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Abstract

Delaunay meshes are used in various applications such as finite element analysis, com-
puter graphics rendering, geometric modeling, and shape analysis. As the applications vary,
so do the domains to be meshed. Although meshing of geometric domains with Delaunay
simplices have been around for a while, provable techniques to mesh various types of three
dimensional domains have been developed only recently. We devote this article to presenting
these techniques. We survey various related results and detail a few core algorithms that
have provable guarantees and are amenable to practical implementation. Delaunay refine-
ment, a paradigm originally developed for guaranteeing shape quality of mesh elements, is a
common thread in these algorithms. We finish the article by listing a set of open questions.
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1 Introduction

The need for meshing geometric domains in three dimensions is ubiquitous in scientific studies
and engineering applications. Although a vast literature exists on mesh generation, there are
not many results that provide theoretical guarantees about output. In unstructured meshing
with triangles and tetrahedra, mainly two approaches are known that come with these guar-
antees; one is octree based [5, 45] and the other is Delaunay based [9, 32]. In this survey we
focus on Delaunay based methods. The literature on Delaunay based meshing is huge and it
is not our intention to survey all existing algorithms on the subject. We recommend other
literature [6, 12, 46, 49] as a complement to ours. We focus on various provable techniques
that enable meshing of different types of geometric domains in three dimensions. As a common
theme we illustrate how an elegant algorithmic paradigm called Delaunay refinement can be
adapted to the variety of domains.

Issues: There are two major issues in Delaunay mesh generation of geometric domains: (i)
conformation and (ii) element quality.

If the input consists of linear elements such as segments, planar facets, and polyhedra,
conformation means that each of these input elements appears in the output as a union of
Delaunay simplices. When the input is curved, one cannot impose this condition since a curved
element cannot be decomposed into finitely many linear elements. Therefore, in this case we
require that the underlying space of the output mesh have the same topology as that of the
input. This means, for example, a meshing of a sphere should be a triangulated sphere and
not a triangulated torus. Since topology does not capture the geometry of a shape, it is also
required that the geometry of the input be approximated well.

The shapes of the elements influence the approximation and numerical errors in finite ele-
ment methods. The quality of the shape is determined by various measures. For a triangle, the
minimum angle is a good measure of its quality. For a tetrahedron, the minimum or maximum
over all face angles, dihedral angles, and solid angles is a good measure of its quality. Actually,
the requirement on quality of simplices depends on the application. See Knupp [41] for various
measures of quality and also the article by Shewchuk [53] for implications of different measures.
In this article, we will use the well known radius-edge ratio measure that enjoys many nice
properties [44] and suits Delaunay refinement techniques very well. For a triangle, a bound on
radius-edge ratio imposes both an upper and a lower bound on its angles and thus forces it to
be well shaped. For a tetrahedron an upper bound on radius-edge ratio does put bounds on
face angles but fails to do the same for dihedral and solid angles. Indeed, an upper bound on
radius-edge ratio eliminates all types of bad tetrahedra except one, the notorious slivers [15].
Slivers are tetrahedra that reside very close to a diametric plane of its circumscribing ball and
have all four vertices more or less equi-spaced. See Figure 1.

Background: Delaunay refinement was pioneered by Chew [24] who applied it to meshing a
point set in two dimensions with a quality guarantee for triangles. Chew showed that, by
inserting Voronoi vertices which are also circumcenters of Delaunay triangles, one can guarantee
a minimum angle of 30◦. In a novel extension Ruppert [50] showed how the Delaunay refinement
strategy can be adapted to conform to line segments and points in the plane. His analysis showed
that the Delaunay refinement produces a mesh that has a size within constant factor of the
optimal.

In three dimensions Delaunay refinement was first applied to mesh convex polyhedra [29].
Shewchuk [51] showed how to apply it to polyhedral complexes. He made novel observations to
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Figure 1: Tetrahedra with poor radius-edge ratio, taxonomy borrowed from [15]. All except
the sliver have bad radius-edge ratio.

extend the analysis of Ruppert to this case. Although this is the first Delaunay refinement algo-
rithm for a non-trivial domain in three dimensions, the algorithm could not handle polyhedral
complexes with input angles smaller than π

2 . Acute angles were known to be a menace for De-
launay refinement in two dimensions [50, 52]. Naturally they posed a harder challenge in three
dimensions. Shewchuk [52] proposed a variant called the constrained Delaunay triangulation to
deal with acute angles. However, refinements with constrained Delaunay triangulations do not
produce Delaunay meshes. Shi and Gärtner [54] report that when constrained Delaunay tri-
angulation is used as a preprocessor, Delaunay refinement can handle acute angles in practice.
Cohen-Steiner, de Verdiére, and Yvinec [27] proposed a meshing algorithm with Delaunay sim-
plices for polyhedral complexes allowing acute input angles. This algorithm only addressed the
conformity issue but not the quality issue. Cheng and Poon [21] and Pav and Walkington [48]
proposed algorithms that addressed both issues. Unfortunately, these algorithms are not very
practical. Cheng, Dey, Ramos, and Ray [22] designed a Delaunay refinement algorithm for
polyhedra with possibly acute angles which could be implemented in practice. They guarantee
that all simplices except the ones near acute angles have bounded radius-edge ratio. A novelty
of the algorithm is that it does not explicitly compute the intersection of a set of protecting
balls with the polyhedron which was a bottleneck in Cheng and Poon [21]. We describe the
algorithms of Shewchuk [51] and Cheng et al. [22] in section 2.

For polyhedral domains, topology preservation is not an issue since the output mesh can
conform to the input exactly. For curved domains, this is not the case. Capturing the topology
of the input is a foremost concern for them. Chew was the first to put forward a furthest point
insertion strategy for meshing surfaces [25]. However, his algorithm lacked rigorous mathemat-
ical analysis and theoretical guarantees.

Delaunay refinement techniques for curved domains advanced considerably after Amenta
and Bern [2] introduced local feature size based sampling theory for smooth surfaces in the
context of surface reconstruction. Cheng, Dey, Edelsbrunner, and Sullivan [19] combined this
sampling theory with the furthest point strategy of Chew to design a meshing algorithm for
a specific type of smooth surfaces called skin surfaces. They used the fact that the Delaunay
triangulation of a dense sample of a smooth surface contains a subcomplex called the restricted
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Delaunay triangulation whose underlying space is homeomorphic to the sampled surface. Bois-
sonnat and Oudot [11] showed how the furthest point insertion strategy can be applied to
any C2-smooth surface. This algorithm assumes that local feature sizes can be computed at
any point required by the algorithm. Computing local feature sizes is hard in general. They
suggested how to bypass the exact computation in practice. Oudot, Rineau, and Yvinec [47]
extended this algorithm to volumes enclosed by a smooth surface. Cheng, Dey, Ramos, and
Ray [23] came up with a different algorithm for surfaces that does not require any local feature
size computations. Instead, it checks for violations of a topological property ensuring homeo-
morphism between input and output. We describe the algorithms of Boissonnat and Oudot [11]
and the algorithm of Cheng et al. [23] in section 3.

Piecewise smooth surfaces were the next difficult class of domains on which Delaunay re-
finement was applied. Dey, Li, and Ray applied the strategy of [23] on piecewise linear surfaces
which are assumed to approximate a smooth surface closely. Boissonnat and Oudot showed
that their algorithm for smooth surface can work for a class of piecewise smooth surface called
Lipschitz surfaces [11]. Unfortunately, the angles subtended by tangents of the surface patches
meeting at the non-smooth regions are required to be close to π. The menace of small angles in
Delaunay refinement for polyhedral case also appears in the piecewise smooth case. Cheng, Dey,
and Ramos [18] presented an algorithm that can take piecewise smooth surfaces with arbitrary
input angles. In fact, the algorithm can handle a very large class of domains called piecewise
smooth complex, or PSC in short. This class includes polyhedral complexes, smooth surfaces,
piecewise smooth surfaces, volumes enclosed by them, and non-manifolds. Unfortunately, be-
cause of some normal variation computations the algorithm is very hard to implement. Cheng,
Dey, and Levine [16] modified the algorithm to make it amenable for implementation. We
describe this algorithm in section 4.

1.1 Definitions

For convenience we borrow some definitions and notations from topology. All topological spaces
in this paper are topological subspaces of some Euclidean space R

d. We need maps between
topological spaces that identify them as topologically equivalent. A continuous map h: T1 → T2

is a homeomorphism between topological spaces T1 and T2 if h is bijective and has a continuous
inverse. The second condition can be dropped if T1 and T2 are compact since any continu-
ous bijective map between compact spaces has continuous inverse. Two spaces T1 and T2 are
homeomorphic if there is a homeomorphism between them. A stronger condition than home-
omorphism is captured by isotopy. Let T1 and T2 be embedded in R

d. A continuous map
F : T1 × [0, 1] → R

d is an isotopy between T1 and T2 if F (·, 0) is the identity, F (T1, 1) = T2,
and F (·, t) is a homeomorphism onto its image for all t ∈ [0, 1]. We say two spaces are isotopic
if they have an isotopy between them. In words, isotopy means that one space can be continu-
ously deformed into the other while maintaining homeomorphism all the time. Isotopic spaces
are homeomorphic but the converse is not necessarily true. For example, a standard torus and
a knotted torus in R

3 are not isotopic though they are homeomorphic.
A special class of topological spaces is manifolds. A k-manifold is a topological space

where each point has a neighborhood homeomorphic to R
k or halfspace H

k. The points with
a halfspace as neighborhood constitute the boundary of the manifold. The boundary of a
topological space T is denoted bd T.

Let d(X, Y ) denote the Euclidean distance between two compact sets X, Y ⊆ R
d. For

c ∈ R
d and r ∈ R, a geometric k-ball B(c, r) in R

d is the set {x} on a k-dimensional linear
subspace of R

d where d(x, c) 6 r. A topological k-ball is a topological subspace of R
d which
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is homeomorphic to a geometric k-ball. A k-simplex in R
d is the convex hull of a set of k + 1

linearly independent points. A simplicial complex is a collection of simplices where (i) a simplex
is in the collection only if sub-simplices in its boundary are in the collection and (ii) any two
simplices either do not intersect or intersect in a lower dimensional simplex which is also in the
collection. A cell complex has the same property except that each element in the collection is
a topological ball. Similarly, one may define a manifold complex with elements as manifolds.
We say two elements in a complex are incident if they are the same or one is in the boundary
of the other. They are adjacent if they have a non-empty intersection. For a complex C we
denote its underlying space, that is, point-wise union of its elements as |C|. The triangulation
of a complex C is a simplicial complex K where |K| is homeomorphic to |C|.

For any k-simplex t, let c(t) and r(t) denote the center and radius of the k-ball whose
boundary contains the vertices of t. We often refer to c(t) and r(t) as the circumcenter and

circumradius of t respectively. The radius-edge ratio ρ(t) is r(t)
`(t) where `(t) is the length of the

smallest edge in t. For triangles, an upper bound on ρ puts a lower bound on its minimum
angle since ρ(t) = 1

2 sin θ
where θ is the minimum angle in t. We say a triangle or tetrahedron t

is ρ-skinny if ρ(t) 6 ρ.
We specialize some of the definitions to Euclidean three space since it is the ambient space

for domains considered in this article. Let B(c, r) denote a geometric 3-ball in R
3. A circumball

of a simplex t ⊂ R
3 is a 3-ball with all vertices of t on its boundary. Notice that a segment

or a triangle has infintely many circumballs. A tetrahedron, on the other hand, has a single
circumball. The smallest circumball of a simplex t is called its diametric ball. The diametric
ball of a segment (edge) e is B(c(e), r(e)) where c(e) is the midpoint of e. The diametric ball
of a triangle t is B(c(t), r(t)) where c(t) and r(t) are the circumcenter and circumradius of t
respectively. The diametric ball of a tetrahedron is its circumball.

We will use two very special data structures defined on a set of points V ⊂ R
3. Define a

Voronoi cell
Vp = {x ∈ R

3 | d(x, p) 6 d(x, q) ∀q ∈ V}.
A Voronoi k-face is the intersection of (4 − k) Voronoi cells. We refer to a Voronoi 0-,1-,2-,
and 3-face as Voronoi vertex, Voronoi edge, Voronoi facet, and Voronoi cell respectively. The
Voronoi diagram Vor V is the collection of all Voronoi faces. It is a cell complex. The dual
complex of Vor V is the Delaunay triangulation of V denoted DelV. The dual of a Voronoi
k-face is a Delaunay (3 − k)-simplex, that is, a Voronoi vertex, Voronoi edge, Voronoi facet,
and Voronoi cell are dual to a Delaunay tetrahedron, Delaunay triangle, Delaunay edge, and
Delaunay vertex respectively. An important property of Delaunay simplices is that they have a
circumball which is empty, that is, their interior does not contain any of the vertices of V. See
Edelsbrunner [32] for more details.

1.2 Generic strategy

Given a domain D ⊂ R
3, the generic strategy of the Delaunay refinement can be stated as

follows:

1. Initialize a vertex set V and compute DelV.

2. If a property is not satisfied, insert a point c from the domain |D| into V, update
Vor V and/or Del V, and repeat step 2.

3. Return the computed mesh.

The initialization step varies from domain to domain. In polyhedral case, the vertices of the
input domain are taken as the initial vertex set. For smooth domains, a set of carefully chosen
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points from the domain is taken as the initial vertex set. The main part of the algorithm is
run by step 2. The property to be satisfied varies according to the desired output. It includes
conformity to the domain, capturing topology and/or geometry of the domain, or guaranteeing
shape quality of the elements. As long as the algorithm terminates, it is guaranteed that
the desired properties are satisfied. Therefore, the main burdens become (i) to choose an
appropriate property to be satisfied, (ii) to choose an appropriate point to be inserted, and (iii)
to prove that the proposed algorithm terminate.

A dominant approach to prove the termination of the above refinement procedure is to
prove that each point p is inserted in a compact subset of R

3 where a positive lower bound
is maintained on the distance of p to every other points inserted before and after p. The
termination follows from the following fact.

Fact 1.1 Let C ⊂ R be compact. Let V ⊂ C be a discrete point set where d(u, v) for any two
distinct points u, v is at least a constant λ > 0. Then, V is finite.

Usually the lower bound λ on distances is proved using local feature sizes of the input. For
polyhedral domains, it is defined as the distance between two non-adjacent input elements.
For smooth cases, it is defined as the distance of a point to the medial axis of the input. We
define these feature sizes precisely in the appropriate sections. The argument for termination
establishes that each inserted point maintains an inter-point distance of at least some constant
times the local feature size at that point. We do not provide the proofs of the results though
we encourage the reader to consult the relevant papers for details.

2 Polyhedral domains

First we consider polyhedral domains. These domains are special in that they consist of planar
elements, see Figure 2. A polyhedral k-cell is a k-manifold in R

3 whose boundary is a piecewise
linear (k − 1)-manifold. We call a polyhedral 0-,1-,2-, and 3-cell as a vertex, edge, facet, and
polyhedron respectively. A polyhedral complex, PC in short, is a collection of polyhedral cells,
any two of which either do not intersect or intersect in a lower dimensional polyhedral cell in
the complex. An input angle in a PC is any angle formed by two adjacent elements. Let σ
be the lowest dimensional element containing a point x in a PC. The local feature size f(x) is
defined as the minimum distance of x to the elements non-adjacent to σ.

Figure 2: Example polyhedral surface and its Delaunay mesh. Input edges and facets are
conformed by Delaunay simplices.
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2.1 No acute angle

In this section we describe an algorithm by Shewchuk [51] for polyhedral complexes without
any acute input angle. This algorithm is an extension of the algorithm of Ruppert [50] who
applied Delaunay refinement for meshing planar straight line graphs in two dimensions. Let P

denote the input PC. Just as in two dimensions, this algorithm requires that no input angle be
acute.

The refinement algorithm proceeds hierarchically in the dimensions of the input elements.
First, it inserts points to conform to the input edges, then to the input facets, and finally to
improve the quality of the triangles and tetrahedra. The algorithm maintains a vertex set V

and its Delaunay triangulation DelV which is updated with each insertion. In the subroutines
described below, V and Del V are assumed to be globally accessible.

2.1.1 Conformity

The input edges are subdivided into subsegments by inserting points into them. We want
each of the subsegments to appear in the Delaunay triangulation of the current vertex set V.
Actually, the algorithm imposes a stronger condition; the diametric ball of each subsegment
should be empty of vertices in V. Obviously, such a segment must appear as a Delaunay edge.
If the diametric ball of any subsegment e contains a point, say p, we say e is encroached by
p, or p encroaches e. The refinement algorithm goes on inserting the midpoint of encroached
subsegments using SplitEdge.

SplitEdge(e)

Insert the midpoint of e in V and update DelV.

A set of points on an edge provides a unique subdivision of the edge into subsegments.
However, the same is not true for facets. For facets one has to decide on a triangulation of the
original facet by points inserted in them. Let F be any such input facet and V be the set of
vertices in F . We consider the two dimensional Delaunay triangulation of V in the plane of F .
Since the algorithm considers the facets only after each input edge is recovered, the boundary
of F appears as a union of subsegments in this triangulation. Consequently, F is subdivided
into Delaunay triangles each of which is called a subfacet of F . The subfacets of F may not
appear in the three dimensional Delaunay triangulation of the current vertex set. Again, the
algorithm enforces that the diametric ball of each subfacet be empty. Otherwise, a point is
inserted. Obviously, if the process terminates, diametric balls of all subfacets become empty
and hence they appear in the three dimensional Delaunay triangulation. If the interior of a
diametric ball of any subfacet h ⊂ F contains a point p ∈ V, we say h is encroached by p. Notice
that the definition of encroachment for subfacets is slightly different from that for subsegments,
see Figure 3. The point to be inserted when a subfacet h is encroached is determined as follows.
This point is the circumcenter c of h if c does not encroach any subsegment. If c encroaches a
subsegment e, it may be too close to e, causing unnecessary splitting of e thereafter. To prevent
this, instead of c, the midpoint of any subsegment encroached by c is inserted.

SplitFacet(h)

(i) Compute the circumcenter c of h.

(ii) If c encroaches a subsegment e, call SplitEdge(e). Otherwise,
insert c into V and update DelV.
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Figure 3: In Figure (a), p and q encroach the subsegment. In Figure (b), p encroaches the
subfacet but q does not.

2.1.2 Quality enforcement

After conforming to the input edges and facets, the refinement algorithm focuses on improving
the quality of the simplices. For an input parameter ρ1 >

√
2, if there is a ρ1-skinny triangle,

it splits it using SplitFacet. Similarly, for an input parameter ρ2 > 2, if there is a ρ2-skinny
tetrahedron in a polyhedron of P, the tetrahedron is split as follows. The algorithm inserts
the circumcenter c of this tetrahedron if this circumcenter does not encroach any subfacet.
Otherwise, it calls SplitFacet on a subfacet encroached by c.

SplitTet(t)

1. Compute the circumcenter c of t.

2. If c encroaches a subsegment e, call SplitEdge(e) and return.

3. If c encroaches a subfacet h, call SplitFacet(h) and return.

4. Insert c in V and update DelV.

2.1.3 Algorithm

We enumerate the steps of the entire algorithm below.

DelPC(P,ρ1,ρ2)

1. Initialize V to contain the vertices in P and compute DelV.

2. Find a subsegment e encroached by a vertex in V. If found, call SplitEdge(e)
and repeat step 2.

3. Find a subfacet h encroached by a vertex in V. If found, call SplitFacet(h)
and go to step 2.

4. Find a subfacet h that has ρ(h) > ρ1. If found, call SplitFacet(h) and go to
step 2.

5. Find a tetrahedron t inside a polyhedron in P so that ρ(t) > ρ2. If found, call
SplitTet(t) and go to step 2.

6. Return simplices in Del V whose union is P.
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One may use a bounding box enclosing P and then produce a Delaunay mesh of the bounding
box which conforms to the input P. Then, one does not need step 4 since it improves the quality
of all tetrahedra inside the bounding box and hence also improves the quality of the triangles.
Here we do not use such a bounding box and thus improve the triangle qualities explicitly.
Nevertheless, the elegant analysis of Shewchuk extends easily to show that the above algorithm
maintains a lower bound on inter-point distances. Specifically, it inserts a point p with a distance
of at least λf(p) distance from all other existing points where λ > 0 is a constant [51]. This
implies that the algorithm can insert only finitely many points if it inserts them in a bounded
domain. We claim that all inserted points lie in the input domain P which is bounded. All points
inserted by SplitEdge lie in some input edge. The following result prohibits circumcenters of
triangles and tetrahedra to go outside P.

Lemma 2.1 ([51]) If no subsegment is encroached, the circumcenter of a Delaunay triangle
in a facet F lies in F . If no subsegment and subfacet of a polyhedron P ∈ P is encroached, the
circumcenter of a Delaunay tetrahedron in P lies in P .

Thus, we have the argument that DelPC terminates. Obviously, at termination, the output
mesh conforms to P and each triangle and tetrahedron has bounded radius-edge ratio.

Theorem 2.1 ([51]) For a PC P with no acute angle, DelPC produces a Delaunay mesh of
P where each simplex has a bounded radius-edge ratio.

2.2 Allowing acute angles

It is crucial for DelPC that the input have no acute angle. Indeed, it may not terminate if
input angles are allowed to be acute. Figure 4 shows an example why an acute input angle may
cause incessant point insertion near it. In this section we present an algorithm DelPoly due
to Cheng et al. [22] that can cope with acute input angles when the input is a polyhedron. The
vertices and edges subtending acute angles are called sharp vertices and edges respectively.

d b

c

a

Figure 4: Indefinite splitting of encroached subsegments.

There are three main ideas that enable DelPoly to cope with acute angles. First, in the
conforming phase the vertices with an acute input angle are protected with balls called vertex
balls. No points are allowed to be inserted inside the vertex balls. This prohibits incessant point
insertions near sharp vertices. Second, we do not require the diametric balls of subfacets to be
empty. Instead we relax the condition by only requiring that the subfacets appear in the three
dimensional Delaunay triangulation. This prohibits inserted points ever approaching each other
near sharp edges. Third, in the quality enforcing phase, we do not allow circumcenters of bad
triangles or tetrahedra to be inserted near sharp vertices and sharp edges. For this purpose,
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we take the diametric balls of the subsegments on sharp edges after the conforming phase and
double them. These balls called the edge balls protect sharp edges. Any triangle or tetrahedron
whose radius-edge ratio violates the quality criterion is not allowed to insert its circumcenter
inside any vertex or edge ball. The result of this constraint is that some of the poorly shaped
elements remain in the final mesh. However, they lie near sharp vertices or edges. After all,
one cannot avoid having poorly shaped elements near these regions.

Since we do not ensure that the diametric balls of the subfacets are empty, we cannot use
Lemma 2.1 to guarantee that the circumcenters of tetrahedra lie inside P. However, termination
requires that the points be inserted in a bounded domain. To circumvent the problem we use
a bounding box B around P. The box B is chosen large enough so that it does not affect the
local feature size of P. The facets of the bounding box are meshed with subfacets that are not
encroached. The input P includes the original polyhedron along with the vertices, edges, facets,
and the volume of B. Once this modified P is meshed, one can extract the mesh triangulating
original input polyhedron easily.

We describe the subroutines used by DelPoly in Sections 2.2.1–2.2.3 and then give the
algorithm in Section 2.2.4.

2.2.1 Sharp vertex protection

First, we protect the sharp vertices with vertex balls. Points are not allowed to be inserted
inside these vertex balls at later stages. This means that certain skinny tetrahedra are not
removed since their removal requires insertions of vertices inside these vertex balls. Because
of this constraint we compute the feature sizes at the sharp vertices explicitly and use it to
compute the vertex balls. This allows one to argue that the skinny triangles and tetrahedra
that we left out lie near sharp vertices and edges of the input.

For each sharp vertex u, we compute its distance from all elements of P which are not
incident to u. This distance is the local feature size f(u) at u. A brute-force computation
of the feature size takes O(n) time per vertex where n is the number of elements in P. This
brute-force computation is not prohibitive in practice since it is performed only once and that
too before splitting any elements of the input P.

We put a vertex ball Bu = B(u, f(u)/4). The points where the boundary of Bu intersects
edges of P are inserted into the vertex set V. A subset of Bu ∩ P is protected using a method
similar to Cohen-Steiner, de Verdière, and Yvinec [27]. At any generic step of the algorithm,
V contains vertices on the arc where a facet F incident to u intersects the boundary of Bu.
The segments connecting consecutive points on such an arc form shield subsegments. Let ab
be a shield subsegment. If the angle of the circular sector aub on F is at least π or ab is
encroached, it is split by the following method called SOS (split on sphere) according to Cohen-
Steiner et al. [27] (a more general version of this strategy is described in [8]). If the angle of
the sector aub on F is at least π, we insert the midpoint x on the arc between a and b on the
boundary of Bu ∩ F . The subsegment ab is replaced with two shield subsegments ax and bx;
see Figure 5(a). This type of splitting happens at most once for u, in which case a and b lie on
the boundary edges of F incident to u. If the angle of the sector aub is less than π and ab is
encroached, we insert the midpoint x on the shorter arc between a and b on the boundary of
Bu. The subsegment ab is replaced with two shield subsegments ax and bx; see Figure 5(b).
The protection procedure described above has to be modified slightly to take care of adjacent
shield subsegments making acute angles between them.

When no shield subsegment corresponds to a sector at u with angle π or more, the shield
subsegments around u create a set of shield subfacets incident to u. Figure 5(c) shows an
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Figure 5: (a) and (b) show two shield subsegments and their splittings, (c) shows a shield
subfacet.

example. The diametric ball of a shield subfacet lies in the union of the vertex ball Bu and
the diametric ball of the corresponding shield subsegment. Since Bu is kept empty throughout
the algorithm, it is sufficient to keep the diametric balls of shield subsegments empty to ensure
that shield subfacets appear in DelV.

In Initialize, we only insert the points where the incident edges of u intersects the boundary
of Bu, and split shield subsegments that correspond to sectors with angles π or more. The
encroachment of shield subsegments is handled in the conforming phase.

2.2.2 Conformity

Edges are split using a subroutine SplitEdge, which recovers the edges of P as union of
Delaunay edges. SplitEdge is called to split any subsegment (sharp, non-sharp, or shield)
that is encroached until no such segment exists.

SplitEdge(e)

If e is a shield subsegment, split it with SOS else insert the midpoint
of e in V and update DelV.

Notice that any point inserted by SplitEdge cannot lie in the vertex balls of sharp vertices.
When SplitEdge terminates, each edge of P appears as a union of Delaunay edges.

Facets are split with subroutine SplitFacet. For the subfacets on the boundary of the
bounding box, the main algorithm checks if their diametric balls are empty. For all other
subfacets it checks only that the subfacets appear in DelV. It can be shown that such a
condition can be satisfied for a polyhedron after sufficient but finite amount of splitting.

SplitFacet(h)

1. Compute the circumcenter c of h.

2. Let F be the facet containing h. If c does not encroach any subseg-
ment, insert c into V and update Del V. Otherwise, reject c and

(a) pick a subsegment g encroached by c with preference for those
in bd F or on F (shield subsegment), and

(b) call SplitEdge(g).
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In the conforming phase, after all the edges and facets are recovered, further splittings are
done using the subroutine SplitBall to reduce the diametric balls of the sharp subsegments
roughly to the order of local feature sizes. In order to avoid the computation of local feature
sizes, this is achieved in a roundabout way. SplitBall splits any subfacet or subsegment h
that is encroached by the midpoint of a sharp subsegment s provided that h and s are contained
in disjoint elements of P. The intuition is that some of the new vertices inserted to split these
subfacets or subsegments will encroach s and cause s to split. We claim that, at the end of
SplitBall, all diametric balls of sharp subsegments become small.

SplitBall(s)

If the midpoint of s encroaches a subsegment or subfacet h, where
h and s are contained in disjoint elements of P, split h accordingly
using SplitEdge(h) or SplitFacet(h).

At the end of the conforming phase, for each sharp subsegment, we double the radius of its
diametric ball with the center fixed and call them edge balls. The edge balls and the vertex
balls constitute the entire set of protecting balls for the quality enforcing phase. Although sharp
subsegments may be subdivided further in this phase, the protecting balls always refer to those
computed at the end of the conforming phase.

Lemma 2.2 ([22]) Any protecting ball B(x, r) is either contained in a ball centering a sharp
vertex v with radius 5

4f(v) or has r 6 2
√

2f(x).

2.2.3 Quality enforcement

As in usual Delaunay refinement we attempt to insert the circumcenters of the skinny triangles
and tetrahedra in this phase. For a skinny triangle if the center does not lie in any protecting
balls, we call SplitFacet to split this triangle. For a skinny tetrahedron whose circumcenter
does not lie in any protecting ball, we call a subroutine SplitTet which is exactly same as the
one described in section 2.1.2.

Now we enumerate all steps of DelPoly which takes a piecewise linear 2- or 3-manifold P

as input. The parameters ρ1 > 1 and ρ2 > 2
√

2/(1 − tan(π/8)) are constants chosen a priori
which regulate the quality of the elements in the output mesh.

2.2.4 Algorithm

DelPoly(P,ρ1,ρ2)

1. Initialize V to be the set of vertices of P and the bounding box B. Compute the
vertex balls. Insert the intersections between their boundaries and the edges of
P into V. If any shield subsegment forms a sector with angle π or more, split
it with SOS. Compute DelV.

2. If there is an encroached subsegment e, call SplitEdge(e) and repeat step 2.

3. If there is a subfacet h ⊂B that is encroached, or if h 6⊂B and h does not
appear in Del V, call SplitFacet(h) and go to step 2.

4. If edge balls are already computed, go to step 5. For each sharp subsegment s
call SplitBall(s). Compute the edge balls by doubling the diametric balls of
the sharp segments and go to step 2.
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5. Find a triangle t with ρ(t) > ρ1 and with its circumcenter c lying outside
protecting balls. If found, call SplitFacet(t) and go to step 2.

6. Find a tetrahedron t with ρ(t) > ρ2 and with its circumcenter z lying outside
protecting balls. If found, call SplitTet(t) and go to step 2.

7. Return the subcomplex of DelV that cover the original input polyhedron.

DelPoly can be modified to improve the threshold for ρ2 to 2+ ε for any fixed ε > 0. This
worsens the output angles at the sharp vertices though. See [22] for more details.

We left out the details of the implementation of steps such as checking whether the cir-
cumcenters of ρ1-skinny triangles and ρ2-skinny tetrahedra lie inside a protecting ball. There
is a lot of room for experimentation and variations. The main focus should be to make the
computations local.

Figure 6: A polyhedral volume is meshed with Qualmesh software [58] that implements
DelPoly. Middle: some skinny tetrahedra could not be removed near sharp vertices. Right:
the surface mesh.

To check whether the circumcenter c of a skinny triangle or tetrahedron lies inside a pro-
tecting ball, first find the tetrahedron t that contains c by a walk. If the protecting balls that
intersect t are recorded at t, one can easily determine the protecting balls containing c. The
initialization of such information can be done at the end of conformity phase by walking from
sharp subsegments to all tetrahedra intersected by protecting balls. Afterwards, with each up-
date of the Delaunay triangulation, the information can be updated with local computations
only. An example of the output of DelPoly with local computations is shown in Figure 6.

Theorem 2.2 ([22]) Given a polyhedral surface or a polyhedraon P ⊂ R
3, DelPoly produces

a Delaunay mesh of P where each simplex has a bounded radius-edge ratio except the ones whose
vertices lie within 5

√
2f(x) distance of a sharp point x ∈ P.

3 Smooth domains

In this section we consider domains that are smooth such as smooth surfaces and volumes
enclosed by them. We require that the surfaces be at least C2-smooth, compact, and have no
boundary, see Figure 7. For such surfaces a sampling theory has been developed recently in the
context of surface reconstruction [2, 3, 28]. This sampling theory is used to argue about the
sampling and meshing of such surfaces with Delaunay refinement.
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Figure 7: Delaunay mesh of a smooth knotted torus. The algorithms in section 3.1 and in
section 3.2 can produce such meshes. They have been implemented in CGAL [56] and the
SurfRemesh software [59] respectively.

Let Σ ⊂ R
3 be a smooth, closed surface, that is, Σ is compact, C2-smooth and has no

boundary. As with polyhedral domains, we need a local feature size definition for smooth
domains. The medial axis M(Σ) of Σ is defined as the closure of the set of points x ∈ R

3

so that d(x, Σ) is realized by two or more points in Σ. The local feature size f(x) at a point
x ∈ Σ is defined to be equal to d(x, M). Amenta and Bern introduced this notion of local
feature size in the context of surface reconstruction [2]. The local feature size captures the
information of how complicated the surface is locally. Naturally, this local feature size can be
used to measure how well a set of points samples Σ. A set of points V ⊂ Σ is called an ε-sample
of Σ if B(x, εf(x)) ∩ V is non-empty for any x ∈ Σ.

It turns out that if V is an ε-sample of Σ for a sufficiently small value of ε, a subcomplex of the
Delaunay triangulation of this sample captures the topology of Σ. We define this subcomplex
in generality and then specialize it to Σ.

Let V be any point set in R
3. Let Vξ denote the dual Voronoi face of a Delaunay simplex ξ in

DelV. The restricted Voronoi face of Vξ with respect to X ⊂ R
3 is the intersection Vξ|X = Vξ∩X.

The restricted Voronoi diagram and restricted Delaunay triangulation of V with respect to X

are

Vor V|X = {Vξ|X | Vξ|X 6= ∅} and Del V|X = {ξ | Vξ|X 6= ∅} respectively .

In words, DelV|X consists of those Delaunay simplices in DelV whose dual Voronoi face inter-
sects X. We call these simplices restricted.

Now consider a sample V on the surface Σ. The restricted Delaunay triangulation of V with
respect to Σ is DelV|Σ. It is known that, if V is an ε-sample of Σ for ε 6 0.2, then DelV|Σ has
its underlying space homeomorphic to Σ [2, 28]. To use this result one requires computing an
ε-sample of Σ. A computation of local feature size or its approximation seems to be necessary
to determine if a sample is an ε-sample for a pre-determined ε. Even if one is allowed to assume
the availability of the local feature size at any given point, it is not immediately obvious how to
place points on Σ so that they become ε-sample for a given ε > 0. Boissonnat and Oudot [11]
showed that the furthest point strategy of Chew [25] can place the points appropriately if local
feature sizes are available. We describe this algorithm in section 3.1.

When local feature sizes are not known, we cannot use the method of Boissonnat and
Oudot [11]. Instead, we fall back upon a different strategy to drive the Delaunay refinement. A
result of Edelsbrunner and Shah [36] says that if Voronoi faces intersect Σ in a closed topological
ball of appropriate dimension, then the underlying space of the restricted Delaunay triangula-
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tion becomes homeomorphic to Σ. Therefore, a Delaunay refinement driven by the violation
of the Edelsbrunner-Shah conditions provides a viable strategy for meshing with topological
guarantees. This strategy is followed by Cheng, Dey, Ramos, and Ray [22]. We describe this
algorithm in section 3.2.

3.1 Known feature size

Let V be a sample of a smooth, closed surface Σ. Consider the complex consisting of restricted
triangles and their vertices and edges. It is a subcomplex of DelV|Σ, namely,

Skl2 V|Σ = {t ∈ Del V|Σ | t is incident to a restricted triangle.}

Notice that the above definition uses the notion that a simplex is incident to itself. The
difference between Skl2 V|Σ and Del V|Σ is that the former one does not include restricted edges
and vertices that are not incident to any restricted triangles. Since meshing of Σ should not
include such hanging edges and isolated vertices, one can afford to not consider them.

The algorithm of Boissonnat and Oudot [11] is based on the following observations. For
a restricted triangle t ∈ Skl2 V|Σ, the dual Voronoi edge Vt intersects Σ possibly at multiple
points. Each ball centering such an intersection point and circumscribing vertices of t is called
a surface Delaunay ball of t. The following lemma is proved in [11].

Lemma 3.1 If all surface Delaunay balls B(c, r) satisfy r 6 εf(c) for ε 6 0.09, the underlying
space of Skl2 V|Σ is a triangulated 2-manifold without boundary.

Let E be the triangulated 2-manifold guaranteed by Lemma 3.1. One can orient the triangles
of E consistently. Let nt denote the outward normal of such a triangle t. Similarly, let nv denote
the outward normal to Σ at a sample point v. A result of Amenta, Choi, Dey, and Leekha [3]
can be called upon to establish a homeomorphism between E and Σ if one can establish that
the triangles sharing vertices in E make small angles between their oriented normals. For
convenience, let us say that a triangle is small if its circumradius is no more than O(ε) times
the local feature sizes at its vertices where ε 6 0.05. A result of Amenta and Bern [2] shows
that the acute angle between the lines normal to such triangles is O(ε). However, one needs
the angle between oriented normals. Therefore, a small acute angle between lines normal to
triangles does not suffice. A result of [3] (also see [28]) comes to the rescue which says that
oriented normals to restricted Delaunay triangles sharing an edge make less than π

2 angle if the
triangles are small. The triangles in E are made small by the algorithm. Therefore, all triangles
around a vertex v can be oriented consistently so that ∠nt,nv = O(ε) for each triangle incident
to v. Since adjacent vertices (joined by an edge in E) are not far apart, their oriented normals
differ by O(ε) angle. The implication of this observation is that ∠nt,nv = O(ε) for any triangle
t with a vertex v. Now we recall a result of Amenta et al. [3].

Theorem 3.1 ([3]) Let ν: R3 \ M(Σ) → Σ map each point of R
3 to its nearest point in Σ.

The restriction of ν to a simplicial 2-complex E whose vertices lie in Σ is a homeomorphism
between E and Σ, provided that:

1. E is a manifold without boundary,

2. every triangle in E has circumradius of at most 0.113 min{f(v), v a vertex of t},

3. the normal nt of every triangle t makes at most 0.375 radians with nv, where v is any
vertex of t.
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4. E has vertices in all components of Σ.

The arguments in the paragraph following Lemma 3.1 show that conditions 1-3 of the above
theorem are satisfied when ε 6 0.05. Condition 4 has to be ensured by the algorithm. Therefore,
we get an immediate algorithm as follows. Compute a point in each component of Σ. Maintain
the Delaunay triangulation of the current point set V and check if there is any restricted triangle
t with surface Delaunay ball B(c, r), r > 0.05f(c). If so, insert the point c into V and continue.
There is one concern about this algorithm. How does one make sure that Skl2 V|Σ is non-empty
at any stage of the algorithm? It may happen that no Voronoi edge of Vor V intersects Σ. To
avoid this, Boissonnat and Oudot describe a method to pick a triangle t for each component
of Σ with a surface Delaunay ball B(c, 1

3f(c)). They call such a triangle persistent as they
persist throughout the algorithm as a restricted triangle. It is not clear how one can compute
persistent triangles deterministically. The method described in [11] is a heuristic which works
most of the time in practice.

We summarize the entire algorithm below. A list L of all surface Delaunay balls is main-
tained. Updates to Vor V, Skl2 V|Σ, and L are done locally after each insertion.

DelSmSurf1(Σ,ε)

1. For each component of Σ compute a persistent triangle. Initialize V to set of
vertices of these persistent triangles. Initialize L to the surface Delaunay balls
of the persistent triangles.

2. Find a ball B(c, r) ∈ L so that r > εf(c). If found, insert c into V, update
Skl2 V|Σ and L, and repeat step 2.

3. Output Skl2 V|Σ.

The parameter ε 6 0.05 controls the refinement level of the mesh. Boissonnat and Oudot [11]
show that the output mesh has a Hausdorff distance O(ε2) times the local feature sizes. Specif-
ically, they prove the following theorem.

Theorem 3.2 ([11]) Given a smooth, closed surface Σ ⊂ R
3, DelSmSurf1 produces a mesh

T with the following properties:

1. There is an isotopy between Σ and |T |.

2. The isotopy moves a point x ∈ Σ only by O(ε2)f(x) distance.

3. The number of vertices in T is within a constant factor of any ε-sample of Σ.

It is clear that the quality of the triangles can be easily controlled by adding a step that
inserts points whenever a triangle has a radius-edge ratio greater than a threshold. See [11] for
details.

3.2 Feature size unknown

The algorithm of Boissonnat and Oudot cannot be used if an oracle is not provided that can
compute (or estimate in practice) the local feature size at a given point of the surface. Cheng,
Dey, Ramos, and Ray [23] designed an algorithm that does not require any knowledge of local
feature size. This algorithm is motivated by a result of Edelsbrunner and Shah [36] which
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says that if the restricted Voronoi diagram satisfies certain conditions, the restricted Delaunay
triangulation becomes homeomorphic to the surface.

As in the previous section, let V be a point sample from a smooth closed surface Σ ⊂ R
3.

We say a k-face Vξ of the Voronoi diagram Vor V satisfies the topological ball property, TBP
in short, if either Vξ does not intersect Σ or intersects it transversally in a topological closed
(k − 1)-ball. The entire Voronoi diagram satisfies the TBP if each Voronoi face satisfies it.
Edelsbrunner and Shah prove the following theorem [36].

Theorem 3.3 ([36]) If Vor V satisfies the TBP, the underlying space of the restricted Delaunay
triangulation DelV|Σ is homeomorphic to Σ.

Cheng et al. [23] drive the Delaunay refinement with violations of the TBP. For each Voronoi
face violating any of the conditions of the TBP, the algorithm samples a point from the surface.
The authors in [23] prove that these points maintain a positive lower bound on their distances,
thereby guaranteeing the termination. Obviously, at the end, the TBP holds which by Theo-
rem 3.3 ensures a homeomorphism between input and output. We go over the subroutines that
process the TBP violations.

3.2.1 Subroutines

We have four subroutines VorEdge, TopoDisk, VorFacet, and Silhouette processing
various types of TBP violations. In the case of a violation, they sample a new point from Σ.
We use V to denote the set of sample points maintained by the algorithm. For simplicity we
assume that no Voronoi vertex lies on Σ. If this assumption does not hold, the algorithm needs
some modifications as detailed in [23].

The first subroutine VorEdge checks the TBP for a Voronoi edge. According to the TBP
a Voronoi edge should intersect Σ transversally in a single point, a 0-ball, if it intersects at all.
Recall that the Delaunay dual of e is a restricted triangle te. Let cmax(t) and rmax(t) denote
the center and the radius of the largest surface Delaunay ball of a restricted triangle t. If e
intersects Σ at multiple points, we insert cmax(te).

VorEdge(e)

1. If e intersects Σ tangentially, return the point of tangential contact.

2. If e intersects Σ in two or more points, return cmax(te).

In the next subroutine TopoDisk, we check whether the restricted triangles incident to a
sample point p form a topological disk. Let Tp be the set of triangles in DelV|Σ incident to p.
First, we check if every triangle edge in Tp is incident to exactly two triangles in Tp. Second,
we check if Tp forms exactly one cycle of triangles around p. If both tests are passed, Tp forms
a topological disk; otherwise, it does not.

TopoDisk prevents two types of TBP violations. First, if a Voronoi facet intersects Σ in
two or more topological intervals, its dual Delaunay edge has more than two restricted triangles
incident to it given that no Voronoi edge intersects Σ in more than one point. This condition
is disallowed by TopoDisk. Second, if the boundary of a Voronoi cell Vp intersects Σ in two
or more cycles, there are two or more topological disks in Tp which is again prevented by
TopoDisk.
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TopoDisk(p)

1. If Tp forms a topological disk, return null.

2. Find the restricted triangle t ∈ Tp for which rmax(t) is the maximum among
all triangles in Tp. Return cmax(t).

A Voronoi facet should intersect Σ transversally in a single topological interval if it intersects
at all. It can violate this property by (i) intersecting Σ tangentially, (ii) intersecting Σ in two or
more topological intervals, and/or (iii) intersecting Σ in a closed curve. The possibility of (ii)
is prevented by TopoDisk. The next subroutine VorFacet guards against the possibilities of
(i) and (iii). This subroutine uses some critical point computations. Let C be a smooth closed
curve on a plane. Given a direction d, the critical points of C in direction d are the points
where the tangent to C is orthogonal to d.

VorFacet(F)

1. If F intersects Σ tangentially, return the tangential contact point.

2. Let Π be the plane of F . Choose a direction d parallel to Π. Compute X, the
set of critical points of the curves in Π ∩ Σ in the direction d.

3. If no point in X lies on F , return null.

4. Since F intersects Σ transversally, F ∩Σ is a collection of disjoint simple curves
(open or closed) and X∩F is the set of critical points of these curves in direction
d. Let Vp be a Voronoi cell incident to F . For each x ∈ X ∩ F ,

(a) Compute the line `x in Π through x parallel to d. Notice that `x is normal
to F ∩ Σ at x.

(b) Compute X ′ := `x ∩Σ. If |X ′∩F | > 2, return the point in X ′∩F furthest
from p.

5. Return null.

The previous three subroutines make sure that Voronoi edges and Voronoi facets satisfy the
TBP. Now we consider the case for Voronoi cell which, according to the TBP, should intersect
Σ in a 2-ball, a topological disk. We argue that, at the end of VorEdge, TopoDisk, and
Vorfacet a Voronoi cell Vp cannot intersect Σ in multiple components. First, no connected
component of Σ can be completely inside Vp since we initialize V with a point from each
component of Σ. Therefore, each connected component of Vp ∩ Σ has a non-empty boundary.
Second, if Vp ∩ Σ had multiple components, (bd Vp) ∩ Σ would have multiple components.
However, this is prevented by TopoDisk and VorFacet. Therefore, Vp ∩ Σ is a connected
2-manifold with a connected boundary. This surface is orientable as Σ is. Such a surface cannot
be a disk only if it contains a handle. We detect the presence of handles by silhouettes.

For a smooth surface σ and a given direction d, the silhouette Jd is a set of closed curves
formed by points x ∈ σ where nx · d = 0. This means that the normal to σ at each point of the
silhouette is orthogonal to the direction d. The following result motivates the use of silhouettes.

Lemma 3.2 ([23]) Let σ be a compact smooth surface with non-empty boundary in R
3. If Jd

is empty for any direction d, σ is a topological disk.

The subroutine Silhouette utilizes Lemma 3.2. It checks if a Voronoi cell Vp intersects
the silhouette Jd, where d = np. If Vp ∩ Jd 6= ∅, either Jd intersects some facets of Vp
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or Vp completely contains a component of Jd. The first possibility is checked by the sub-
routine SilhouettePlane. The second possibility can be detected by checking if Vp con-
tains any critical point of Jd in a direction orthogonal to d. This is done by the subroutine
SilhouetteCritical. The details of SilhouettePlane and SilhouetteCritical can be
found in [23].

Silhouette(p)

1. Choose a direction d′ orthogonal to np.

2. Compute X := SilhouetteCritical(Σ,np, d
′).

3. If X contains a point inside Vp, return it.

4. Otherwise, for each facet F of Vp,

(a) Compute X ′ := SilhouettePlane(Σ, Π,np), where Π is the plane of F .

(b) If X ′ contains a point in F , return it.

5. Return null.

3.2.2 Algorithm

The algorithm SampleTopology samples a set of points V from Σ so that Del V|Σ is homeo-
morphic to Σ. It initializes V with with a seed set of critical points of Σ in a chosen direction.
Then it calls a procedure Topology that repeatedly invokes the subroutines in case of any
violation of TBP. Upon the return of Topology, DelV|Σ is homeomorphic to Σ. However, it
is possible that some seeds are too close together, which means that the surface triangulation
may be denser than necessary around the seeds. One may fix this problem by deleting the seeds
incrementally. Observe that we may start the algorithm with a single initial point and then let
Silhouette generate more points on each component of Σ instead of computing the seed set.
However, to avoid the more expensive computation of critical points of the silhouette in a given
direction, we recommend starting with the seed set.

SampleTopology(Σ)

1. Initialize V with critical points of Σ.

2. Compute V := Topology(V).

3. While there is a seed p ∈ V, delete p from V and compute V := Topology(V).

4. Return V.

Topology(V)

1. Perform steps (a)–(d) in order. Terminate the current step as soon as the
returned x is non-null; skip the following steps; and go to step 2.

(a) For every edge e of Vor V, compute x := VorEdge(e).

(b) For every p ∈ V, compute x := TopoDisk(p).

(c) For every facet F of Vor V, compute x := VorFacet(F ).

(d) For every p ∈ V, compute x := Silhouette(p).

2. If x is non-null, insert x into V, update Vor V, and go to step 1. Otherwise,
return V.
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Although the above algorithm captures the topology of the input surface Σ, the output is
often a crude approximation. In order to capture the geometry better, Cheng et al. suggest some
geometric refinement [23]. The triangles can be refined for their shape quality. A parameter λ
controls the shape quality. If there is a triangle t in DelV|Σ with ρ(t) > 1 + λ, the procedure
Quality inserts the furthest intersection point between Σ and the dual Voronoi edge of t.

Quality(V,λ)

1. If there is a restricted triangle t with ρ(t) > 1 + λ, insert cmax(t) into V and
update Vor V.

2. Return V.

To capture geometry better, one may also improve the the internal dihedral angles subtended
by the edges of the output mesh. Since we are meshing a smooth surface, these dihedral angles
should be close to π. We measure the smoothness of DelV|Σ using the dihedral angles at the
edges. Specifically, for each edge e in Del V|Σ, we define the roughness of e, denoted by g(e),
to be π minus the dihedral angle at e. The procedure Smooth samples a point from Σ if the
roughness of some edge exceeds λ.

Smooth(V,λ)

1. If there is an edge pq in DelV|Σ such that g(pq) > λ insert cmax(t) where t is
an incident restricted triangle of e and update Vor V.

2. Return V.

Quality enforces that the angles of every triangle are no less than arcsin
(

1
2+2λ

)

. Smooth

enforces the dihedral angles are no less than π−O(λ). Thus, we can improve the triangle shape
and smoothness by decreasing λ. However, as explained in [22] the mesh size increases linearly
in 1

λ2 .
The algorithm DelSmSurf2 combines all subroutines. It maintains the sample set V and

DelV|Σ throughout its execution. The final triangulation DelV|Σ is the output surface mesh
desired.

DelSmSurf2(Σ,λ)

1. Compute V := SampleTopology(Σ).

2. Compute V := Quality(V, λ). If Quality inserted some point(s) into V,
compute V := Topology(V) and repeat step 2.

3. Compute V := Smooth(V, λ). If Smooth inserted a point into V, compute
V := Topology(V) and go to step 2.

4. Output DelV|Σ.

Notice that, after Quality or Smooth, we call Topology again because the new sample
point(s) may disturb the topology of DelV|Σ. It is worthwhile to note that one does not need
to search the entire Vor V for a possible topology violation. Instead, a local search suffices since
the insertion of a new point changes Vor V locally.

Theorem 3.4 ([23]) Given a smooth, closed surface Σ, DelSmSurf2 computes a restricted
Delaunay mesh whose underlying space is homeomorphic to Σ where each triangle has a bounded
aspect ratio and each edge has a dihedral angle close to π.
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Notice that the above theorem does not have any guarantee about Hausdorff distance being
small compared to the local feature sizes. This cannot be assured unless feature sizes are
computed, and the design of DelSmSurf2 avoids these computations.

3.3 Smooth volume

In this section we consider meshing of volumes enclosed by smooth surfaces. Let O denote
the volume enclosed by a smooth surface Σ. Let V be the vertex set produced either by
DelSmSurf1 or DelSmSurf2. Let T = Skl2 V|Σ which is the mesh output by both the
algorithms.

The volume enclosed by T is already triangulated with Delaunay tetrahedra. We can further
refine them for quality using the radius-edge ratio condition. The circumcenters of skinny
tetrahedra can be added as long as they do not disturb the surface triangulation. One easy
approach is to skip adding those circumcenters who encroach the surface Delaunay balls meaning
that they lie inside these balls. This ensures that all surface triangles remain intact. The trade
off of this easy fix is that the tetrahedra near the boundary may not have bounded radius-edge
ratios. To ensure the quality for all tetrahedra, additional effort is required to maintain the
surface. We describe an algorithm by Oudot, Rineau, and Yvinec [47] which uses DelSmSurf1
for surface triangulation.

The algorithm first runs DelSmSurf1 to obtain a surface triangulation with a vertex set
V on the surface. It splits the surface triangles with the following subroutine.

SplitF(t)

Let B(c, r) be the surface Delaunay ball circumscribing t where r/f(c) is max-
imum among all surface Delaunay balls of t. Insert c into V and update Vor V.

To mesh volumes we need tetrahedron and hence can forget about the hanging lower di-
mensional restricted simplices that may be present. Just as in the case of surfaces, we define
the following subcomplex for the volume.

Skl3 V|O = {t ∈ Del V|O | t is incident to a restricted tetrahedron.}

DelSmVol(V, ρ, ε)

1. Call DelSmSurf1(Σ,ε).

2. Find a triangle t ∈ Skl2 V|Σ where all three vertices of t are not in Σ. If found,
call SplitF(t,) and repeat step 2.

3. Find a triangle t ∈ Skl2 V|Σ with a surface Delaunay ball B(c, r) where r/f(c) >
ε. If found, call SplitF(t) and repeat step 2.

4. Find a tetrahedron t ∈ Skl3 V|O with ρ(t) > ρ. If found, do the following:

If the circumcenter c of t does not encroach any surface Delaunay ball,
insert c into V, update Vor V, and go to step 4. Otherwise, let c encroach
a surface Delaunay ball B(c′, r). Insert c′ into V, update Vor V, and go to
step 2.

5. Return Skl3 V|O.
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Step 2 ensures that all restricted triangles have vertices from Σ. Step 3 refines surface
triangles as in DelSmSurf1. Step 4 refines the tetrahedra. Refinement of surface triangles is
given priority over the tetrahedra. Oudot et al. [47] prove that the above algorithm terminates
and has the following geometric and topological guarantees.

Theorem 3.5 ([47]) Given a volume O bounded by a smooth surface Σ, for ε 6 0.05 and
ρ > 1, DelSmVol produces T = Skl3 V|O whose underlying space is homeomorphic (isotopic)
to O and bd T = Skl2 V|Σ. Furthermore, the isotopy moves a point x ∈ Σ by at most O(ε2)f(x)
distance.

4 Piecewise smooth complex

In this section we consider a fairly large class of input domains called piecewise smooth com-
plexes (PSCs). This class includes smooth surfaces with or without boundaries, piecewise
smooth surfaces including polyhedral surfaces, non-manifold surfaces, and volumes enclosed by
them. Figure 8 shows some example inputs and their meshes.

Figure 8: Meshed PSCs, Metaball (Smooth), Part (Manifold PSC), and Wedge (Non-
manifold, PSC with small angles). Top row: surface mesh, bottom row: volume mesh. The
meshes are all produced by DelPSC software [57].

4.1 Domain

A piecewise smooth complex (PSC) is a manifold complex where each element is a compact
smooth (C2) k-manifold, 0 6 k 6 3. An element may have boundary though the element is
assumed to be contained in a smooth k-manifold without boundary. We use Dk to denote the
kth stratum, i.e., the subset of all k-dimensional elements. D0 is a set of vertices; D1 is a
set of curves called 1-faces; D2 is a set of surface patches called 2-faces; and D3 is a set of
volumes called 3-faces. For 1 6 k 6 2, we use D6 k to denote D0 ∪ . . . ∪ Dk. The domain is
D = D0 ∪ ... ∪ D3.
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The domain D, being a manifold complex, satisfies the requirements of a complex: (i)
interiors of the elements are pairwise disjoint and for any σ ∈ D, bd σ ⊂ D; (ii) for any
σ, σ′ ∈ D, either σ ∩ σ′ = ∅ or σ ∩ σ′ is a union of elements in D.

The meshing algorithm that we are going to describe generates sample points some of which
are weighted. A weighted point p with weight wp is represented with a ball p̂ = B(p, wp). The
squared weighted distance of any point x ∈ R

3 from p̂ is given by ‖x − p‖2 − w2
p. One can

define a Voronoi diagram and its dual Delaunay triangulation for a weighted point set just like
their Euclidean counterparts by replacing Euclidean distances with weighted distances [4]. For
a weighted point set V ⊂ R

3, we overload the notations Vor V and Del V to denote the weighted
Voronoi and Delaunay diagrams of V respectively. For a simplex in the weighted Delaunay
triangulation, it is no longer true that there exists a circumscribing ball of the simplex which
is empty. Instead, a weighted version of this statement holds. For a simplex with weighted
vertices {B(pi, wi)}, a ball B(c, r) is an orthoball if d(c, pi)

2 = r2 + w2
i for all i. A simplex is

in the weighted Delaunay triangulation if it has an orthoball whose weighted distance to every
point in V is non-negative. The surface Delaunay balls of a restricted simplex are its orthoballs
with centers in Σ and with non-negative weighted distance to every point in V. The orthoball
of a tetrahedron is unique whose center is called its orthocenter.

We have already seen in the case of smooth surface meshing that it is useful to consider
a subcomplex of the restricted Delaunay triangulation consisting of restricted triangles and
their subsimplices. We consider similar subcomplexes for meshing of PSCs. For example, for a
2-manifold in D, we consider only restricted triangles and their edges and vertices. Similarly,
for 1-manifolds, we consider only restricted edges and their vertices. In general, for σ ∈ Di, let
Skli V|σ denote the i-dimensional complex

Skli V|σ = {t ∈ DelV|σ | t is incident to a restricted i-simplex}.

Intuitively, Skli V|σ is an i-dimensional complex without any hanging lower dimensional sim-
plices. For example, in Figure 9, the dark edge connecting between upper and lower part of σ
is eliminated in Skl2 V|σ. We extend the definition to strata and the domain:

Skli V|Di
=

⋃

σ∈Di

Skli V|σ, Skl V|D =
⋃

i

Skli V|Di
.

Notice that computation of Skli V|Di
is easier than DelV|Di

since the former one involves
computations of intersections only between (3− i)-dimensional Voronoi faces with i-faces in D.
In fact, because of our special protections of D1, the only computation we need to determine
Skl1 V|D1

and Skl2 V|D2
is Voronoi edge-surface intersections.

Figure 9: Left: DelV|σ. Right: Skl2 V|σ.
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4.2 Algorithm

The neighborhoods of the curves and vertices in D61 are regions of potential problems to
Delaunay refinements of PSCs. First, if the elements incident to these curves and vertices make
small angles at the points of incidences, usual Delaunay refinement may not terminate. Second,
these curves and vertices represent “features” in the input which should be preserved in the
output for many applications. Usual Delaunay refinement may destroy these features [10, 30].
As in the polyhedral case, some kind of protection mechanism is used to handle these non-
smooth regions.

4.2.1 Protection

The elements in D61 are protected with balls before the refinement stage starts. These balls
are turned into weighted points during refinement. The protecting balls satisfy the following
properties:

Protection properties: Let ω 6 0.076 be a positive constant and Bp denote the protecting
ball of a point p.

1. Any two adjacent balls on a 1-face overlap significantly without containing each other’s
centers.

2. No three balls have a common intersection.

3. Let p ∈ σ be the center of a protecting ball. Further, let B = B(p, R) be a ball where
R 6 c · radius(Bp) for some c 6 8. For a point x ∈ τ , nτ (x) denotes the normal to τ at x
if τ is a 2-face, and it denotes the tangent to τ at x if τ is a 1-face.

(a) For τ = σ or any 2-face incident to σ, ∠nτ (p), nτ (z) 6 2ω for any z ∈ B ∩ τ . The
same result holds for the surfaces of the 2-faces incident to σ.

(b) B intersects σ in a single open curve and any 2-face incident to σ in a topological
disk. The same result holds for the surfaces of the 2-faces incident to σ.

Each protecting ball Bp = B(p, wp) is turned into a weighted point (p, wp). Just as in the
case of smooth surfaces, it turns out that it is necessary to keep each 2-face intersected by some
Voronoi edge in VorV throughout the algorithm. The weighted vertices ensure it for 2-faces
that have boundaries. For 2-faces without boundary, Cheng et al. [16] suggest placing three
weighted points satisfying the protection properties. The triangle connecting these weighted
points remain restricted throughout the algorithm. The properties of the protecting balls make
sure that the curves in D1 remain meshed properly throughout the algorithm. In particular,
adjacent points along any curve in D1 remain connected with restricted Delaunay edges, see [18]
for details.

4.2.2 Refinement

After protection, the algorithm inserts points iteratively outside the protected regions to mesh
2-faces. This insertion is triggered by a disk condition which essentially imposes that the tri-
angles around a point on a 2-face form a topological disk. After 2-faces are meshed, 3-faces
(volumes) are meshed with the usual circumcenter insertion procedure for refining tetrahedra.
Each inserted point maintains a lower bound on its distances to all existing points. Therefore,
the termination of the refinement follows from standard packing argument. At termination the
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restricted complex Skl V|D is output which has following properties:
Preserved features: All curves in D1 are meshed homeomorphically with restricted Delaunay
edges whose vertices lie on the curves. This preserves non-smooth features or user defined
features in the output, see Figure 10.
Faithful topology: All surface patches and volumes in D63 are meshed with a piecewise linear
manifold. Furthermore, the algorithm accepts a resolution parameter λ so that it refines the
Delaunay triangulations until the restricted triangles have ‘size’ less than λ. When λ is suffi-
ciently small, the output restricted complex becomes homeomorphic to input |D|.

Figure 10: Features on Anchor are preserved in both surface (middle) and volume (right)
meshing.

In a mesh of a 2-manifold, the triangles incident to a vertex should form a topological disk.
Therefore, one can turn this into a condition for sampling 2-manifolds in the input PSC. The
refinement condition applied to only a single 2-manifold is as simple as this. However, since
a PSC may have several 2-manifolds, potentially forming even non-manifolds, one needs to
incorporate some more conditions into the disk condition. Let p be a point on a 2-face σ. Let
Tp(D) and Tp(σ) be the set of triangles in Skl2 V|D2

and Skl2 V|σ respectively which are incident
to p. The following disk condition is used for refinement. Once the restricted Delaunay triangles
are collected, this check is only combinatorial.

Disk Conditions(p) : (i) Tp(D) =
⋃

σ3p Tp(σ), (ii) for each σ ∈ D2 containing p, underlying
space of Tp(σ) is a 2-disk which has all vertices in σ. Point p is in the interior of this 2-disk if
and only if p ∈ int σ. Also, if p is in bd σ, it is not connected to any other point on D1 which
is not adjacent to it. Figure 11 explains these conditions.

When we mesh volumes, we use the standard technique of inserting circumcenters (orthocen-
ter) of tetrahedra that have radius-edge ratio greater than a threshold, ρ > 1. If the orthocenter
encroaches a surface triangle, that is, the center lies in all surface Delaunay balls of a triangle
in Skl2 V|D2

, the orthocenter is not inserted. Essentially, this strategy allows refining most
of the tetrahedra except the ones near boundary. The following pseudocode summarizes the
algorithm.

25



Figure 11: Left: point p ∈ σ has a disk in σ and another disk in τ 6= σ violating condition (i).
Middle: point p ∈ σ has a topological disk but some of its vertices (lightly shaded) belong to τ
violating condition (ii). Right: Points p and q satisfy disk condition. Point p, an interior point
in σ, lies in the interior of its disk in σ. Point q, a boundary point, has three disks for each of
the three 2-faces.

DelPSC (D, λ, ρ)

1. Protection. Protect elements in D6 1 with weighted points. Insert three weighted
points in each element of D2 that has no boundary. Let V be the current
(weighted) point set.

2. Mesh2Complex.

(a) Let (p, σ) be any tuple where p ∈ Skl2 V|σ. If Disk Conditions(p) is
violated, find the triangle t ∈ Tp(D) which has the largest surface Delaunay
ball B(c, r). Insert c into V, update Vor V, and repeat step 2(a).

(b) If there is restricted triangle with a surface Delaunay ball B(c, r) where
r > λ, insert c into V, update Vor V, and go to step 2(a). Otherwise, go to
step 3.

3. Mesh3Complex. Find a tetrahedron t ∈ Skl3 V|σ where ρ(t) > ρ and the ortho-
center c of t does not encroach any triangle in Skl2 V|D and any ball B(p, 2r)
where B(p, r) is a protecting ball. If found, insert c into V, update VorV, and
repeat step 3.

4. Return Skl V|D.

4.2.3 Guarantees

Cheng, Dey, and Levine [17] show the following.

Theorem 4.1 ([17]) (i) DelPSC terminates, (ii) the output of DelPSC satisfies properties
T1-T3:

(T1) For each σ ∈ D1, Skl1 V|σ is homeomorphic to σ and two vertices are joined by an edge
in Skl1 V|σ if and only if these two vertices are adjacent on σ.

(T2) For 0 6 i 6 2 and σ ∈ Di, Skli V|σ is a i-manifold with vertices only in σ. Further,
bd Skli V|σ = Skli−1

V|bd σ. For i = 3, the statement is true only if the set Skli V|σ is not
empty at the end of Mesh2Complex.

(T3) There exists a λ > 0 so that the output mesh of DelPSC(D,λ,ρ) has an underlying
space homeomorphic to |D|. Further, this homeomorphism respects stratification with
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vertex restrictions, that is, for 0 6 i 6 3, Skli V|σ is homeomorphic to σ ∈ Di where
bd Skli V|σ = Skli−1

V|bd σ and vertices of Skli V|σ lie in σ.

The implication of T1 is that the non-smooth features are preserved in the output, see
Figure 10. The implication of T1 and T2 is that each k-manifold is meshed with a simplicial
k-manifold. Also, the mesh of the boundary of a k-manifold appears as the boundary of the
mesh of the k-manifold. The meshes may not be homeomorphic to the original manifold, but
with increasing levels of refinement (controlled by parameter λ) homeomorphism is achieved.
In practice this level is reached quite early in the refinement.

One can add the following step at the end of Mesh2Complex to improve the quality of the
triangles.

If there is a triangle t ∈ Skl2 V|D2
with ρ(t) > ρ1, insert the center c of its surface

Delaunay ball into V if c does not lie in B(p, 2r) where B(p, r) is a protecting ball.
Update Vor V, and go back to step 2(a).

In Mesh3Complex we avoided inserting the circumcenter c of a tetrahedron if it encroaches
a surface Delaunay ball of a triangle. Instead one can take an approach as in the polyhedral
case by rejecting c and splitting the triangle encroached by c.

If there is a tetrahedron t ∈ Skl3 V|D3
where ρ(t) > ρ2 and the orthocenter c of t

does not lie in B(p, 2r) where B(p, r) is a protecting ball do the following: insert c
if it does not encroach any triangle in t′ ∈ Skl2 V|D2

, otherwise reject c and insert
the center of a surface Delaunay ball of t′ instead. In both cases update Vor V and
go back to step 2(a).

The analysis in [16] can easily be modified to claim that Theorem 4.1 still holds with the
added steps for quality enforcement.

5 Open issues

In this section we briefly describe different open issues in Delaunay meshing of three dimensional
domains.

The algorithms described in previous sections attempt to improve the quality of tetrahedra
by improving their radius-edge ratios. As mentioned earlier, an upper bound on radius-edge
ratios eliminate all types of bad tetrahedra except one, slivers. A sliver tetrahedron t has an
upper bound on radius-edge ratio ρ(t) but has poor volume-edge ratio given by σ(t) = v(t)

`3(t)

where v(t) and `(t) are the volume and smallest edge length of t. Considerable research effort
over the past decade has been devoted to exude slivers from Delaunay meshes. The first
successful result was given by Cheng et al. in their sliver exudation paper [15]. The authors
show that, for a periodic point set V ⊂ R

3, if Del V has an upper bound on radius-edge ratios
for tetrahedra, the vertices can be assigned weights so that all slivers with volume-edge ratio
smaller than a positive constant σ0 are eliminated. Although it is the first result of its kind,
the algorithm cannot handle bounded domain like polyhedra. Cheng and Dey [14] adapted
the sliver exudation method to polyhedral complexes. For other attempts in sliver removal,
see [26, 33, 43]. The sliver exudation method of Cheng and Dey [14] can be used with the
algorithms for smooth and piecewise smooth volume meshing [16, 47] to get rid of slivers.
Theoretically, the constant σ0 for sliver removal is extremely small. In practice, it has been
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observed that slivers with dihedral angles in the range 1◦ − 3◦ are not eliminated [20, 35]. It is
still an open question how to eliminate slivers in Delaunay meshing of bounded domains where
the angle bounds are large, say near 10◦. Labelle [42] showed a technique to achieve such a
bound for periodic point set but it is not clear how to extend it to bounded domains.

The Delaunay refinement strategy inserts points that are locally furthest. They are generally
points where a dual Voronoi face of a Delaunay element to be eliminated intersects the domain.
A natural question is if there are other insertion strategies that may improve the refinement
algorithms. Edelsbrunner and Guoy [34] showed that insertion of “sinks” that are not necessarily
circumcenters of bad triangles or tetrahedra can indeed improve the mesh size in practice.
Üngör proposed insertions of “off-centers” which remarkably improve the mesh size in two
dimensions [55]. It remains open how to apply these or other insertion strategies for bounded
three dimensional domains.

In the past few years some optimization based techniques have been proposed for producing
meshes with well shaped simplices [13, 31]. These approaches seem promising; in particular, for
addressing the question of slivers in tetrahedral meshing [1]. However, it is still open to apply
these techniques to bounded domains with provable guarantees. Some applications require that
the mesh simplices contain their dual Voronoi vertex. For triangles, this means that they do not
have any obtuse angle. Bern, Mitchell, and Ruppert [7] gave an algorithm for producing linear
size non-obtuse triangulations for polygons in two dimensions (also see [37]). The question
remains open for three dimensional bounded domains.

The question of space and time complexities of Delaunay refinement algorithms for three
dimensional domains remains mostly open. If m is the output size of the mesh, it is straight-
forward to derive an O(m2) time complexity bound. Each insertion of a point cannot take
more than O(m) time and hence O(m2) bound is trivial. However, the challenge remains to
achieve a non-trivial bound, in particular an O(n log n + m) bound where n is the space com-
plexity of the input domain. Har-Peled and Üngör [39] presented an off-center based algorithm
for two dimensional point sets that runs in optimal time and space. For a restricted class of
PCs, Hudson, Miller, and Phillips [40] show that a Delaunay refinement scheme can be run in
O(n log(L/s) + m) time where L/s is the ratio of the diameter to minimum feature size. The
output mesh size m certainly regulates the time complexity of the Delaunay refinement and
also of the post-processing algorithms that use these meshes. Ideally, m should be close to
optimal. For an input domain, let m∗ denote the size of a Delaunay complex that has minimum
number of simplices over all possible meshes conforming to the input domain. If one adds the
mesh quality condition, m∗ may change. It is very difficult and perhaps impossible to find algo-
rithms that has optimal output size and runs in polynomial time in terms of output complexity.
However, it might be possible to design algorithms that produce output size within a constant
factor of the optimal. In 2D, Ruppert [50] achieves this. In 3D, one has to address the issue of
slivers to obtain constant-factor optimal algorithms. For bounded domains, the only algorithm
that achieves it for space complexity is of Cheng and Dey [14] for PCs with no acute angles.
For other three dimensional bounded domains, achieving optimal algorithms in terms of space
and time complexity remains an important open question.
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