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Abstract – A Network Court Protocol is designed for malicious 
node conviction based on the information from network node 
accusing and testifying operations, which are formally modeled 
by algebraic operators. It is shown that the malicious node 
unambiguous conviction is equivalent to the uniqueness of the 
solution of a system of Boolean equations and that is equivalent 
to the uniqueness of a corresponding satisfiability problem. A 
linear time algorithm is presented for the conviction process 
using a conviction graph search. The general protocol and 
algorithms are applied to P2P networks with promising 
experimental results.  
 
Index Terms – Malicious node conviction, Court protocol, 
System of Boolean equations, Satisfiability, Conviction graph, 
P2P networks, Ring conviction protocol 

I. INTRODUCTION 
Malicious nodes disrupt network operations and pose a 

serious security threat, particularly in distributed application 
environment, such as peer-to-peer (P2P) [L06, P02, T04] and 
overlay networks [Ra01, Ro01, S01, Z01]. For instance, a 
malicious node can forward a false lookup request or erroneous 
routing update, corrupt information stored in the system by 
repeatedly joining and leaving the network, launch an attack on 
a specific data item by ID mapping [S04], or exploit millions of 
concurrently interactive peers as an engine for DDoS attacks 
[N06].  

A lot of efforts have been devoted to detecting malicious 
nodes by their abnormal behaviors, such as generating 
abnormal traffic. Packet payload can be checked for 
abnormality [M03]. Buffer overflow attack (a popular scheme 
for large scale attacks such as worms, zombies, or a large 
number of hackers running attack scripts) can be detected by 
identifying anomalous tokens in packet payloads, e.g., byte 
strings resembling injected jump addresses [L05]. In addition 
to the packet content, packet statistics [B01, W04, W05] and 
traffic flows [La04, Le04] can also reveal node abnormal 
behaviors. Port scans or DoS attacks can be detected by 
monitoring network parameters, such as the number of 
connections established and packet transmission rate [Kr02]. 
Analysis of multivariate time series of byte counts, packet 
counts, and IP-flow counts are used to illustrate and classify the 
anomalies, including DoS attacks, flash crowds, port scanning, 
downstream traffic engineering, high-rate flows, worm 
propagation, and network outage [La04]. 

We have briefly described a few network node abnormal 
behaviors with no intention to provide a complete survey; this 
paper is not on node abnormal behavior detection. Instead, our 
goal is to investigate the decision making based on the reports 
of network abnormal behaviors. Specifically, in a distributed 
environment, nodes may alert the presence of attacks - some are 

true and some are false – and we have to make a decision to 
identify the malicious nodes.  

Formally, based on the observed behaviors or its own 
malicious intention, a node can make a statement on any other 
node as being malicious or good, or claim having no knowledge 
of it. Based on the statements of all the nodes, a protocol [G98] 
is needed to identify and eject the truly malicious nodes. This is 
similar to court activities. Defendants, prosecutors, and 
witnesses can accuse or testify for another person, or claim 
having no knowledge at all. Based on the statements, the jury or 
judge have to reach a verdict to convict a criminal, or to prove 
his innocence, or to quit the case for lacking of evidence. 

The malicious node identification problem has been studied 
in the published literature. Douceur and Howell [D06] uses 
Byzantine distributed algorithm to isolate faulty nodes. 
Fireflies [J06] proposes a Byzantine tolerant solution to 
monitor stopping failure by multiple rings. Reputation [D04, 
G06, S05, S06] and Ranking systems [Y07] are used in P2P 
networks to leverage users’ assessment of others for ranking a 
peer as trustworthy or for resource allocation. Morselli et al. 
explore the client verification [M04]. 

This work is to design a protocol for convicting malicious 
nodes in a distributed network environment based on the 
statements of the nodes on other nodes; a node can accuse 
another node as being a malicious one or testify for its integrity.  
Apparently, it is not an attack detection procedure. It is not 
network element authentication either where the goal is to 
verify the identity of the element being authenticated [Ka02]. It 
is not a verification procedure as [M04] or fault tolerant 
assessment [A98, E04]. It is different than Byzantine 
agreement where algorithm is used to permit a collection of 
processors to reach consensus [L86] in the presence of 
Byzantine failures of some processors [L96]. It is not a 
reputation system that collects, distributes, and aggregates 
feedbacks about participants’ behaviors for determining their 
level of trust [R00]. We call it a Network Court Protocol for 
convicting malicious nodes. 

Malicious node conviction is a challenge, particularly, in a 
distributed network environment. The complication is similar 
to that in a court: a criminal may falsely accuse an innocent 
person or testify for another criminal. Similarly, a malicious 
node can falsely accuse good nodes, or testify for other 
malicious nodes, or accuse a malicious node to make the 
conviction harder, or may even behave non-deterministically. 

Formally, a node can make one of the following statements 
with regard to another node: (1) Accuse it as a malicious node; 
(2) Testify it is a good node; or (3) Claim having no knowledge 
of it. The node conviction process is to classify nodes as good 
or malicious based on the statements by all the nodes. 

In general, this is an unsolvable problem. For instance, if 
there are only two nodes who accuse each other, there is no way 



 

one can tell whether both are malicious or one is good and the 
other is malicious. We make the following natural assumption: 
 
Assumption 1.The statement a good node can make on another 
node:  
(1) Testifying it is a good node; the testified node must also 

  be good.  
(2) Accusing it is a bad node; the accused node must be bad. 
(3) Claiming no knowledge of it; it can be either good or bad. 
[] 
 
Remark 1. Assumption 1 is very general: 
(1) A node can make a statement on any other nodes – they may  
  or may not be its neighbors in a network. 
(2) A good node never accuses a good node nor testifies for a  
     bad node; a good node is reliable and trustworthy. 
(3) There is no assumption on malicious node behaviors: it can  

testify for, accuse, or claim no knowledge of a good or bad 
node.                     [] 
 

 In Section II, we formally model and formulate the problem. 
The Court Conviction Protocol is designed in Section III with a 
linear time algorithm for an unambiguous conviction. The 
general theory is applied to P2P networks with experiments in 
Section IV and V. Section VI contains remarks on variations 
and generalizations of the Conviction Problem. 

II. Mathematical Model 
For simplicity, we call a malicious node a bad node, denoted 

by a Boolean value 0, and call a healthy node a good node, 
denoted by 1. As described before, each node can make a 
statement on another node: (1) Accusing it as a bad node; (2) 
Testifying for it as a good node; or (3) Claiming no knowledge 
of it.  

We use an operator ⊗ to denote accusation; x ⊗y for node y 
accusing node x. By Assumption 1, a node must be bad if it is 
accused by a good node, and we have: *⊗1=0 where * stands 
for 0 or 1. On the other hand, a node does not change its nature 
if it is accused by a bad node, and we have: *⊗ 0=*. In 
summary, we have the following truth table: 
 

x y x⊗y 
0 0 0 
0 1 0 
1 0 1 
1 1 0 

 
It can be easily shown: 
 x⊗y = x . y’                 (1) 
where “ . ” is the Boolean “and” operator that is often omitted 
whenever there is no confusion, and “ ’ ”  represents the 
complement.  

 We use an operator ⊕ to denote testify-for; x⊕ y for node y 
testifying for node x. By Assumption 1, a node must be good if 
it is testified by a good node, and we have: *⊕ 1=1. On the 
other hand, a node does not change its nature if it is testified by 

a bad node, and we have: *⊕ 0=*. In summary, we have the 
following truth table: 

 
x y x⊕ y 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 
 It can be easily shown: 
 x⊕ y = x + y                 (2) 
where “+” is the Boolean “or” operator. 

A “no knowledge” statement does not have any impact on 
the target node and there is no need of any operator for it. Note 
that the accusation operator is not commutative but the 
testify-for operator is. 

We now formally define the problem. We choose to present 
it as a general problem in distributed computing; its application 
to networking is a special case. Again Boolean value 0 and 1 
represent bad and good element, respectively. 

 
Court Conviction Problem 
 Given a set of n elements of unknown Boolean values ix  , 

i=1,…,n, a set of u accusation statements:
pp ji xx ⊗ , p=1,…,u, 

and a set of v testify-for statements: 
qq ji xx ⊕ , q=1,…,v, where 

⊗ and ⊕ are the accusation and testify-for operator, 
respectively, determine the value of each element. 
 The problem is completely solvable if the value assignment 
to the elements is unique.               [] 
 

When the problem is completely solvable all the bad 
elements are uniquely identified and unambiguously convicted 
and all the good elements are also identified. Otherwise, the 
good and bad elements cannot be all identified unambiguously. 
 From Eq. (1) and (2), we can rewrite the statements in Court 
Conviction Problem as a system of u+v equations of n Boolean 
variables: 
          '

ppp jii xxx = ,    p=1,…,u          (3) 

          
qqq jii xxx += , q=1,…,v          (4) 

This system has at least one solution that is the true value of 
the elements, that is, 0 for bad and 1 for good element. If the 
system has a unique solution, then the Conviction Problem is 
completely solvable: the solution is the same as the true values 
of all the elements.  

We have formulated a very general bad element Conviction 
Problem. For our particular application of network malicious 
node conviction, an element is a network node, an accusation is 
from an attack alert, and a testify-for operation is to prove 
another node is good. Note again that an accusation or a 
testify-for operation by a node may not be on its immediate 
neighbors in the network. 
 We can use a conviction graph to represent all the accusation 
and testify-for operations. An a-edge yx a→ indicates that x 



 

accuses y, and a t-edge yx t→ represents that x testifies for y. 
No edge between nodes implies no knowledge. 
 
Example 1. Figure 1 contains a conviction graph with node 
A=1, known to be good a priori. Node B is testified by A and 
hence is also good. By a same argument C is also good. D must 
be bad since otherwise C would be bad by the a-edge DC. 
Therefore, there is a unique solution: A=B=C=1 and D=0. If we 
remove the a-edge DC, D can be either good or bad – more than 
one solution. 
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Fig. 1 A Simple Conviction Graph 

 
The Court Conviction Problem is now reduced to solving a 

system of Boolean equations. It has at least one solution: the 
true value of the nodes. The problem is completely solvable, 
that is, the good and bad nodes can be uniquely identified, if 
and only if it has a unique solution. There are a number of 
publications on the problem of uniqueness of solutions of 
systems of Boolean equations [P57, T66, W01] in which the 
necessary and sufficient conditions of uniqueness of solutions 
of general systems of Boolean equations are given yet there are 
no efficient algorithms provided. We explore the structure of 
the system of Boolean equations from the Court Conviction 
Problem and present linear time algorithms. 

It is well known [M72] that two Boolean variables x=y if and 
only if xy + x’y’ =1. For equation x=xy’, we have xxy’ + 
x’(xy’)’=1. A straightforward computation yields: x’ + y’ = 1. 
Similarly, for equation x = x + y, it is equivalent to: x + y’ = 1. 
Therefore, we can rewrite Eq. (3) and (4) as: 

 1'' =+
pp ji xx ,   p=1,…,u              (3’) 

1'=+
qq ji xx ,   q=1,.., v               (4’) 

Therefore, the system of Boolean equations (3) and (4) is 
equivalent to the following: 

∏
==

==

vqup

qp

,

1,1
)(''( xx

pp
ji

+ 1)' =+ xx qq ji
          (5) 

Obviously, it is a satisfiability problem (SAT) [H79] of the 
Boolean expression on the left side. We conclude: 
 
Proposition 1. The system of Boolean equations (3) and (4) has 
a solution if and only if the Boolean expression on the left side 
of (5) is satisfiable, and the system in (3) and (4) has a unique 
solution if and only the Boolean expression in (5) is uniquely 
satisfiable.                                 [] 
 
Corollary 1. The Court Conviction Problem is completely 
solvable if and only if the system of Boolean equations (3) and 
(4) has a unique solution, and this is the case if and only if the 
Boolean expression in (5) is uniquely satisfiable.         [] 

III. NETWORK COURT CONVICTION PROTOCOL DESIGN 
The Court Conviction Problem is now reduced to the 

satisfiability problem and its unique solution. It is well known 
that the general satisfiability problem is NP hard and so is its 
uniqueness [P94]. However, each clause in (5) only contains 
two Boolean variables and it is a 2-SAT problem and there are 
polynomial time solutions [P94, V03]. We now present a linear 
time algorithm using the conviction graph. 
 From a Conviction Problem defined in (3’) and (4’), 
construct a conviction graph as in Fig. 1. Each a-edge from 
node y to x, xy a→ , is associated with a clause of the 
Boolean expression in (5): x’ + y’, which must have value 1in 
the conjunctive normal form of (5). Similarly, each t-edge 

xy t→ corresponds to a clause x + y’ in (5) with value 1.  
It can be easily checked that x + y’ = 1 and x’ + y = 1 leads to 

x = y. Therefore, if a pair of nodes testifies for each other, then 
they must be of the same kind: both are bad or good. This 
introduces an equivalence relation on the nodes and we can first 
merge the equivalence classes of nodes in the graph. 

Obviously, the Conviction Problem has a trivial solution: all 
the nodes are bad (all variables have value 0). We rule out this 
uninteresting case and assume that there is at least one good 
node (if all the nodes are compromised, the network is 
hopeless).  We search the conviction graph in two phases for 
solving the Conviction Problem as follows. 
 
Search 1. 
 Starting from each of the good nodes, conduct a search 
(depth-first or breadth-first) of the conviction graph along 
a-edges and t-edges as follows. Suppose that we are searching 
an edge from node y to x:  
(1) y=1 and xy a→ . Since x’ + y’ = 1, x=0.  Node x is 
accused by a good node y. If x has not been assigned a value yet, 
assign it 0 - a bad node. Otherwise, x has been assigned a value, 
and there are two cases, if x has a value 0 – consistent, back 
track from the edge. Otherwise, a contradiction – abort the 
process. 
 (2) y=1 and xy t→ . Since x + y’ = 1, x=1. Node x is 
testified by a good node y. If x has not been assigned a value yet, 
assign it 1 - a good node. Otherwise, x has been assigned a 
value, and there are two cases. If x has a value 1 – consistent, 
backtrack from the edge. Otherwise, a contradiction – abort the 
process. 
(3) y=0 and xy ta→ , . Since x’ + y’ = 1 (a-edge) or x + y’ =1 
(t-edge), x can have either values 0 or 1 in both cases; the value 
of x cannot be decided and the search from it cannot continue; 
back track from the edge. Consequently, the search always 
backtracks from a node with value 0 – a 0-node. 
 When the search is completed if all the nodes are assigned a 
value then we have a unique solution. However, if there are 
nodes with undecided values (not searched), we cannot claim 
the uniqueness of the solution, and we have to further process 
these nodes in Search 2 next. 
 
Search 2. 



 

 We denote the nodes with undecided values as β-nodes and 
call the subgraph of β-nodes a residual graph. From Case (3) of 
Search 1, an a- or t-edge from a 0-node has no impact on the 
end node, and we can assign 0 to all β-nodes and obtain a 
solution for all the β-nodes – a trivial solution for the residual 
graph with all 0-nodes. However, this may not be the only 
solution.  

The conviction graph in Fig. 2 has a predetermined good 
node A=1. Following Search 1, we have B=1 and C=0. The 
remaining nodes cannot be determined with 
D=E=F=G=H=I=J= β, forming a residual graph. 
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Fig. 2 A Conviction Graph with β-nodes 
 

One can assign 0 to all the β-nodes in the residual graph – a 
trivial solution for it - and obtain a non-trivial solution of the 
original Conviction Problem. Therefore, the original problem 
has a unique solution if and only if the residual graph only has a 
trivial solution, that is, none of the β-node can be assigned 
value 1 without introducing any contradictions. 

Note that some β-nodes of the residual graph may be 
adjacent to 0- or 1-nodes via t- or a-edges, such as D, E and F 
nodes. We can repeat the following process on each β-node. 
Assign value 1 to it and perform the search on the residual 
graph using Search 1. If the search is completed without any 
contradiction, then we have a non-trivial solution on the 
residual graph by assigning 0 to all the remaining β-nodes; we 
have obtained a non-trivial solution for the residual graph and 
hence the original conviction problem has more than one 
solution – not completely solvable. However, as in Search 1, a 
search to a 0- or 1-node may introduce a contradiction. In this 
case, we reverse the value of that start node to 0 (it cannot have 
value 1), reverse other assigned values back to β, select another 
β-node, assign value 1, and repeat the same process. We 
continue until: (1) Obtain a non-trivial solution on the residual 
graph – the original Conviction Problem does not have a unique 
solution; or (2) All the β-nodes are assigned value 0, a trivial 
solution, and hence the original problem has a unique solution. 
However, in the worst case, each trial of a start node takes time 
proportional to the number of edges and there are n trials; the 
total cost is quadratic. We now present a linear time algorithm 
for processing the residual graph.  
 Note that the search backtracks when encounters a 0- or 
1-node; when a node is assigned value 0 by the search, we 
backtrack from it as well, as illustrated in (3) of Search 1. 
Therefore, only searching from a 1-node is consequential. 
 Starting from an arbitrary β-node, conduct a 
depth-first-search of the residual graph of β-nodes along 
t-edges, and shrink each SCC (Strongly Connected Component) 

into a  β-node, obtaining a DAG (Directed Acyclic Graph). 
Obviously, all the β-nodes in an SCC must have a same value 0 
or 1, since they testify for each other. Topologically sort the 
DAG and each node is assigned an integer from sorting [C01].  
 We now examine the residual graph with both t- and a-edges 
(A shrunk node from an SCC inherits all the incoming and 
outgoing edges.) Take the β-node with the smallest sorting 
number; it has incoming edges from other β–nodes but does not 
have any outgoing edges to any other β-nodes. On the other 
hand, it may have t- and a-edges to or from nodes with assigned 
value 0 or 1, which are “outside” the residual graph. We now 
attempt to assign value 1 to the selected β-node. If it causes a 
contradiction; for instance, it has an a-edge going to a node 
with value 1 (accuse another good node), then we can only 
assign value 0 to the selected β-node, and we do assign 0 to it. 
We then repeat the process on the next β-node with the smallest 
sorting number.  However, if there is no contradiction from 
assigning 1 to the selected β-node, we assign 1 to it and 0 to all 
the remaining β-nodes in the residual graph. We claim that 
there is no contradiction and we obtain a non-trivial residual 
graph since the selected β-node is assigned value 1. Indeed, 
since all the other nodes in the residual graph have value 0, they 
will not cause any contradiction. The only possible 
contradiction is: there is a t-edge (a-edge) from a 1-node 
outside the residual graph to a node in the residual graph that 
has value 0 (1 – the selected β-node). This is impossible; 
otherwise, this edge would have been searched during Search 1, 
and the end node under consideration would not be in the 
residual graph. Therefore, the original problem does not have a 
unique solution and we terminate the process. 

Therefore, we either terminate the assignment process upon 
obtaining a non-trivial solution, or we assign 0 to all the 
β-nodes in the residual graph. In the former case, the original 
problem does not have a unique solution, and in the latter case, 
the residual graph has a trivial solution and the original 
problem has a unique solution. 
 Obviously, each edge in the residual graph, including the 
ones coming in and going out of the graph, is examined a 
constant number of times: depth-first-search for obtaining a 
DAG, topological sort, and checking each node bottom-up, and 
the total cost is proportional to the number of edges. 
 In summary,  
 
Theorem 1. The Court Conviction Problem is completely 
solvable if and only if the corresponding system of Boolean 
equations (3) and (4) has a unique solution if and only if the 
corresponding Boolean expression in (5) is uniquely satisfied, 
and this is the case if and only if the search of the Conviction 
Graph assigns each node a unique Boolean value. The total cost 
of the conviction graph search is O(m) where m is the number 
of edges, and hence the Court Conviction Problem can be 
solved in time proportional to the total number of accusations 
and testifies.                     [] 
 
Algorithm 1 (Conviction Graph Search)   
Input: Conviction Graph G= (V, E) 
Output: Conviction Problem has a unique solution or not with 
array A[u], u=1, 2…, n=|V| to indicate node value assignments: 
1, 0, or β for good, bad and undetermined node, respectively. 



 

 
Queue Q ← ∅ ;  /* nodes with determined value 1 */ 
List L ← ∅ ;  /* nodes of unknown value */ 
for u=1 to n 
 if node u is known to be good a priori 

A[u] = 1, ENQUEUE (u, Q); 
else /*  node u value is unknown */ 

A[u] = β, insert u to L; 
Search 1: 

while Q ≠ ∅  
u=DEQUEUE(Q); 
for each ( )v Adj u∈ /* end node of edge from u */ 
 if A[v] = β  

 if E(u, v)=‘a’ /* a-type edge */ 
   A[v] = 0;  
  else /* t-type edge E(u, v)=‘t’ */                        

   A[v] =1; ENQUEUE(v, Q); 
    delete v from L; 
 if φ=L  /* residual graph empty; search completed */ 
  return “Conviction Problem has a unique solution.” 
 else /* search residual graph of β-nodes in L */ 
Search 2:  
  Examine t-edges only in residual graph, merge SCCs,   
  conduct a topological sort, obtain a DAG with β-nodes  
  listed in L’ in sorted order;         
  While 'L ≠ ∅  
   u=DELIST (L’) /* examine β-nodes bottom up 
             in topological order */ 

  for each ( )v Adj u∈ /* end node of edge from u */ 
  if (E(u, v) = ‘a’ and A[v]=1) or  
     (E(u, v) = ‘t’ and A[v]=0) 

     u=0, exit; /* cannot assign value 1 to u */ 
   u=1; /* u can be assigned value 1 */ 
   return “Conviction Problem has no unique solution.” 
  return “Conviction Problem has a unique solution.” 
[] 
 
Remark 2.  
1. The Conviction Problem is completely solvable if and only if 
Algorithm 1 returns “Conviction Problem has a unique 
solution.” In this case, all the good and bad nodes are uniquely 
identified: A[v]=1: v is a good node; A[v]=0: v is a bad node, 
v=1,2,…,n. 
2. For completeness, we remark on the general case that there is 
no a priori information of any nodes – all the nodes are of 
β-type. The trivial solution is to assign value 0 to all of them 
without introducing any contradiction. The question is: are 
there any non-trivial solutions? If the answer is no, there is a 
unique solution – all the nodes are compromised, an 
uninteresting case. 
 This is exactly the same problem as Search 2 of the residual 
graph except that no β-node has an outgoing or incoming edge 
from a node with an assigned value. We can examine t-edges, 
shrink SCCs, and conduct a topological sort of the resulting 
DAG. Examine the bottom node – an SCC. If there is any 
a-edge among any two nodes in the SCC, we can only assign 0 
to all the nodes in the SCC. Otherwise, we can assign 1 to all 
the nodes without introducing any contradiction. In the first 

case, we examine the next node (SCC) above and repeat the 
same process. In the second case, we have found a non-trivial 
solution and the Conviction Problem does not have a unique 
solution – not completely solvable.           [] 

IV. APPLICATION TO P2P NETWORKS 
We apply the general malicious node Conviction Protocol to 

Peer-to-Peer (P2P) networks. P2P network routing follows a 
virtual ring that is formed dynamically from Distributed Hash 
Table (DHT) [A06] and that has also been proposed for general 
routing [C06]. 

A. P2P Network and Virtual Ring 
For P2P applications in a distributed environment, it is more 

difficult to identify malicious peers than in a network with a 
centralized control and management. It is often hard to trace 
back to the original source of malicious behaviors; healthy 
nodes may act involuntarily as accessories of malicious 
behaviors. For instance, for the resource lookup service in a 
P2P network [S01], when a malicious node launches a DDoS 
attack, it injects false information for attracting traffic to a 
victim node by informing the whole network that the victim has 
the needed resources. This false information may have been 
propagated to a large domain when the attack is detected and a 
number of healthy nodes have participated in propagating the 
false information [W02]. 
 We now apply the Conviction Protocol Algorithm 1 to 
virtual rings of P2P networks in a distributed way, and present a 
Virtual Ring Conviction Protocol. 

Since P2P network traffic flows along a virtual ring, each 
node can monitor the behaviors of both its neighbors on the 
ring and detect anomalies. For instance, for the overlay lookup 
service [S02], when a node receives a request for resource it 
transmits the request to a neighboring node whose logical 
identifier is closest to the logical identifier of the resource. A 
malicious node may forward the request to an incorrect (not the 
closest) or non-existing node. This malicious behavior can 
easily be detected by its next hop logical neighbor on the virtual 
ring by checking whether the request is getting “closer” to the 
resource identifier.  

 
B. Malicious Node Conviction 

We now study malicious node Conviction Problem on this 
virtual ring network, using the general Algorithm 1 in Section 
III. Every node in the ring has two neighbors, a clockwise one 
and an anticlockwise one. As a case study, we assume that a 
node can only testify for or accuse its neighboring node on the 
ring. Apparently, the conviction graph is the ring itself with t- 
and a-edges between immediate neighboring nodes. This 
special case has been studied in [L07] informally and with 
strong assumptions. We also assume that a node either accuses 
or testifies for a neighboring node, that is, it cannot claim no 
knowledge of it, after transmitting for and monitoring its 
behaviors. Needless to say, we can model or make assumptions 
differently for different applications and implementation 
environments and the general theory still applies. We now 
proceed with the P2P ring network case study. 



 

As explained, if two neighboring nodes testify for each other, 
they must be of the same type –both are good or bad, and we 
can merge them into one node for the conviction process. 
Consequently, for two neighboring nodes A and B on the ring, 
there are two cases: (1) Both accuse each other: at lease one is 
bad; or (2) Node A accuses B but B testifies for A in return: B 
must be bad but A can be either good or bad. (If B were good, A 
must be good since B testifies for it, but A cannot accuse B – a 
contradiction). Based on the neighboring nodes classification, 
we consider the following three types of rings. We state the 
results, which were obtained in [L07] by lengthy proofs but still 
incomplete. With Algorithm 1 we can easily conclude: 
Case 1. All the edges are of Type (1). It has multiple solutions: 
the trivial solution with all the nodes bad; and any assignment 
with good nodes isolated by bad ones. 
Case 2. All the edges are of Type (2) but may in different 
directions. Consider a-edges only on the ring. All the source 
nodes can have value either 0 (bad) or 1 (good), and all the 
remaining node must have value 0 (bad). 
Case 3. The ring contains both types of edges. We can segment 
the ring to parts with Type (1) or (2) edges and determine 
accordingly. 

Obviously, the Conviction Problem does not have a unique 
solution in general. One would explore practical constraints for 
convicting bad nodes. Various specific assumptions were made 
in [L07] for obtaining convictions with detailed proofs. The 
interested readers are referred to [L07] for details. 

As a case study, we consider the situation that bad nodes are 
isolated, that is, there are no two neighboring bad nodes. This is 
a typical scenario before bad nodes take over the network; they 
are still in isolation in the ring. If we can run Conviction 
Protocol frequently and fast enough, we can eject the malicious 
nodes in a timely manner and maintain a healthy ring. As 
reported in Section V, this is often the case in practice. 

If there are only t-edges, then all the nodes are good. If there 
is at least one a-edge, we examine the edges on the ring of Type 
(1) and (2). If there are only Type (1) edges, due to the bad node 
isolation condition, the only possible cases are: there is an even 
number of nodes and good/bad nodes are interleaved, and in 
this case, there are only two solutions. Note that if there is an 
odd number of nodes on the ring, this is impossible. We now 
consider the last interesting case: there are mixed Type (1) and 
(2) edges. 

For an a-edge in a Type (2) edge, the end node must be bad, 
and by the bad node isolation condition, its two neighbors must 
be good. Starting from a good node, its unexplored neighbor is 
good or bad, depending on it is testified for or accused by the 
good node. If the newly determined neighbor is good, we can 
repeat the process. If it is bad, then the next unexplored 
neighbor must be good by the bad node isolation condition. We 
can repeat the process until all the nodes are uniquely identified: 
convicted or cleared unambiguously. 

As illustrated in [L07], without the bad node isolation 
condition often the Conviction Problem can still have a unique 
solution with other constraints. We will not attempt to exhaust 
all possible cases here; the interested reader may apply the 
general Algorithm 1 and use the similar approaches to 
investigate their application problems with particular 
assumptions and constraints. 

C. Virtual Ring Conviction Protocol 

 Using the Conviction Algorithm 1, we now describe a 
malicious node conviction protocol on a virtual ring from P2P 
networks.  

The protocol utilizes a token for collecting and distributing 
information – accusation or testifying for – for making a 
conviction decision in a distributed way. 

The token contains two fields (bits) for each node on the ring 
to evaluate its two neighbors; it can testify for (assert TURE) or 
accuse (assert FALSE) its clockwise neighbor and 
anticlockwise neighbor according to its diagnosis of the two 
neighbors from monitoring. The token is passed around in one 
direction - clock-wise only (for clarity). The token is passed 
around the ring twice before the conviction process starts: first 
time for collecting information and the second time for 
distributing the collected information. 
Phase 1  (information collection): The token is passed along 
the ring clockwise to collect the accusation/testify-for 
information by all the nodes. A node can only access to its own 
evaluation fields (2 bits in total) during this phase.  
Phase 2 (information distribution and Conviction): In this 
phase, all the fields in the token are read-only to all the nodes: 
visible but unchangeable. The token is passed along the ring for 
a second round to distribute the information. Upon examining 
information in the token, each node runs Conviction Algorithm; 
it either uniquely identifies all the good and bad nodes or claims 
the Conviction Problem is not completely solvable. 

D.  Token Security Management 
In the above two phases, cryptographic techniques are 

needed to guarantee that the token is securely passed along the 
ring without being viewed by an unauthorized node nor altered. 
We can use public key scheme or hash chain for authentication 
as done in secure routing protocols [H03].  

However, if one or more malicious nodes persistently 
scramble the whole token content or – even worse – drop the 
token, then there is not much one can do in a same layer. This 
problem is different than that in the usual token ring protocol 
where one has to deal with the accidental loss or scrambling of 
tokens. One might consider transmitting token in a different 
layer in a secure way with a new protocol or with a cross-layer 
approach. It is an interesting problem yet is not a topic of this 
work. Without further digressing we assume that tokens can be 
passed along the ring without being scrambled or dropped. 

Assume that there are n nodes on the ring (in the network). 
We pass the token all over the ring twice for collecting and 
distributing the information with a cost O(2n). Upon receiving 
the token the second time, each node – good node rather - 
detects bad peers. Since the Conviction Algorithm runs in 
linear time, we have: 
 
Proposition 2. It takes time proportional to the number of nodes 
in a ring network to run the Conviction Protocol to either 
uniquely convict the bad nodes or to conclude the problem is 
not completely solvable.               [] 



 

V. EXPERIMENTS 
We implement the Conviction Protocol Algorithm 1 and 

apply to a ring of a P2P network that is constructed on 
PlanetLab testbed [PL02]. It is a global research network 
consisting of nodes deployed all over the world. We select 50 
nodes located in a wide geographical region, including North 
American, Asia and Europe.  These nodes are organized into a 
virtual ring according to DHT and every node can accuses or 
testifies for its two immediate neighbors.  For the experiments, 
every node makes a random decision on its neighbors. 

A. Performance 
Every five minutes a new token is generated by a random 

node in the ring and then going through the two Phases as in 
Section IV.C. The whole process is repeated for 24 hours and 
we record the time spent for each token to go through the two 
phases – called a round trip for convenience: 
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Fig. 3 Token Round Trip Time 

 
 Figure 3 shows how long it takes for a token to be passed 

around the self-organized ring with 50 PlanetLab nodes; the 
time for a round trip - the two phases - is in a range of 4 to 32 
seconds, and on the average it takes around 8 seconds. The 
token monitoring period is short enough that one can make a 
conviction based on updated information. 

B. Impact of the Number of Nodes 
 For scalability, it is important for the token round trip time to 
have a slow increase with the number of nodes in the ring. In 
figure 4, we observed an approximate linear increase for the 
average token round trip time versus the total number of nodes. 
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Fig. 4 Linear Increase of Token Round Trip Time 

C. Time for Token Security Management 
 To guarantee that a token is securely passed along the ring 
without being viewed by an unauthorized node nor altered 
encryption/decryption or hashing can be used. Specifically, 
when a token is received, a node first decrypts it, obtains 

information in the token, makes its own judgment, inserts its 
statement, and encrypts the whole token before sending it back 
to the ring.  In Section V.B we only measure ring passing time 
without including the token management time, since it depends 
on the node processing power and the cryptographic techniques 
used.  In order to get a rough idea, we collect data of a typical 
setting of machines and crypto-techniques:  
  

Encryption/Decryption AES 
Digital Signature/Verification RSA 
Key Length 128 bit 
Implementation Language C 
CPU Intel(R) 

Xeon(TM)  
CPU 2.66GHz 

Memory Size 2074924 k 
          
 From Fig. 5, there is a linear increase of time from the total 
number of nodes in the ring with the token security 
management.   

Token length may make a difference in time for the security 
management due to the encryption/decryption time. Figure 6 
shows that token entry length has little impact on total time for 
token security management so long as each entry for a node has 
no more than 16 bytes (theoretically we only need two bits).  

We provide a combined view of time for security 
management in Fig. 7 with 100 nodes in the ring. It shows that, 
compared with token round trip time, the time for token 
security management has more impact on overall performance 
of distributed token ring algorithm but still does not cause 
significant delay in processing.  
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Fig. 5 Time for Security Management vs. Number of Nodes 
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Fig. 6 Time for Security Management vs. Token Entry Length 
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Fig. 7 A combined view of Time for Security Management 

D. Malicious Node Isolation Condition – an Practical View  
In Section IV we have shown that the Conviction Protocol 

has a unique solution on the ring with an assumption that 
malicious nodes are isolated, that is, we can convict and eject 
bad nodes in a timely manner when they are still in isolation. Is 
this a reasonable assumption in practice? 
 It depends on the rate/probability a nodes is being 
compromised. There is a variety of ways a node can be 
compromised, such as by attacks on an insecure service running 
on a host. These attacks are often launched by worms and can 
spread quickly [Wa02]. For example, in July 2001, Code Red 
infects 359,000 computers in less than 24 hours [CA01]; and in 
August 2003, MSBlaster infects 120,000 computers in 24 hours 
[B03]. However, as indicated in Fig. 8, the rate of compromise 
is very slow in the initial phase (less than 0.05%) for the first 
few hours.  

 
Fig. 8 Observed Code Red propagation — 
 number of infected hosts (from Caida.org) 

 
Pradip De studied node comprise in wireless sensor 

networks using epidemic theory [De06]. As shown in Fig. 9, 
for a total of 1000 nodes with average node degree of 5, the 
fraction of compromised nodes are smaller than 0.05 within 20 
seconds under different infection probability.  

 

 
Fig. 9 Node Compromise Modeling 

 
Suppose that there are n nodes in the ring and that it takes 

time T to execute the Conviction Protocol (passing the token 
twice along the ring and execute the protocol to reach a 
conviction). Suppose that the probability a node is 
compromised within time T is p. Then the probability that there 
is at least a pair of adjacent bad modes is no more than 2np  . 
From our experiments, n=50, T=8sec. For the case of Code 
Red infection, suppose that the compromise rate is 0.05%  in 
the first hour, we have 6101.13600/8%05.0 −×≈×=p , 

and we have 102 10−≈np . Therefore, the probability that the 
bad node isolation condition is violated is negligible. That is, if 
we constantly monitor the ring network and execute the 
Conviction Protocol, we can identify and eject the malicious 
nodes efficiently and in a timely manner for maintaining a 
healthy network. 

VI. CONCLUSION 
 We have presented a Network Court Protocol for malicious 
node conviction and investigated the necessary and sufficient 
conditions for the problem to be completely solvable – an 
unambiguous conviction. As a case study, we applied the 
general theory to P2P networks. There are a lot of issues and 
topics to be further explored and we briefly mention a few here. 
 
(1) The Conviction Protocol can be either centralized or 
distributed. For instance, in a P2Pvirtual ring, each node can 
run the protocol and make a decision – a completely distributed 
approach. On the other hand, on an arbitrary network, a 
security administrator can collect the accusation and testify-for 
information from the network nodes and run the Court Protocol 
for convicting and ejecting malicious nodes – a centralized 
approach.  
(2) For clarify, we present the protocol and algorithm based on 
information from all the nodes of a whole network. It is not 
necessary. One can run the Court Protocol based on the 
information available; there is no need to obtain information of 
the whole network; one can easily check that the modeling and 
algorithm still apply. 
(3) We have been focused on whether a Conviction Problem is 
completely solvable, that is, whether each involved node can be 
uniquely identified as a good or bad one. So long as there is a 
node that cannot be uniquely determined, we claim that the 
problem is not completely solvable. As one can clearly see in 



 

Algorithm 1 that after Search 1, a set of nodes are uniquely 
identified and that only the nodes in the residual graph may not 
be determined. The result of having uniquely identified a set of 
nodes provides a partial solution of the Conviction Problem – 
they are identified unambiguously, and we can eject the bad 
nodes from this process. 
(4) The Court Protocol and Conviction Algorithm 1 are 
network topology independent; the accusation and testify-for 
information may or may not be on the neighbors of the acting 
nodes. 
(5) The original Court Conviction Problem is formulated as a 
general problem in distributed computing and the network 
malicious node detection and P2P ring protocol are special 
applications. It may have applications in other areas. 
(6) There is a variety of variations and generalizations of the 
Conviction Problem. For instance, the Court Conviction 
Protocol is based on Assumption 1, that is, good nodes are 
trustworthy and bad nodes can be as malicious as possible. In 
different application environments, the bad nodes can be more 
restrictive in their malicious behaviors or the good nodes might 
not be absolutely trustworthy – both assumptions can be 
relaxed. This will lead to a host of new problems for further 
investigation. 
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