: the denominator in (1) is not
equal to the linear combination of energy retained or removed in each individual T-F unit. Ellis
[7] makes an argument from the viewpoint of Wiener filtering. According to Wiener filtering,
optimal SNR can be achieved by the Wiener filter whose frequency response is PT /(PT + PI),
where PT and PI are the power spectrum densities of target and interference signals, respectively.
Quantizing the Wiener filter at each T-F unit to the closest binary value results in the IBM which
would produce the optimal binary mask. However, this argument suffers the same drawback as
the one by Hu and Wang since it is still based on the local optimality of the IBM: the optimal
quantization is performed on each T-F unit.

The concept of the IBM with its assumed global optimality has received increasing attention.
A recent psychoacoustic study used the IBM to investigate the factors that affect glimpsing of
speech in noise [14]. Many recent computational systems have used the IBM as a measure of
ceiling performance for source separation [15], [18], [6], [19], [13], [9]. It is therefore worth
examining the optimality of the IBM in a more rigorous way. In this paper we give a formal
treatment on the optimality of the IBM. We consider the optimality of the IBM at three levels:
the T-F unit level, the time frame level, and the global level, and find that local optimality does
not translate to global optimality. In Section II we show that, at each level, the IBM can be
optimal under certain conditions imposed on T-F decomposition. We also give counterexamples
showing that the IBM is not optimal when these conditions are violated. In Section III we
compare SNR gain of the IBM to that of ideal ratio masks which are closely related to the
Wiener filter. Conclusion and discussion are presented in Section IV.
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II. THE OPTIMALITY OF THE IDEAL BINARY MASK AT DIFFERENT LEVELS

A. T-F Unit Level
Given a T-F decomposition, we consider Xcm and Ycm, the spectral values of a target signal

and an interference signal at T-F unit ucm, respectively. c is the frequency index and m the time
frame index. At the T-F unit level, the definition of SNR in (1) should be changed slightly when
spectral values instead of time-domain signals are used:

SNR = 10 log10

|Xcm|2
|X̂cm −Xcm|2

, (2)

where X̂cm is the estimated spectral value of the target. According to the definition of the IBM,

X̂cm =

{
Xcm + Ycm, if |Xcm|2 > |Ycm|2,
0, otherwise.

(3)

Here we assume that the frequency decomposition is linear, which is the case for most sound
separation systems. Therefore, when a T-F unit is assigned 1, the spectral estimate of the target
is the linear combination of Xcm and Ycm.

Consider the case where |Xcm|2 > |Ycm|2, i.e., the target is stronger in energy than the
interference at ucm. If ucm is assigned 1 as in the IBM, then the denominator in (2) is

|X̂cm −Xcm|2 = |Xcm + Ycm −Xcm|2 = |Ycm|2. (4)

On the other hand, if ucm is assigned 0, the denominator is

|X̂cm −Xcm|2 = |0−Xcm|2 = |Xcm|2. (5)

Since |Ycm|2 < |Xcm|2, the denominator is smaller when ucm is assigned according to the IBM.
Similarly, if |Xcm|2 6 |Ycm|2, i.e., the target is no stronger in energy than the interference,

according to the IBM, ucm is assigned 0 and the denominator becomes

|X̂cm −Xcm|2 = |0−Xcm|2 = |Xcm|2. (6)

If ucm is assigned 1, then

|X̂cm −Xcm|2 = |Xcm + Ycm −Xcm|2 = |Ycm|2. (7)

Since |Xcm|2 6 |Ycm|2, the IBM yields a denominator no greater than its alternative. Based on
the above discussion, the IBM always minimizes the denominator and consequently maximizes
the SNR. Therefore we conclude that the IBM is optimal at the T-F unit level.

B. Time Frame Level
Now consider xm[n], the time-domain target signal at frame m. Without loss of generality, we

assume that the index of n is from 0 to N − 1. The discrete Fourier transform (DFT) of xm[n]
is

Xcm =
N−1∑
n=0

xm[n]e−
2πcn

N
j, c = 0, . . . , N − 1,

The SNR of x̂m[n], the estimate of xm[n], with respect to xm[n] can be calculated using (1)
with summation of n from 0 to N − 1. It is clear from (1) that maximizing the SNR is the
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same as minimizing the denominator, the energy of the error signal x̂m[n] − xm[n]. According
to the Parseval’s theorem [17], the energy of the error signal can be equivalently calculated in
the frequency domain, i.e.,

N−1∑
n=0

(x̂m[n]− xm[n])2 =
1

N

N−1∑
c=0

|X̂cm −Xcm|2, (8)

In Section II-A, we have shown that the IBM minimizes |X̂cm−Xcm|2 for each c. Therefore
the IBM also minimizes the summation

∑N−1
c=0 |X̂cm −Xcm|2. As a result, the IBM yields the

highest SNR among all binary masks.
The key step in the above proof is applying the Parseval’s theorem to equating the energy

summation in the time domain to that in the spectral domain. This is possible because the bases
used in DFT are orthogonal. This relationship of the energy in the time domain and in some
transformed domain can be generalized to any orthogonal decomposition. It can be seen as the
following: Let {ei} a complete set of bases with 〈ei, ej〉 = δij , where 〈·, ·〉 is the inner product
in the Euclidian space and δij the Dirac delta function. If 〈x, ei〉 = ai, the projection of vector
x on basis ei, then we have

〈x,x〉 = 〈
∑

i

aiei,
∑

j

ajej〉 =
∑

i

∑
j

aiaj〈ei, ej〉 =
∑

i

a2
i . (9)

Therefore we can conclude that a sufficient condition for the IBM to be optimal at the time
frame level is orthogonal frequency decomposition.

C. Global Level
Now consider the entire target signal x[n], which is processed frame by frame. To explore

conditions for the IBM to be optimal at the global level, we can write x[n] as

x[n] =
M−1∑
m=0

xm[n]/A[n], (10)

where m is the frame index and M the number of frames. A[n] is the normalization factor and
A[n] =

∑M−1
m=0 w[n − mτ ], where w is a window function with length N and τ is the frame

shift. Note now xm[n] = 0 for n < mτ and n > mτ + N . Similarly we can write the entire
estimated signal as

x̂[n] =
M−1∑
m=0

x̂m[n]/A[n], (11)

Again x̂m[n] = 0 for n < mτ and n > mτ + N .
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The energy of the entire error signal is∑
n

(x̂[n]− x[n])2

=
∑

n

(
∑
m

x̂m[n]/A[n]−
∑
m

xm[n]/A[n])2

=
∑

n

1

A2[n]
(
∑
m

(x̂m[n]− xm[n]))2

=
∑

n

1

A2[n]
(
∑
m

(x̂m[n]− xm[n])2+

2
∑
m1

∑
m2>m1

(x̂m1 [n]− xm1 [n])(x̂m2 [n]− xm2 [n])). (12)

If consecutive frames do not overlap, for a particular n, either x̂m1 [n] − xm1 [n] or x̂m2 [n] −
xm2 [n] is zero. This is because a frame is zero outside of its corresponding window and m1 6= m2.
In this case, the cross terms in (12) do not contribute to the overall error energy and (12) becomes

∑
n

(x̂[n]− x[n])2 =
∑

n

1

A2[n]

∑
m

(x̂m[n]− xm[n])2. (13)

Assume A[n] is constant for all n, we have
∑

n

(x̂[n]− x[n])2 =
1

A2

∑
m

∑
n

(x̂m[n]− xm[n])2. (14)

Note that in the above equation, the order of summation is also switched.
Since the IBM minimizes

∑
n(x̂m[n]−xm[n])2 for each frame m as discussed in Section II-B,

it also minimizes the energy of the entire error signal. Consequently, the IBM is optimal. Given
non-overlapping consecutive frames, the window function must be rectangular in order for A[n]
to be constant. Non-overlapping windowing can be considered as an orthogonal decomposition
of a signal in the time domain. Therefore we can conclude that a sufficient condition for the IBM
to be optimal at the global level is orthogonal T-F decomposition with a rectangular window.

When consecutive frames overlap, the cross terms also contribute to the overall energy of the
error signal. To see how flipping the assignment of a T-F unit affect the energy, we consider a
frame and its immediate successor that overlaps with it. Specifically, we consider

∑
n(x̂m1 [n]−

xm1 [n])2 +2
∑

n(x̂m1 [n]−xm1 [n])(x̂m2 [n]−xm2 [n]), where m2 = m1 +1. Assume at frame m1,
a T-F unit with frequency index c∗ is flipped from the IBM assignment of 0 to 1. We denote the
resulted time-domain estimate of frame m1 as x̃m1 [n]. Using DFT for frequency decomposition,
we first consider the energy change of the square term:

∆Es =
∑

n

(x̃m1 [n]− xm1 [n])2 −
∑

n

(x̂m1 [n]− xm1 [n])2

=
∑

c

|X̃cm1 −Xcm1|2 −
∑

c

|X̂cm1 −Xcm1|2

= |X̃c∗m1 −Xc∗m1|2 − |X̂c∗m1 −Xc∗m1|2
= |Xc∗m1 + Yc∗m1 −Xc∗m1|2 − |0−Xc∗m1|2
= |Yc∗m1|2 − |Xc∗m1|2. (15)
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where X̃cm1 is the estimated spectrum of Xcm1 with the flipped mask. Yc∗m1 is the spectral value
of the interference signal ym1 [n] at c∗. Since uc∗m is assigned 0 in the IBM, |Yc∗m1|2 > |Xc∗m1|2.
Therefore ∆Es > 0, indicating an energy increase by the flipping.

Now consider the energy change resulted from the cross term:

∆Ec = 2
∑

n

(x̃m1 [n]− xm1 [n])(x̂m2 [n]− xm2 [n])

− 2
∑

n

(x̂m1 [n]− xm1 [n])(x̂m2 [n]− xm2 [n])

= 2
∑

n

(x̃m1 [n]− x̂m1 [n])(x̂m2 [n]− xm2 [n]). (16)

To see the effect of flipping on the cross term, we express the time domain signals in the
frequency domain. Since x̂m1 [n] is the inverse DFT of X̂cm1 shifted to the position of the mth

1

frame, it can be written as

x̂m1 [n] =

{
1
N

∑N−1
c=0 X̂cm1e

2πc(n−m1τ)
N

j, n = m1τ,m1τ + 1, . . . , m1τ + N − 1,

0, else.

Similarly,

x̃m1 [n] =

{
1
N

∑N−1
c=0 X̃cm1e

2πc(n−c1τ)
N

j, n = m1τ, m1τ + 1, . . . , m1τ + N − 1,

0, else,

x̂m2 [n] =

{
1
N

∑N−1
c=0 X̂cm2e

2πc(n−m2τ)
N

j, n = m2τ,m2τ + 1, . . . , m2τ + N − 1,

0, else.

For n = m2τ, . . . ,m1τ + N − 1, the overlapping part of frame m1 and m2,

x̃m1 [n]− x̂m1 [n]

=
1

N

∑
c

X̃cm1e
2πc(n−m1τ)

N
j − 1

N

∑
c

X̂cm1e
2πc(n−m1τ)

N
j

=
1

N
(Xc∗m1 + Yc∗m1)e

2πc∗(n−m1τ)
N

j. (17)

x̂m2 [n]− xm2 [n] can also be represented in the frequency domain:

x̂m2 [n]− xm2 [n]

=
1

N

∑
c

(X̂cm2 −Xcm2)e
2πc(n−m2τ)

N
j (18)
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Using Equations (17) and (18), the energy change of the cross term can be written as

∆Ec =
∑

n

(x̃m1 [n]− x̂m1 [n])(x̂m2 [n]− xm2 [n])

=
1

N2

∑
n

((Xc∗m1 + Yc∗m1)e
2πc∗(n−m1τ)

N
j
∑

c

(X̂cm2 −Xcm2)e
2πc(n−m2τ)

N
j)

=
1

N2
(Xc∗m1 + Yc∗m1)

∑
c

(X̂cm2 −Xcm2)
∑

n

e
2πc∗(n−m1τ)

N
je

2πc(n−m2τ)
N

j

=
1

N2
(Xc∗m1 + Yc∗m1)

∑
c

(X̂cm2 −Xcm2)Q[c]. (19)

Q[c] =
∑

n e
2πc∗(n−m1τ)

N
je

2πc(n−m2τ)
N

j is a phase term. As can be seen from the above equation,
when a T-F unit is flipped, it will contribute to the overall energy by coupling with T-F units
in the overlapping frames. This becomes clear when the overlapping is 50%, i.e., τ = N/2. In
this case, the phase term is

Q[c] =

m1τ+N−1∑
n=m2τ

e
2πc∗(n−m1τ)

N
je

2πc(n−m2τ)
N

j

=

N/2−1∑

n′=0

e
2π(c∗+c)n′

N
je

2πc(m2τ−m1τ)
N

j

=

N/2−1∑

n′=0

e
2π(c∗+c)n′

N
jeπcj

= (−1)c 1− (−1)c+c∗

1− e
2π(c+c∗)

N
j

=
(−1)c − (−1)c∗

1− e
2π(c+c∗)

N
j

=





0 if c− c∗ mod 2 = 0,

− 2(−1)c∗

1−e
2π(c+c∗)

N
j

else, (20)

where mod denotes the modulo operation. The above derivation indicates that the flipped T-F
unit will couple with every other T-F unit in the overlapping frame. Because of the coupling,
it is in general difficult to compare the energy change resulting from the square term and that
from the cross term. In other words, the cross term may result in energy decrease that outweighs
energy increase from the square term and yield lower error energy. Because of the nonlinearity
in the SNR calculation, we suspect that the IBM may not be optimal in the overlapping case.
We will show in the next subsection that other binary masks can indeed give higher SNR in this
case.

The following summarizes the main analytical result in the form of a theorem:

Theorem 1. A sufficient condition for the ideal binary mask to be globally optimal is orthogonal
time-frequency decomposition with rectangular windowing.
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D. Counterexamples
In this section we show several counterexamples in which the IBM is not optimal. Note that it

is not difficult to come up with such counterexamples. This suggests that the IBM is probably not
optimal when the conditions stated before, i.e., orthogonal T-F decomposition and rectangular
windowing, are not satisfied. In all examples, signals are sampled at 20 kHz and are mixed to
0 dB SNR to create mixtures for analysis.

We first present a counterexample showing that the IBM is not optimal when a non-orthogonal
gammatone filterbank is used for frequency decomposition. The gammatone filterbank has been
widely used in CASA systems for frequency decomposition [25]. The impulse response of a
gammatone filter is

g[n] =

{
(nT )l−1exp(−2πbnT )cos(2πfnT ), n ≥ 0

0 else
(21)

where T is the sampling interval, l = 4 is the order of the filter, b is the equivalent rectangular
bandwidth (ERB), and f is the center frequency of the filter. Typically, a gammatone filterbank
consists of 32 to 128 filters with f quasi-logrithmically spaced, based on the ERB-rate. The
gammatone filterbank does not provide an orthogonal frequency decomposition of a signal
because neighboring gammatone filters overlap, especially in the higher frequency range. Fig.
1 shows an example that the IBM is not optimal with the gammatone filterbank for a single
frame. In this example, the gammatone filterbank has 128 channels and the center frequencies
are linearly spaced from 50 to 8000 Hz on the ERB-rate scale. The top two panels show two
musical signals with 2048 data points. The lower left is the IBM and the lower right is a binary
mask obtained with a local SNR threshold (LC) [4] of 1 dB, i.e., ucm is labeled 1 if and only
if 10 log10

∑
n x2

cm[n]∑
n(x̂cm[n]−xcm[n])2

> 1, where xcm[n] is the time-domain signal underlying ucm and
x̂cm[n] is the estimate. In all the illustrations in this subsection, white indicates that a T-F unit
is labeled 1 and black 0. The estimated signals are reconstructed from the two binary masks
using a technique introduced by Weintraub [26] (also see [25]). Since the resynthesis procedure
is an integrated part of the gammatone filterbank-based analysis, we do not attempt to isolate
its contribution to the SNR gain. In this case, the IBM gives a 7.0 dB SNR gain while the other
binary mask gives a 7.3 dB SNR gain.

The second counterexample, illustrated in Fig. 2, shows that the IBM is not optimal when a
non-rectangular window is used with orthogonal T-F decomposition. In this example, the DFT
is used for frequency decomposition and the frames do not overlap. The top two panels plot two
musical signals. When a hamming window with a length of 512 samples is applied, the SNR
gain of the IBM (lower left) is 3.97 dB while the SNR gain of a mask (lower right) with a LC
of 0.4 dB is 3.99 dB. One of the noticeable differences between the two masks is indicated by
a circle.

If consecutive frames overlap, the IBM may not be optimal even with a rectangular window.
Fig. 3 shows such an example with the same musical signals as in Fig. 2. The frame length
is 512 and the overlapping is 50%. The SNR gain of the IBM (lower left) is 16.7 dB while
the SNR gain for a mask obtained with a LC of 0.4 dB is 16.9 dB (lower right). The circle
marks one noticeable difference between the two masks. Recalling equations (15) and (16), this
example shows the effect of coupling between overlapping frames.
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Fig. 1. An example showing that the IBM is not optimal when a gammatone filterbank is used for frequency decomposition
for one frame. (a). The waveform of a target music signal. (b). The waveform of an interference music signal. (c). The IBM.
(d) A mask generated with a LC of 1 dB.

III. THE IDEAL BINARY MASK AND THE IDEAL RATIO MASK

Most sound separation systems decompose a signal into overlapping frames to reduce boundary
effects caused by windowing. In this case, based on the discussion in Sections II-C and II-D,
the IBM may not be optimal. On the other hand, its SNR gain is close to that of ideal ratio
masks (IRM). The IRM is defined as [21]

Rc,m =
|Xcm|2

|Xcm|2 + |Ycm|2 (22)
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Fig. 2. An example showing that the IBM is not optimal when a hamming window is used for orthogonal T-F decomposition.
(a). The waveform of a target music signal. (b). The waveform of an interference music signal. (c). The IBM. (d). A mask
generated with a LC of 0.4 dB.

for each c and m. The IRM is closely related to the Wiener filter, the optimal linear filter in the
minimum mean-square error sense [27]. Moreover, if a target signal, an interference signal, and
their mixture are jointly Gaussian, the Wiener filter is the optimal filter among all possible filters,
linear or nonlinear [22]. Additionally, given that the causality of a filter is not required and the
target signal and the interference signal are uncorrelated, the Wiener filter amounts to the same
ratio as (22) with spectral values replaced by power spectral densities [22]. The conditions for
the Wiener filter to be a ratio mask are satisfied in most cases: the non-causality of the filter can
be allowed since most sound separation systems operate offline; the uncorrelatedness can also
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Fig. 3. An example showing that the IBM is not optimal when frames overlap even with a rectangular window. (a). The
waveform of a target music signal. (b). The waveform of an interference music signal. (c). The IBM. (d). A mask generated
with a LC of 0.4 dB.

be assumed since sound sources are generally independent.
One can show that the IRM always leads to a local SNR gain no smaller than the IBM. For

ucm, we can define three underlying signals: the target xcm[n], the interference ycm[n], and the
mixture zcm[n]. With linear frequency decomposition, zcm[n] = xcm[n] + ycm[n]. The ratio mask
can be defined using the energy of time-domain signals as

r =

∑
n x2

cm[n]∑
n x2

cm[n] +
∑

n y2
cm[n]

. (23)
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Denote E =
∑

n x2
cm[n]+

∑
n y2

cm[n] and we have
∑

n x2
cm[n] = rE and

∑
n y2

cm[n] = (1− r)E.
Consider the case where

∑
n x2

cm[n] >
∑

n y2
cm[n], the target stronger than the interference.

According to the IBM, zcm[n] is retained and the local SNR is

SNR = 10 log10

∑
n x2

cm[n]∑
n (zcm[n]− xcm[n]])2

. (24)

When the IRM is applied, the new SNR is

SNR′ = 10 log10

∑
n x2

cm[n]∑
n (rzcm[n]− xcm[n])2

. (25)

Now compare the denominators in (24) and (25):
∑

n

(zcm[n]− xcm[n])2 −
∑

n

(rzcm[n]− xcm[n])2

=
∑

n

y2
cm[n]−

∑
n

(rycm[n] + (r − 1)xcm[n])2

=(1− r2)
∑

n

y2
cm[n]− 2r(r − 1)

∑
n

xcm[n]ycm[n]− (r − 1)2
∑

n

x2
cm[n]

=(1− r2)(1− r)E − (r − 1)2rE

=(r − 1)2E. (26)

Note that in the above derivation we assume that the target and the interference are uncor-
related at ucm, i.e.,

∑
n xcm[n]ycm[n] = 0. Since (r − 1)2E > 0,

∑
n (zcm[n]− xcm[n])2 >∑

n (rzcm[n]− xcm[n])2. This shows that compared to IBM, IRM gives an equal or smaller
denominator and therefore the same or better SNR. The equal sign holds when r = 1, i.e., when
the interference is absent at ucm. Similarly we can show that when

∑
n x2

cm[n] 6
∑

n y2
cm[n],

the IRM also achieves an SNR that is at least as good as the IBM. In this case, the equal sign
holds when r = 0, i.e., when the target is absent at ucm.

In the above discussion, we show that the IRM is locally no worse in terms of SNR compared
to the IBM. However it is difficult to theoretically quantify the global difference between the
two. We investigate this issue experimentally using mixtures of interest. In particular, we use
a speech mixture database and a music database. The speech mixture database is collected by
Cooke [5], which includes different types of interference that are commonly encountered in real
environment. It also has premixing target and interference, which makes the construction of
the IBM and the IRM possible. For music, we use a database constructed for musical sound
separation. The database is synthesized from the tenor and the alto line of string quartets by J.
S. Bach. Each line is constructed based on MIDI data using instrument samples from the RWC
database [8]. Details of synthesis can be found in [16]. For each database, we consider the SNR
gain of the IBM and the IRM over two different kinds of frequency decomposition—DFT and
the gammatone filterbank (GF) as described in Section II-D. In each case, the frame length is 512
points and the frame overlapping is 50%. The sampling frequency is 20 kHz. In the gammatone
filterbank analysis, the filterbank has 64 filters with center frequencies equally spaced on the
ERB-rate scale from 50 to 8000 Hz.

Table I shows the SNR gains of the IBM and the IRM in dB for the speech mixture database
with both DFT and GF. There are 10 different types of interferences: N0, 1-kHz pure tone; N1,
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Interference DFT GF
IBM IRM IBM IRM

N0 18.3 19.0 21.4 21.7
N1 12.2 12.9 11.3 12.0
N2 17.6 18.3 17.6 18.1
N3 7.8 8.5 7.6 7.8
N4 12.4 13.0 11.2 11.6
N5 18.7 19.4 19.7 19.9
N6 21.0 21.7 20.6 20.9
N7 13.9 14.7 12.4 12.8
N8 13.2 13.8 12.2 12.7
N9 9.7 10.4 9.9 10.1

Average 14.5 15.2 14.4 14.8

TABLE I
SNR GAIN (IN DECIBEL) OF IBM AND IRM FOR A SPEECH MIXTURE DATABASE

white noise; N2, noise bursts; N3, “cocktail party” noise; N4, rock music; N5, siren; N6, trill
telephone; N7, female speech; N8, male speech; and N9, female speech. Each number in Table
I represents an average over 10 utterances for one type of interference. The average SNR gain
over the whole database is listed in the bottom row of the table. It can be seen that the IRM
gives a higher SNR gain in all cases. On the other hand, the SNR gains of the IBM are close to
those of the IRM. When DFT is used for frequency decomposition, the SNR gain of the IBM
is 0.7 dB lower than that of the IRM on average. With the gammatone filterbank, the difference
is only 0.4 dB. The variance of the SNR gain difference is also small—the largest difference is
0.8 dB when the interference is female speech (N7) and DFT is used.

The SNR gains for the music database are shown in Table II. In this case, we group the SNR
gains according to instrument combinations. Four instruments, a clarinet (CL), a flute (FL), a
violin (VN), and a trumpet (TR) are used to synthesize different music lines in the music database
and there are 6 different combinations. It can be seen that the IRM gives higher SNR gains for
all instrument combinations when DFT is used for frequency decomposition. For the gammatone
filterbank, the IBM actually performs better in several instrument combinations. One possible
reason is that the uncorrelatedness assumption does not hold well in music. In Western music,
pitches in harmonic relation—pitches form a simple integer ratio [12]—are favored. As a result,
harmonics of different notes may collide. This is more likely with the gammatone filterbank since
the bandwidth of the filters are wider in the high frequency range. Nonetheless, on average, the
IRM gives a better SNR gain than that of the IBM. Similar to speech, the SNR gains between
the IBM and the IRM are small. With DFT, the IBM is 0.8 dB worse while with the gammatone
filterbank, the difference is only 0.1 dB.

In summary, the IRM achieves higher SNR gains compared to the IBM. However, despite
the fact that the IBM is binary and the IRM is not, the SNR gain of the IBM is close to that
of the IRM. This shows that, although the IBM is not optimal, it still gives a very reasonable
performance metric for sound separation.

IV. CONCLUDING REMARKS

In this paper we have addressed the optimality of the IBM in terms of SNR gain at three
different levels and clarified the conditions at each level for the IBM to be optimal. At the T-F
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Instruments DFT GF
IBM IRM IBM IRM

CL+FL 12.9 13.5 12.3 12.0
CL+VN 13.2 13.9 12.3 12.1
CL+TR 11.3 12.2 9.0 9.3
FL+VN 13.7 14.8 11.9 11.8
FL+TR 11.1 12.1 8.8 9.4
VN+TR 12.1 12.8 8.9 9.2
Average 12.4 13.2 10.5 10.6

TABLE II
SNR GAIN (IN DECIBEL) OF IBM AND IRM FOR A MUSIC DATABASE

unit level, the IBM is optimal. At the time frame level, the IBM is optimal when the frequency
decomposition is orthogonal. At the global level, IBM is optimal when the T-F decomposition is
orthogonal and the windowing function is rectangular. We give counterexamples where the IBM
is not optimal when the stated conditions are not satisfied. Since in most practical applications,
frames overlap, and as a result the IBM is not expected to be optimal. However we have shown
experimentally that the performance of the IBM is close to that of the IRM and therefore the
IBM is still a good objective for sound separation systems. Note that IBM estimation, unlike
IRM estimation, requires only binary decisions, which makes applicable a host of classification
and clustering methods.

In our discussion of IBM optimality, we treat a signal deterministically, i.e., we do not consider
the statistical properties of a signal, such as stationarity or distribution. We believe our treatment
is more appropriate because it makes no assumption about signals. For example, if signals are
treated statistically, the energy of the error signal has to be replaced by the expectation of the
energy. In this case, we have E(

∑
n(xm[n]− x̂m[n])2) = E(

∑
c |Xcm − X̂cm|2). To proceed, i.e.,

to switch the expectation and summation, one has to assume that error terms of different c are
statistically independent. However such an assumption is difficult to justify.
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