

Network Court Protocol and Malicious Node Conviction

Na Li and David Lee
Department of Computer Science and Engineering, The Ohio State University

lina,lee@cse.ohio-state.edu

Abstract – A Network Court Protocol is designed for malicious
node conviction based on the information from network node
accusing and testifying operations, which are formally modeled
by algebraic operators. It is shown that the malicious node
unambiguous conviction is equivalent to the uniqueness of the
solution of a system of Boolean equations and that is equivalent
to the uniqueness of a corresponding satisfiability problem. A
linear time algorithm is presented for the conviction process
using a conviction graph search. The general protocol and
algorithms are applied to P2P networks with promising
experimental results.

Index Terms – Malicious node conviction, Court protocol,
System of Boolean equations, Satisfiability, Conviction graph,
P2P networks, Ring conviction protocol

I. INTRODUCTION
Malicious nodes disrupt network operations and pose a

serious security threat, particularly in distributed application
environment, such as peer-to-peer (P2P) [L06, P02, T04] and
overlay networks [Ra01, Ro01, S01, Z01]. For instance, a
malicious node can forward a false lookup request or erroneous
routing update, corrupt information stored in the system by
repeatedly joining and leaving the network, launch an attack on
a specific data item by ID mapping [S04], or exploit millions of
concurrently interactive peers as an engine for DDoS attacks
[N06].

A lot of efforts have been devoted to detecting malicious
nodes by their abnormal behaviors, such as generating
abnormal traffic. Packet payload can be checked for
abnormality [M03]. Buffer overflow attack (a popular scheme
for large scale attacks such as worms, zombies, or a large
number of hackers running attack scripts) can be detected by
identifying anomalous tokens in packet payloads, e.g., byte
strings resembling injected jump addresses [L05]. In addition
to the packet content, packet statistics [B01, W04, W05] and
traffic flows [La04, Le04] can also reveal node abnormal
behaviors. Port scans or DoS attacks can be detected by
monitoring network parameters, such as the number of
connections established and packet transmission rate [Kr02].
Analysis of multivariate time series of byte counts, packet
counts, and IP-flow counts are used to illustrate and classify the
anomalies, including DoS attacks, flash crowds, port scanning,
downstream traffic engineering, high-rate flows, worm
propagation, and network outage [La04].

We have briefly described a few network node abnormal
behaviors with no intention to provide a complete survey; this
paper is not on node abnormal behavior detection. Instead, our
goal is to investigate the decision making based on the reports
of network abnormal behaviors. Specifically, in a distributed
environment, nodes may alert the presence of attacks - some are

true and some are false – and we have to make a decision to
identify the malicious nodes.

Formally, based on the observed behaviors or its own
malicious intention, a node can make a statement on any other
node as being malicious or good, or claim having no knowledge
of it. Based on the statements of all the nodes, a protocol [G98]
is needed to identify and eject the truly malicious nodes. This is
similar to court activities. Defendants, prosecutors, and
witnesses can accuse or testify for another person, or claim
having no knowledge at all. Based on the statements, the jury or
judge have to reach a verdict to convict a criminal, or to prove
his innocence, or to quit the case for lacking of evidence.

The malicious node identification problem has been studied
in the published literature. Douceur and Howell [D06] uses
Byzantine distributed algorithm to isolate faulty nodes.
Fireflies [J06] proposes a Byzantine tolerant solution to
monitor stopping failure by multiple rings. Reputation [D04,
G06, S05, S06] and Ranking systems [Y07] are used in P2P
networks to leverage users’ assessment of others for ranking a
peer as trustworthy or for resource allocation. Morselli et al.
explore the client verification [M04].

This work is to design a protocol for convicting malicious
nodes in a distributed network environment based on the
statements of the nodes on other nodes; a node can accuse
another node as being a malicious one or testify for its integrity.
Apparently, it is not an attack detection procedure. It is not
network element authentication either where the goal is to
verify the identity of the element being authenticated [Ka02]. It
is not a verification procedure as [M04] or fault tolerant
assessment [A98, E04]. It is different than Byzantine
agreement where algorithm is used to permit a collection of
processors to reach consensus [L86] in the presence of
Byzantine failures of some processors [L96]. It is not a
reputation system that collects, distributes, and aggregates
feedbacks about participants’ behaviors for determining their
level of trust [R00]. We call it a Network Court Protocol for
convicting malicious nodes.

Malicious node conviction is a challenge, particularly, in a
distributed network environment. The complication is similar
to that in a court: a criminal may falsely accuse an innocent
person or testify for another criminal. Similarly, a malicious
node can falsely accuse good nodes, or testify for other
malicious nodes, or accuse a malicious node to make the
conviction harder, or may even behave non-deterministically.

Formally, a node can make one of the following statements
with regard to another node: (1) Accuse it as a malicious node;
(2) Testify it is a good node; or (3) Claim having no knowledge
of it. The node conviction process is to classify nodes as good
or malicious based on the statements by all the nodes.

In general, this is an unsolvable problem. For instance, if
there are only two nodes who accuse each other, there is no way

one can tell whether both are malicious or one is good and the
other is malicious. We make the following natural assumption:

Assumption 1.The statement a good node can make on another
node:
(1) Testifying it is a good node; the testified node must also

 be good.
(2) Accusing it is a bad node; the accused node must be bad.
(3) Claiming no knowledge of it; it can be either good or bad.
[]

Remark 1. Assumption 1 is very general:
(1) A node can make a statement on any other nodes – they may
 or may not be its neighbors in a network.
(2) A good node never accuses a good node nor testifies for a
 bad node; a good node is reliable and trustworthy.
(3) There is no assumption on malicious node behaviors: it can

testify for, accuse, or claim no knowledge of a good or bad
node. []

 In Section II, we formally model and formulate the problem.
The Court Conviction Protocol is designed in Section III with a
linear time algorithm for an unambiguous conviction. The
general theory is applied to P2P networks with experiments in
Section IV and V. Section VI contains remarks on variations
and generalizations of the Conviction Problem.

II. Mathematical Model
For simplicity, we call a malicious node a bad node, denoted

by a Boolean value 0, and call a healthy node a good node,
denoted by 1. As described before, each node can make a
statement on another node: (1) Accusing it as a bad node; (2)
Testifying for it as a good node; or (3) Claiming no knowledge
of it.

We use an operator ⊗ to denote accusation; x ⊗y for node y
accusing node x. By Assumption 1, a node must be bad if it is
accused by a good node, and we have: *⊗1=0 where * stands
for 0 or 1. On the other hand, a node does not change its nature
if it is accused by a bad node, and we have: *⊗ 0=*. In
summary, we have the following truth table:

x y x⊗y
0 0 0
0 1 0
1 0 1
1 1 0

It can be easily shown:
 x⊗y = x . y’ (1)
where “ . ” is the Boolean “and” operator that is often omitted
whenever there is no confusion, and “ ’ ” represents the
complement.

 We use an operator ⊕ to denote testify-for; x⊕ y for node y
testifying for node x. By Assumption 1, a node must be good if
it is testified by a good node, and we have: *⊕ 1=1. On the
other hand, a node does not change its nature if it is testified by

a bad node, and we have: *⊕ 0=*. In summary, we have the
following truth table:

x y x⊕ y
0 0 0
0 1 1
1 0 1
1 1 1

 It can be easily shown:
 x⊕ y = x + y (2)
where “+” is the Boolean “or” operator.

A “no knowledge” statement does not have any impact on
the target node and there is no need of any operator for it. Note
that the accusation operator is not commutative but the
testify-for operator is.

We now formally define the problem. We choose to present
it as a general problem in distributed computing; its application
to networking is a special case. Again Boolean value 0 and 1
represent bad and good element, respectively.

Court Conviction Problem
 Given a set of n elements of unknown Boolean values ix ,

i=1,…,n, a set of u accusation statements:
pp ji xx ⊗ , p=1,…,u,

and a set of v testify-for statements:
qq ji xx ⊕ , q=1,…,v, where

⊗ and ⊕ are the accusation and testify-for operator,
respectively, determine the value of each element.
 The problem is completely solvable if the value assignment
to the elements is unique. []

When the problem is completely solvable all the bad
elements are uniquely identified and unambiguously convicted
and all the good elements are also identified. Otherwise, the
good and bad elements cannot be all identified unambiguously.
 From Eq. (1) and (2), we can rewrite the statements in Court
Conviction Problem as a system of u+v equations of n Boolean
variables:
 '

ppp jii xxx = , p=1,…,u (3)

qqq jii xxx += , q=1,…,v (4)

This system has at least one solution that is the true value of
the elements, that is, 0 for bad and 1 for good element. If the
system has a unique solution, then the Conviction Problem is
completely solvable: the solution is the same as the true values
of all the elements.

We have formulated a very general bad element Conviction
Problem. For our particular application of network malicious
node conviction, an element is a network node, an accusation is
from an attack alert, and a testify-for operation is to prove
another node is good. Note again that an accusation or a
testify-for operation by a node may not be on its immediate
neighbors in the network.
 We can use a conviction graph to represent all the accusation
and testify-for operations. An a-edge yx a→ indicates that x

accuses y, and a t-edge yx t→ represents that x testifies for y.
No edge between nodes implies no knowledge.

Example 1. Figure 1 contains a conviction graph with node
A=1, known to be good a priori. Node B is testified by A and
hence is also good. By a same argument C is also good. D must
be bad since otherwise C would be bad by the a-edge DC.
Therefore, there is a unique solution: A=B=C=1 and D=0. If we
remove the a-edge DC, D can be either good or bad – more than
one solution.

A = 1

B

C D

tt

a

tt

Fig. 1 A Simple Conviction Graph

The Court Conviction Problem is now reduced to solving a

system of Boolean equations. It has at least one solution: the
true value of the nodes. The problem is completely solvable,
that is, the good and bad nodes can be uniquely identified, if
and only if it has a unique solution. There are a number of
publications on the problem of uniqueness of solutions of
systems of Boolean equations [P57, T66, W01] in which the
necessary and sufficient conditions of uniqueness of solutions
of general systems of Boolean equations are given yet there are
no efficient algorithms provided. We explore the structure of
the system of Boolean equations from the Court Conviction
Problem and present linear time algorithms.

It is well known [M72] that two Boolean variables x=y if and
only if xy + x’y’ =1. For equation x=xy’, we have xxy’ +
x’(xy’)’=1. A straightforward computation yields: x’ + y’ = 1.
Similarly, for equation x = x + y, it is equivalent to: x + y’ = 1.
Therefore, we can rewrite Eq. (3) and (4) as:

 1'' =+
pp ji xx , p=1,…,u (3’)

1'=+
qq ji xx , q=1,.., v (4’)

Therefore, the system of Boolean equations (3) and (4) is
equivalent to the following:

∏
==

==

vqup

qp

,

1,1
)(''(xx

pp
ji

+ 1)' =+ xx qq ji
 (5)

Obviously, it is a satisfiability problem (SAT) [H79] of the
Boolean expression on the left side. We conclude:

Proposition 1. The system of Boolean equations (3) and (4) has
a solution if and only if the Boolean expression on the left side
of (5) is satisfiable, and the system in (3) and (4) has a unique
solution if and only the Boolean expression in (5) is uniquely
satisfiable. []

Corollary 1. The Court Conviction Problem is completely
solvable if and only if the system of Boolean equations (3) and
(4) has a unique solution, and this is the case if and only if the
Boolean expression in (5) is uniquely satisfiable. []

III. NETWORK COURT CONVICTION PROTOCOL DESIGN
The Court Conviction Problem is now reduced to the

satisfiability problem and its unique solution. It is well known
that the general satisfiability problem is NP hard and so is its
uniqueness [P94]. However, each clause in (5) only contains
two Boolean variables and it is a 2-SAT problem and there are
polynomial time solutions [P94, V03]. We now present a linear
time algorithm using the conviction graph.
 From a Conviction Problem defined in (3’) and (4’),
construct a conviction graph as in Fig. 1. Each a-edge from
node y to x, xy a→ , is associated with a clause of the
Boolean expression in (5): x’ + y’, which must have value 1in
the conjunctive normal form of (5). Similarly, each t-edge

xy t→ corresponds to a clause x + y’ in (5) with value 1.
It can be easily checked that x + y’ = 1 and x’ + y = 1 leads to

x = y. Therefore, if a pair of nodes testifies for each other, then
they must be of the same kind: both are bad or good. This
introduces an equivalence relation on the nodes and we can first
merge the equivalence classes of nodes in the graph.

Obviously, the Conviction Problem has a trivial solution: all
the nodes are bad (all variables have value 0). We rule out this
uninteresting case and assume that there is at least one good
node (if all the nodes are compromised, the network is
hopeless). We search the conviction graph in two phases for
solving the Conviction Problem as follows.

Search 1.
 Starting from each of the good nodes, conduct a search
(depth-first or breadth-first) of the conviction graph along
a-edges and t-edges as follows. Suppose that we are searching
an edge from node y to x:
(1) y=1 and xy a→ . Since x’ + y’ = 1, x=0. Node x is
accused by a good node y. If x has not been assigned a value yet,
assign it 0 - a bad node. Otherwise, x has been assigned a value,
and there are two cases, if x has a value 0 – consistent, back
track from the edge. Otherwise, a contradiction – abort the
process.
 (2) y=1 and xy t→ . Since x + y’ = 1, x=1. Node x is
testified by a good node y. If x has not been assigned a value yet,
assign it 1 - a good node. Otherwise, x has been assigned a
value, and there are two cases. If x has a value 1 – consistent,
backtrack from the edge. Otherwise, a contradiction – abort the
process.
(3) y=0 and xy ta→ , . Since x’ + y’ = 1 (a-edge) or x + y’ =1
(t-edge), x can have either values 0 or 1 in both cases; the value
of x cannot be decided and the search from it cannot continue;
back track from the edge. Consequently, the search always
backtracks from a node with value 0 – a 0-node.
 When the search is completed if all the nodes are assigned a
value then we have a unique solution. However, if there are
nodes with undecided values (not searched), we cannot claim
the uniqueness of the solution, and we have to further process
these nodes in Search 2 next.

Search 2.

 We denote the nodes with undecided values as β-nodes and
call the subgraph of β-nodes a residual graph. From Case (3) of
Search 1, an a- or t-edge from a 0-node has no impact on the
end node, and we can assign 0 to all β-nodes and obtain a
solution for all the β-nodes – a trivial solution for the residual
graph with all 0-nodes. However, this may not be the only
solution.

The conviction graph in Fig. 2 has a predetermined good
node A=1. Following Search 1, we have B=1 and C=0. The
remaining nodes cannot be determined with
D=E=F=G=H=I=J= β, forming a residual graph.

A=1

B
G

I
H

J

F

E

D

C

t

t

ttt

tt
t t

a

aa

Fig. 2 A Conviction Graph with β-nodes

One can assign 0 to all the β-nodes in the residual graph – a
trivial solution for it - and obtain a non-trivial solution of the
original Conviction Problem. Therefore, the original problem
has a unique solution if and only if the residual graph only has a
trivial solution, that is, none of the β-node can be assigned
value 1 without introducing any contradictions.

Note that some β-nodes of the residual graph may be
adjacent to 0- or 1-nodes via t- or a-edges, such as D, E and F
nodes. We can repeat the following process on each β-node.
Assign value 1 to it and perform the search on the residual
graph using Search 1. If the search is completed without any
contradiction, then we have a non-trivial solution on the
residual graph by assigning 0 to all the remaining β-nodes; we
have obtained a non-trivial solution for the residual graph and
hence the original conviction problem has more than one
solution – not completely solvable. However, as in Search 1, a
search to a 0- or 1-node may introduce a contradiction. In this
case, we reverse the value of that start node to 0 (it cannot have
value 1), reverse other assigned values back to β, select another
β-node, assign value 1, and repeat the same process. We
continue until: (1) Obtain a non-trivial solution on the residual
graph – the original Conviction Problem does not have a unique
solution; or (2) All the β-nodes are assigned value 0, a trivial
solution, and hence the original problem has a unique solution.
However, in the worst case, each trial of a start node takes time
proportional to the number of edges and there are n trials; the
total cost is quadratic. We now present a linear time algorithm
for processing the residual graph.
 Note that the search backtracks when encounters a 0- or
1-node; when a node is assigned value 0 by the search, we
backtrack from it as well, as illustrated in (3) of Search 1.
Therefore, only searching from a 1-node is consequential.
 Starting from an arbitrary β-node, conduct a
depth-first-search of the residual graph of β-nodes along
t-edges, and shrink each SCC (Strongly Connected Component)

into a β-node, obtaining a DAG (Directed Acyclic Graph).
Obviously, all the β-nodes in an SCC must have a same value 0
or 1, since they testify for each other. Topologically sort the
DAG and each node is assigned an integer from sorting [C01].
 We now examine the residual graph with both t- and a-edges
(A shrunk node from an SCC inherits all the incoming and
outgoing edges.) Take the β-node with the smallest sorting
number; it has incoming edges from other β–nodes but does not
have any outgoing edges to any other β-nodes. On the other
hand, it may have t- and a-edges to or from nodes with assigned
value 0 or 1, which are “outside” the residual graph. We now
attempt to assign value 1 to the selected β-node. If it causes a
contradiction; for instance, it has an a-edge going to a node
with value 1 (accuse another good node), then we can only
assign value 0 to the selected β-node, and we do assign 0 to it.
We then repeat the process on the next β-node with the smallest
sorting number. However, if there is no contradiction from
assigning 1 to the selected β-node, we assign 1 to it and 0 to all
the remaining β-nodes in the residual graph. We claim that
there is no contradiction and we obtain a non-trivial residual
graph since the selected β-node is assigned value 1. Indeed,
since all the other nodes in the residual graph have value 0, they
will not cause any contradiction. The only possible
contradiction is: there is a t-edge (a-edge) from a 1-node
outside the residual graph to a node in the residual graph that
has value 0 (1 – the selected β-node). This is impossible;
otherwise, this edge would have been searched during Search 1,
and the end node under consideration would not be in the
residual graph. Therefore, the original problem does not have a
unique solution and we terminate the process.

Therefore, we either terminate the assignment process upon
obtaining a non-trivial solution, or we assign 0 to all the
β-nodes in the residual graph. In the former case, the original
problem does not have a unique solution, and in the latter case,
the residual graph has a trivial solution and the original
problem has a unique solution.
 Obviously, each edge in the residual graph, including the
ones coming in and going out of the graph, is examined a
constant number of times: depth-first-search for obtaining a
DAG, topological sort, and checking each node bottom-up, and
the total cost is proportional to the number of edges.
 In summary,

Theorem 1. The Court Conviction Problem is completely
solvable if and only if the corresponding system of Boolean
equations (3) and (4) has a unique solution if and only if the
corresponding Boolean expression in (5) is uniquely satisfied,
and this is the case if and only if the search of the Conviction
Graph assigns each node a unique Boolean value. The total cost
of the conviction graph search is O(m) where m is the number
of edges, and hence the Court Conviction Problem can be
solved in time proportional to the total number of accusations
and testifies. []

Algorithm 1 (Conviction Graph Search)
Input: Conviction Graph G= (V, E)
Output: Conviction Problem has a unique solution or not with
array A[u], u=1, 2…, n=|V| to indicate node value assignments:
1, 0, or β for good, bad and undetermined node, respectively.

Queue Q ← ∅ ; /* nodes with determined value 1 */
List L ← ∅ ; /* nodes of unknown value */
for u=1 to n
 if node u is known to be good a priori

A[u] = 1, ENQUEUE (u, Q);
else /* node u value is unknown */

A[u] = β, insert u to L;
Search 1:

while Q ≠ ∅
u=DEQUEUE(Q);
for each ()v Adj u∈ /* end node of edge from u */
 if A[v] = β

 if E(u, v)=‘a’ /* a-type edge */
 A[v] = 0;
 else /* t-type edge E(u, v)=‘t’ */

 A[v] =1; ENQUEUE(v, Q);
 delete v from L;
 if φ=L /* residual graph empty; search completed */
 return “Conviction Problem has a unique solution.”
 else /* search residual graph of β-nodes in L */
Search 2:
 Examine t-edges only in residual graph, merge SCCs,
 conduct a topological sort, obtain a DAG with β-nodes
 listed in L’ in sorted order;
 While 'L ≠ ∅
 u=DELIST (L’) /* examine β-nodes bottom up
 in topological order */

 for each ()v Adj u∈ /* end node of edge from u */
 if (E(u, v) = ‘a’ and A[v]=1) or
 (E(u, v) = ‘t’ and A[v]=0)

 u=0, exit; /* cannot assign value 1 to u */
 u=1; /* u can be assigned value 1 */
 return “Conviction Problem has no unique solution.”
 return “Conviction Problem has a unique solution.”
[]

Remark 2.
1. The Conviction Problem is completely solvable if and only if
Algorithm 1 returns “Conviction Problem has a unique
solution.” In this case, all the good and bad nodes are uniquely
identified: A[v]=1: v is a good node; A[v]=0: v is a bad node,
v=1,2,…,n.
2. For completeness, we remark on the general case that there is
no a priori information of any nodes – all the nodes are of
β-type. The trivial solution is to assign value 0 to all of them
without introducing any contradiction. The question is: are
there any non-trivial solutions? If the answer is no, there is a
unique solution – all the nodes are compromised, an
uninteresting case.
 This is exactly the same problem as Search 2 of the residual
graph except that no β-node has an outgoing or incoming edge
from a node with an assigned value. We can examine t-edges,
shrink SCCs, and conduct a topological sort of the resulting
DAG. Examine the bottom node – an SCC. If there is any
a-edge among any two nodes in the SCC, we can only assign 0
to all the nodes in the SCC. Otherwise, we can assign 1 to all
the nodes without introducing any contradiction. In the first

case, we examine the next node (SCC) above and repeat the
same process. In the second case, we have found a non-trivial
solution and the Conviction Problem does not have a unique
solution – not completely solvable. []

IV. APPLICATION TO P2P NETWORKS
We apply the general malicious node Conviction Protocol to

Peer-to-Peer (P2P) networks. P2P network routing follows a
virtual ring that is formed dynamically from Distributed Hash
Table (DHT) [A06] and that has also been proposed for general
routing [C06].

A. P2P Network and Virtual Ring
For P2P applications in a distributed environment, it is more

difficult to identify malicious peers than in a network with a
centralized control and management. It is often hard to trace
back to the original source of malicious behaviors; healthy
nodes may act involuntarily as accessories of malicious
behaviors. For instance, for the resource lookup service in a
P2P network [S01], when a malicious node launches a DDoS
attack, it injects false information for attracting traffic to a
victim node by informing the whole network that the victim has
the needed resources. This false information may have been
propagated to a large domain when the attack is detected and a
number of healthy nodes have participated in propagating the
false information [W02].
 We now apply the Conviction Protocol Algorithm 1 to
virtual rings of P2P networks in a distributed way, and present a
Virtual Ring Conviction Protocol.

Since P2P network traffic flows along a virtual ring, each
node can monitor the behaviors of both its neighbors on the
ring and detect anomalies. For instance, for the overlay lookup
service [S02], when a node receives a request for resource it
transmits the request to a neighboring node whose logical
identifier is closest to the logical identifier of the resource. A
malicious node may forward the request to an incorrect (not the
closest) or non-existing node. This malicious behavior can
easily be detected by its next hop logical neighbor on the virtual
ring by checking whether the request is getting “closer” to the
resource identifier.

B. Malicious Node Conviction

We now study malicious node Conviction Problem on this
virtual ring network, using the general Algorithm 1 in Section
III. Every node in the ring has two neighbors, a clockwise one
and an anticlockwise one. As a case study, we assume that a
node can only testify for or accuse its neighboring node on the
ring. Apparently, the conviction graph is the ring itself with t-
and a-edges between immediate neighboring nodes. This
special case has been studied in [L07] informally and with
strong assumptions. We also assume that a node either accuses
or testifies for a neighboring node, that is, it cannot claim no
knowledge of it, after transmitting for and monitoring its
behaviors. Needless to say, we can model or make assumptions
differently for different applications and implementation
environments and the general theory still applies. We now
proceed with the P2P ring network case study.

As explained, if two neighboring nodes testify for each other,
they must be of the same type –both are good or bad, and we
can merge them into one node for the conviction process.
Consequently, for two neighboring nodes A and B on the ring,
there are two cases: (1) Both accuse each other: at lease one is
bad; or (2) Node A accuses B but B testifies for A in return: B
must be bad but A can be either good or bad. (If B were good, A
must be good since B testifies for it, but A cannot accuse B – a
contradiction). Based on the neighboring nodes classification,
we consider the following three types of rings. We state the
results, which were obtained in [L07] by lengthy proofs but still
incomplete. With Algorithm 1 we can easily conclude:
Case 1. All the edges are of Type (1). It has multiple solutions:
the trivial solution with all the nodes bad; and any assignment
with good nodes isolated by bad ones.
Case 2. All the edges are of Type (2) but may in different
directions. Consider a-edges only on the ring. All the source
nodes can have value either 0 (bad) or 1 (good), and all the
remaining node must have value 0 (bad).
Case 3. The ring contains both types of edges. We can segment
the ring to parts with Type (1) or (2) edges and determine
accordingly.

Obviously, the Conviction Problem does not have a unique
solution in general. One would explore practical constraints for
convicting bad nodes. Various specific assumptions were made
in [L07] for obtaining convictions with detailed proofs. The
interested readers are referred to [L07] for details.

As a case study, we consider the situation that bad nodes are
isolated, that is, there are no two neighboring bad nodes. This is
a typical scenario before bad nodes take over the network; they
are still in isolation in the ring. If we can run Conviction
Protocol frequently and fast enough, we can eject the malicious
nodes in a timely manner and maintain a healthy ring. As
reported in Section V, this is often the case in practice.

If there are only t-edges, then all the nodes are good. If there
is at least one a-edge, we examine the edges on the ring of Type
(1) and (2). If there are only Type (1) edges, due to the bad node
isolation condition, the only possible cases are: there is an even
number of nodes and good/bad nodes are interleaved, and in
this case, there are only two solutions. Note that if there is an
odd number of nodes on the ring, this is impossible. We now
consider the last interesting case: there are mixed Type (1) and
(2) edges.

For an a-edge in a Type (2) edge, the end node must be bad,
and by the bad node isolation condition, its two neighbors must
be good. Starting from a good node, its unexplored neighbor is
good or bad, depending on it is testified for or accused by the
good node. If the newly determined neighbor is good, we can
repeat the process. If it is bad, then the next unexplored
neighbor must be good by the bad node isolation condition. We
can repeat the process until all the nodes are uniquely identified:
convicted or cleared unambiguously.

As illustrated in [L07], without the bad node isolation
condition often the Conviction Problem can still have a unique
solution with other constraints. We will not attempt to exhaust
all possible cases here; the interested reader may apply the
general Algorithm 1 and use the similar approaches to
investigate their application problems with particular
assumptions and constraints.

C. Virtual Ring Conviction Protocol

 Using the Conviction Algorithm 1, we now describe a
malicious node conviction protocol on a virtual ring from P2P
networks.

The protocol utilizes a token for collecting and distributing
information – accusation or testifying for – for making a
conviction decision in a distributed way.

The token contains two fields (bits) for each node on the ring
to evaluate its two neighbors; it can testify for (assert TURE) or
accuse (assert FALSE) its clockwise neighbor and
anticlockwise neighbor according to its diagnosis of the two
neighbors from monitoring. The token is passed around in one
direction - clock-wise only (for clarity). The token is passed
around the ring twice before the conviction process starts: first
time for collecting information and the second time for
distributing the collected information.
Phase 1 (information collection): The token is passed along
the ring clockwise to collect the accusation/testify-for
information by all the nodes. A node can only access to its own
evaluation fields (2 bits in total) during this phase.
Phase 2 (information distribution and Conviction): In this
phase, all the fields in the token are read-only to all the nodes:
visible but unchangeable. The token is passed along the ring for
a second round to distribute the information. Upon examining
information in the token, each node runs Conviction Algorithm;
it either uniquely identifies all the good and bad nodes or claims
the Conviction Problem is not completely solvable.

D. Token Security Management
In the above two phases, cryptographic techniques are

needed to guarantee that the token is securely passed along the
ring without being viewed by an unauthorized node nor altered.
We can use public key scheme or hash chain for authentication
as done in secure routing protocols [H03].

However, if one or more malicious nodes persistently
scramble the whole token content or – even worse – drop the
token, then there is not much one can do in a same layer. This
problem is different than that in the usual token ring protocol
where one has to deal with the accidental loss or scrambling of
tokens. One might consider transmitting token in a different
layer in a secure way with a new protocol or with a cross-layer
approach. It is an interesting problem yet is not a topic of this
work. Without further digressing we assume that tokens can be
passed along the ring without being scrambled or dropped.

Assume that there are n nodes on the ring (in the network).
We pass the token all over the ring twice for collecting and
distributing the information with a cost O(2n). Upon receiving
the token the second time, each node – good node rather -
detects bad peers. Since the Conviction Algorithm runs in
linear time, we have:

Proposition 2. It takes time proportional to the number of nodes
in a ring network to run the Conviction Protocol to either
uniquely convict the bad nodes or to conclude the problem is
not completely solvable. []

V. EXPERIMENTS
We implement the Conviction Protocol Algorithm 1 and

apply to a ring of a P2P network that is constructed on
PlanetLab testbed [PL02]. It is a global research network
consisting of nodes deployed all over the world. We select 50
nodes located in a wide geographical region, including North
American, Asia and Europe. These nodes are organized into a
virtual ring according to DHT and every node can accuses or
testifies for its two immediate neighbors. For the experiments,
every node makes a random decision on its neighbors.

A. Performance
Every five minutes a new token is generated by a random

node in the ring and then going through the two Phases as in
Section IV.C. The whole process is repeated for 24 hours and
we record the time spent for each token to go through the two
phases – called a round trip for convenience:

Token ID
300240180120601

35

30

25

20

15

10

5

300240180120601

round 1 round 2

Token Round Trip Time (seconds)

Fig. 3 Token Round Trip Time

 Figure 3 shows how long it takes for a token to be passed

around the self-organized ring with 50 PlanetLab nodes; the
time for a round trip - the two phases - is in a range of 4 to 32
seconds, and on the average it takes around 8 seconds. The
token monitoring period is short enough that one can make a
conviction based on updated information.

B. Impact of the Number of Nodes
 For scalability, it is important for the token round trip time to
have a slow increase with the number of nodes in the ring. In
figure 4, we observed an approximate linear increase for the
average token round trip time versus the total number of nodes.

Total Number of Nodes

A
v
e
r
a
g
e

T
o
k
e
n

R
T
T

(
s
e
c
o
n
d
s
)

5040302010

7

6

5

4

3

2

1

Variable
Round 1
Round 2

Token RTT vs. Total Number of Nodes

Fig. 4 Linear Increase of Token Round Trip Time

C. Time for Token Security Management
 To guarantee that a token is securely passed along the ring
without being viewed by an unauthorized node nor altered
encryption/decryption or hashing can be used. Specifically,
when a token is received, a node first decrypts it, obtains

information in the token, makes its own judgment, inserts its
statement, and encrypts the whole token before sending it back
to the ring. In Section V.B we only measure ring passing time
without including the token management time, since it depends
on the node processing power and the cryptographic techniques
used. In order to get a rough idea, we collect data of a typical
setting of machines and crypto-techniques:

Encryption/Decryption AES
Digital Signature/Verification RSA
Key Length 128 bit
Implementation Language C
CPU Intel(R)

Xeon(TM)
CPU 2.66GHz

Memory Size 2074924 k

 From Fig. 5, there is a linear increase of time from the total
number of nodes in the ring with the token security
management.

Token length may make a difference in time for the security
management due to the encryption/decryption time. Figure 6
shows that token entry length has little impact on total time for
token security management so long as each entry for a node has
no more than 16 bytes (theoretically we only need two bits).

We provide a combined view of time for security
management in Fig. 7 with 100 nodes in the ring. It shows that,
compared with token round trip time, the time for token
security management has more impact on overall performance
of distributed token ring algorithm but still does not cause
significant delay in processing.

Total Number of Nodes

T
o
t
a
l

T
i
m
e

(
s
e
c
o
n
d
s
)

100806040200

900

800

700

600

500

400

300

200

100

0

token

4
8

16

entry
length

1
2

Time for Token Security Management

Fig. 5 Time for Security Management vs. Number of Nodes

Token Entry Length (bytes)

T
o
t
a
l

t
i
m
e

(
s
e
c
o
n
d
s
)

1614121086420

900

800

700

600

500

400

300

200

100

0

number

50
100

of
nodes

10
30

Time for Token Security Management

Fig. 6 Time for Security Management vs. Token Entry Length

16

Total time

0

250

8

500

750

Token Entry Length0 410 30 2150
100

Total Number of Nodes

Time for Token Security Management

Fig. 7 A combined view of Time for Security Management

D. Malicious Node Isolation Condition – an Practical View
In Section IV we have shown that the Conviction Protocol

has a unique solution on the ring with an assumption that
malicious nodes are isolated, that is, we can convict and eject
bad nodes in a timely manner when they are still in isolation. Is
this a reasonable assumption in practice?
 It depends on the rate/probability a nodes is being
compromised. There is a variety of ways a node can be
compromised, such as by attacks on an insecure service running
on a host. These attacks are often launched by worms and can
spread quickly [Wa02]. For example, in July 2001, Code Red
infects 359,000 computers in less than 24 hours [CA01]; and in
August 2003, MSBlaster infects 120,000 computers in 24 hours
[B03]. However, as indicated in Fig. 8, the rate of compromise
is very slow in the initial phase (less than 0.05%) for the first
few hours.

Fig. 8 Observed Code Red propagation —
 number of infected hosts (from Caida.org)

Pradip De studied node comprise in wireless sensor

networks using epidemic theory [De06]. As shown in Fig. 9,
for a total of 1000 nodes with average node degree of 5, the
fraction of compromised nodes are smaller than 0.05 within 20
seconds under different infection probability.

Fig. 9 Node Compromise Modeling

Suppose that there are n nodes in the ring and that it takes

time T to execute the Conviction Protocol (passing the token
twice along the ring and execute the protocol to reach a
conviction). Suppose that the probability a node is
compromised within time T is p. Then the probability that there
is at least a pair of adjacent bad modes is no more than 2np .
From our experiments, n=50, T=8sec. For the case of Code
Red infection, suppose that the compromise rate is 0.05% in
the first hour, we have 6101.13600/8%05.0 −×≈×=p ,

and we have 102 10−≈np . Therefore, the probability that the
bad node isolation condition is violated is negligible. That is, if
we constantly monitor the ring network and execute the
Conviction Protocol, we can identify and eject the malicious
nodes efficiently and in a timely manner for maintaining a
healthy network.

VI. CONCLUSION
 We have presented a Network Court Protocol for malicious
node conviction and investigated the necessary and sufficient
conditions for the problem to be completely solvable – an
unambiguous conviction. As a case study, we applied the
general theory to P2P networks. There are a lot of issues and
topics to be further explored and we briefly mention a few here.

(1) The Conviction Protocol can be either centralized or
distributed. For instance, in a P2Pvirtual ring, each node can
run the protocol and make a decision – a completely distributed
approach. On the other hand, on an arbitrary network, a
security administrator can collect the accusation and testify-for
information from the network nodes and run the Court Protocol
for convicting and ejecting malicious nodes – a centralized
approach.
(2) For clarify, we present the protocol and algorithm based on
information from all the nodes of a whole network. It is not
necessary. One can run the Court Protocol based on the
information available; there is no need to obtain information of
the whole network; one can easily check that the modeling and
algorithm still apply.
(3) We have been focused on whether a Conviction Problem is
completely solvable, that is, whether each involved node can be
uniquely identified as a good or bad one. So long as there is a
node that cannot be uniquely determined, we claim that the
problem is not completely solvable. As one can clearly see in

Algorithm 1 that after Search 1, a set of nodes are uniquely
identified and that only the nodes in the residual graph may not
be determined. The result of having uniquely identified a set of
nodes provides a partial solution of the Conviction Problem –
they are identified unambiguously, and we can eject the bad
nodes from this process.
(4) The Court Protocol and Conviction Algorithm 1 are
network topology independent; the accusation and testify-for
information may or may not be on the neighbors of the acting
nodes.
(5) The original Court Conviction Problem is formulated as a
general problem in distributed computing and the network
malicious node detection and P2P ring protocol are special
applications. It may have applications in other areas.
(6) There is a variety of variations and generalizations of the
Conviction Problem. For instance, the Court Conviction
Protocol is based on Assumption 1, that is, good nodes are
trustworthy and bad nodes can be as malicious as possible. In
different application environments, the bad nodes can be more
restrictive in their malicious behaviors or the good nodes might
not be absolutely trustworthy – both assumptions can be
relaxed. This will lead to a host of new problems for further
investigation.

Acknowledgment

This work has been supported in part by NSF awards
CNS-0403342 and CNS-0548403 and by DoD award
N41756-06-C-5541.

References
[A06]B. Awerbuch and C. Scheideler. Towards a scalable and
robust DHT. In Proceedings of the eighteenth annual ACM
symposium on Parallelism in algorithms and architectures, San
Diego, CA, USA 2006.
[A98]A. Arora and S. S. Kulkarni. Detectors and correctors: A
theory of fault-tolerance components. In Proceedings of
International Conference on Distributed Computing Systems,
Amsterdam, The Netherlands 1998.
[B01]M. Bykova et al. Detecting network intrusions via a
statistical analysis of network packet characteristics. In
Proceedings of the 33rd Southeastern Symposium on System
Theory, Athens, Ohio, 2001.
[B03]D. Becker and M. Hines. “FBI arrests MSBlast worm
suspect.” http://news.com.com/2100-1009-5070000.html.
[C01]T. H. Cormen et al. Introduction to Algorithms. 2001.
ISBN: 0-262-03293-3
[CA01]CAIDA: http://www.caida.org/analysis/security.
[C06]M. Caesar et al. Virtual ring routing: network routing
inspired by DHTs. In Proceedings of the 2006 Conference on
Applications, Technologies, Architectures, and Protocols For
Computer Communications, Pisa, Italy, 2006.
[D04]P. Dewan and P. Dasgupta. Pride: peer-to-peer reputation
infrastructure for decentralized environments. In Proceedings
of the 13th international World Wide Web conference on
Alternate track papers & posters, 2004.
[D06]J. R. Douceur and J. Howell. Byzantine Fault Isolation in
the Farsite Distributed File System. In Proceedings of the 5th

International Workshop on Peer-to-Peer Systems, Santa
Barbara, CA, USA, 2006.
[De06] P. De et al. Modeling Node Compromise Spread in
Wireless Sensor Networks Using Epidemic Theory. In
Proceedings of the 2006 international Symposium on World of
Wireless, Mobile and Multimedia Networks, 2006.
[E04]A. Ebnenasir and S. S. Kulkarni. SAT-Based Synthesis
of Fault-Tolerance. Fast Abstracts of the International
Conference on Dependable Systems and Networks, 2004
[G01]M. G. Gouda. Elements of Security: Closure,
Convergence, and Protection. Information Processing Letters,
Vol. 77, pp. 109-114, 2001.
[G06]M. Gupta et al. Trade-offs between reliability and
overhead in peer-to-peer reputation tracking. Computer
Networks: The International Journal of Computer and
Telecommunications Networking archive Vol.50, No. 4. 2006.
[G98]M. G. Gouda. Elements of Network Protocol Design.
1998. ISBN: 0-471-19744-0.
[H03]Y. Hu et al. Efficient Security Mechanisms for Routing
Protocols. In Proceedings of the Tenth Annual Network and
Distributed System Security Symposium, San Diego, CA,
2003.
[H79]Hopcroft and Ullman. Introduction to Automata Theory,
Languages, and Computation. 1979. ISBN: 0-201-02988-X.
[J06]H. Johansen et al. Fireflies: Scalable Support for
Intrusion-Tolerant Network Overlays. In Proceedings of
Eurosys 2006, Leuven, Belgium, 2006.
[Ka02]C. Kaufman et al. Network Security: Private
Communication in a Public World. 2002. ISBN:0-13-046019-2
[Kr02] C. Krügel et al. Service specific anomaly detection for
network intrusion detection. In Proceedings of the 2002 ACM
Symposium on Applied Computing, Madrid, Spain, 2002.
[La04]A. Lakhina et al. Characterization of network-wide
anomalies in traffic flows. In Proceedings of the 4th ACM
SIGCOMM Conference on internet Measurement, Taormina,
Sicily, Italy, 2004.
[Le04]K. Levchenko et al. On the difficulty of scalably
detecting network attacks. In Proceedings of the 11th ACM
Conference on Computer and Communications Security,
Washington DC, USA, 2004.
[L05]Z. Liang and R. Sekar. 2005. Fast and automated
generation of attack signatures: a basis for building
self-protecting servers. In Proceedings of the 12th ACM
Conference on Computer and Communications Security,
Alexandria, VA, USA, 2005.
[L06]M. Li et al. DPTree: A Balanced Tree Based Indexing
Framework For Peer-To-Peer Systems. In Proceedings of IEEE
International Conference on Network Protocols, Santa Barbara,
CA, 2006.
[L07]N. Li and D. Lee. Virtual Authentication Ring for
Securing Network Operations. In Proceedings of First
International Conference on New Technologies, Mobility and
Security, Paris, France, 2007.
[L86]T. V. Lakshman and A. K. Agrawala. Efficient
Decentralized Consensus Protocols. IEEE Trans. Software Eng.
12(5), pp.600-607, 1986.
[L96]N. A. Lynch. Distributed Algorithms. 1996. ISBN:
1-55860-348-4

[M03]M. Mahoney. Network traffic anomaly detection based
on packet bytes. In Proceedings of the ACM SIGSAC, 2003.
[M04]R. Morselli et al. Trust-Preserving Set Operations. In
Proceedings of IEEE Infocom'04, Hong Kong, 2004.
[M72]M. M. Mano. Computer Logic Design. 1972. ISBN
0-13-165472-1.
[N06]N. Naoumov and K. Ross. Exploiting p2p systems for
ddos attacks. In Proceedings of the 1st international conference
on Scalable information systems, Hong Kong, 2006.
[P02]S. W. K. Poon and J. Cao. Rheeve: A Plug-n-Play
Peer-to-Peer Computing Platform. In Proceedings of IEEE
Workshop on Resource Sharing in Massively Distributed
Systems, Vienna, Austria, 2002.
[PL02]Planet Lab: http://www.planet-lab.org/.
[P57]W. L. Parker et al. On Uniquely Solvable Boolean
Equations. The Journal of Symbolic Logic, Vol. 22, No. 1. pp.
96-97, 1957.
[P94]C. H. Papadimitriou. Computational Complexity. 1994.
ISBN: 0-201-53082-1
[R00]P. Resnick et al. Reputation Systems. Communications of
the ACM, 43(12), pp. 45-48, 2000.
[Ra01]S. Ratnasamy et al. A scalable content-addressable
network. In Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for
computer communications, San Diego, CA, USA, 2001.
[Ro01]A. Rowstron et al. Pastry: Scalable, distributed object
location and routing for largescale peer-to-peer systems. In
Proceedings of IFIP/ACM Middleware 2001, Heidelberg,
Germany, 2001.
[S01]I. Stoica et al . Chord: A Scalable Peer to peer Lookup
Service for Internet Applications. In Proceedings of the 2001
conference on Applications, technologies, architectures, and
protocols for computer communications, San Diego, CA, USA,
2001.
[S02]E. Sit and R. Morris. Security Considerations for
Peer-to-Peer Distributed Hash Tables. In Revised Papers from
the First International Workshop on Peer-to-Peer Systems,
London, UK, 2002.
[S04]M. Srivatsa and L. Liu. Vulnerabilities and Security
Threats in Structured Overlay Networks: A Quantitative
Analysis. In Proceedings of the 20th Annual Computer
Security Applications Conference, Washington, DC, USA,
2004.
[S05]G. Swamynathan et al. Decoupling Service and Feedback
Trust in a Peer-to-Peer Reputation System. In Proceedings of
International Workshop on Applications and Economics of
Peer-to-Peer Systems, Nanjing, China, 2005.
[S06]G. Swamynathan et al. Exploring the Feasibility of
Proactive Reputations. In Proceedings of International
Workshop on Peer-to-Peer Systems, Santa Barbara, California,
USA, 2006.
[T04]S. Androutsellis-Theotokis and D. Spinellis. A survey of
peer-to-peer content distribution technologies. ACM
Computing Surveys, 36(4) pp.335–371, 2004.
[T66]R. M. Toms. Systems of Boolean Equations. The
American Mathematical Monthly, Vol. 73, No. 1. pp. 29-35.
1966.
[V03]V. V. Vazirani. Approximation Algorithms. Springer,
2003. ISBN 3-540-65367-8.

[W01]A. N. Whitehead. Memoir on the Algebra of Symbolic
Logic. American Journal of Mathematics, Vol. 23, No. 4. pp.
297-316.1901.
[W02]D. S. Wallach. A Survey of Peer-to-Peer Security Issues,
2002.
[Wa02]A. Wagner and B. Plattner. Peer-to-peer systems as
attack platform for distributed denial-of-service. In ACM
SACT Workshop, Washington, DC, USA, 2002.
[W04]K. Wang and S. Stolfo. Anomalous payload-based
network intrusion detection. In Proceedings of Recent
Advances in Intrusion Detection , Sophia Antipolis, France
2004.
[W05]K. Wang and S. Stolfo. Anomalous payload-based worm
detection and signature generation. In Proceedings of Recent
Advances in Intrusion Detection, Seattle, Washington, USA,
2005.
[Y07]Y. Yan et al. Ranking-based Optimal Resource
Allocation in Peer-to-Peer Networks. In Proceedings of
INFOCOM'07, Anchorage, Alaska, USA, 2007.
[Z01]B.Y. Zhao et al. Tapestry: An infrastructure for
fault-resilient wide-area location and routing. Technical Report,
University of California at Berkeley. 2001.

