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ABSTRACT 

Monaural speech segregation has proven to be extremely challenging. While efforts in 

computational auditory scene analysis have led to considerable progress in voiced speech 

segregation, little attention has been given to unvoiced speech which lacks harmonic structure 

and has weaker energy, hence more susceptible to interference. We propose a new approach to 

the problem of segregating unvoiced speech from nonspeech interference. We first address the 

question of how much speech is unvoiced. The segregation process occurs in two stages: 

Segmentation and grouping. In segmentation, our model decomposes an input mixture into 

contiguous time-frequency segments by a multiscale analysis of event onsets and offsets. 

Grouping of unvoiced segments is based on Bayesian classification of acoustic-phonetic features. 

Systematic evaluation shows that the proposed system extracts a majority of unvoiced speech 

without including much interference, and it performs substantially better than spectral 

subtraction. 
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I. INTRODUCTION 
In a daily environment, target speech is often corrupted by various types of acoustic 

interference, such as crowd noise, music, or another voice. Acoustic interference poses a serious 

problem for many applications including hearing aid design, automatic speech recognition (ASR), 

telecommunication, and audio information retrieval. Such applications often require speech 

segregation. In addition, in many practical situations, monaural segregation is either necessary or 

desirable. Monaural speech segregation is especially difficult because one cannot utilize spatial 

filtering afforded by a microphone array to separate sounds from different directions. For 

monaural segregation, one has to consider the intrinsic properties of target speech and 

interference in order to disentangle them. Various methods have been proposed for monaural 

speech enhancement (Benesty et al., 2005), and they usually assume stationary and quasi-

stationary interference and achieve speech enhancement based on certain assumptions or models 

of speech and interference. These methods tend to lack the capacity to deal with general 

interference as the variety of interference makes it very difficult to model and predict. 

While monaural speech segregation by machines remains a great challenge, the human 

auditory system shows a remarkable ability for this task. The perceptual segregation process is 

called auditory scene analysis (ASA) by Bregman (1990), who considers ASA to take place in 

two conceptual stages. The first stage, called segmentation (Wang & Brown, 1999), decomposes 

the auditory scene into sensory elements (or segments), each of which should primarily originate 

from a single sound source. The second stage, called grouping, aggregates the segments that 

likely arise from the same source. Segmentation and grouping are governed by perceptual 

principles, or ASA cues, which reflect intrinsic sound properties, including harmonicity, onset 

and offset, location, and prior knowledge of specific sounds (Bregman, 1990; Darwin, 1997).  

Research in ASA has inspired considerable work in computational ASA (CASA) (for a 

recent, extensive review see Wang & Brown, 2006). Many CASA studies have focused on 

monaural segregation, and perform the task without making strong assumptions about 

interference. Mirroring the two-stage model of ASA, a typical CASA system includes separate 

stages of segmentation and grouping that operate on a two-dimensional time-frequency (T-F) 

representation of the auditory scene (see Wang & Brown, 2006, Chapter 1). The T-F 

representation is typically created by an auditory peripheral model that analyzes an acoustic 

input by an auditory filterbank and decomposes each filter output into time frames. The basic 
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element of the representation is called a T-F unit, corresponding to a filter channel and a time 

frame. 

We have suggested that a reasonable goal of CASA is to retain the mixture signals within the 

T-F units where target speech is more intense than interference and remove others (Hu & Wang, 

2001; Hu & Wang, 2004). In other words, the goal is to compute a binary T-F mask, referred to 

as ideal binary mask, where 1 indicates that target is stronger than interference in the 

corresponding T-F unit and 0 otherwise. See Wang (2005) and Brungart et al. (2006) for more 

discussion on the notion of the ideal binary mask and its psychoacoustical support.  

As an illustration, Figure 1(a) shows a T-F representation of the waveform signal in Figure 

1(b). The signal is a female utterance, “That noise problem grows more annoying each day,” 

from the TIMIT database (Garofolo et al., 1993). The peripheral processing is carried out by a 

128-channel gammatone filterbank with 20-ms time frames and a 10-ms frame shift (see Sect. 

III.A for details). Figures 1(c) and 1(d) show the corresponding representations of a mixture of 

this utterance and crowd noise, where the signal-to-noise ratio (SNR) is 0 dB.  In Figures 1(a) 

and 1(c) a brighter unit indicates stronger energy. Figure 1(e) illustrates the ideal binary mask for 

the mixture in Figure 1(d). With this mask, target speech can then be synthesized by retaining the 

filter responses of the T-F units having the value of 1 and eliminating the filter responses of the 

value 0 units. Figure 1(f) shows the synthesized waveform signal, which is close to the clean 

utterance in Figure 1(b). 

Natural speech contains both voiced and unvoiced portions (Stevens, 1998; Ladefoged, 2001). 

Voiced speech consists of portions that are mainly periodic (harmonic) or quasi-periodic. 

Previous CASA and related separation studies have focused on segregating voiced speech based 

on harmonicity (Parsons, 1976; Weintraub, 1985; Brown & Cooke, 1994; Hu & Wang, 2004). 

Although substantial advances have been made on voiced speech segregation, unvoiced speech 

segregation has not been seriously addressed and remains a major challenge. A recent system by 

Radfar et al. (2007) exploits vocal-tract filter characteristics (spectral envelopes) to separate two 

voices, which have the potential to deal with unvoiced speech. However, it is not clear how well 

their system performs when both speakers utter unvoiced speech and the assumption of two-

speaker mixtures limits the scope of application.  

Compared to voiced speech segregation, unvoiced speech segregation is clearly more difficult 

for two reasons. First, unvoiced speech lacks harmonic structure and is often acoustically noise-
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like. Second, the energy of unvoiced speech is usually much weaker than that of voiced speech; 

as a result, unvoiced speech is more susceptible to interference. Nevertheless, both voiced and 

unvoiced speech carry crucial information for speech understanding, and both need to be 

segregated. 

In this paper, we propose a CASA system to segregate unvoiced speech from nonspeech 

interference. For auditory segmentation, we apply a multiscale analysis of event onsets and 

offsets (Hu & Wang, 2007) which has the important property that segments thus formed 

correspond to both voiced and unvoiced speech. By limiting interference to nonspeech signals, 

we propose to identify and group segments corresponding to unvoiced speech by a Bayesian 

classifier that decides whether segments are dominated by unvoiced speech on the basis of 

acoustic-phonetic features derived from these segments. The proposed algorithm, together with 

our previous system for voiced speech segregation (Hu & Wang, 2004; Hu & Wang, 2006), leads 

to a CASA system that segregates both unvoiced and voiced speech from nonspeech 

interference. 

Before tackling unvoiced speech segregation, we first address the question of how much 

speech is unvoiced. This is the topic of the next section. Sect. III describes early stages of the 

proposed system, and Sect. IV details the grouping of unvoiced speech. Sect. V presents 

systematic evaluation results. Further discussions are given in Sect. VI. 
    

II. HOW MUCH SPEECH IS UNVOICED? 

Voiced speech refers to the part of speech signal that is periodic (harmonic) or quasi-periodic. 

In English, voiced speech includes all vowels, approximants, nasals, and certain stops, fricatives, 

and affricates (Stevens, 1998; Ladefoged, 2001). It comprises a majority of spoken English. 

Unvoiced speech refers to the part that is mainly aperiodic. In English, unvoiced speech 

comprises a subset of stops, fricatives, and affricates. These three consonant categories contain 

the following phonemes: 

• Stops: /t/, /d/, /p/, /b/, /k/, and /g/. 

• Fricatives: /s/, /z/, /f/, /v/, /ʃ/, /ʒ/, /θ/, /ð/, and /h/. 

• Affricates: /tʃ/ and /dʒ/. 
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In phonetics, all these phonemes except /h/ are called obstruents. To simplify notations, we refer 

to the above phonemes as expanded obstruents. Eight of the expanded obstruents, /t/, /p/, /k/, /s/, 

/f/, /ʃ/, /θ/, and /tʃ/, are categorically unvoiced. In addition, /h/ may be pronounced either in the 

voiced or the unvoiced manner. The other phonemes are categorized as voiced, although in 

articulation they often contain unvoiced portions. Note that an affricate can be treated as a 

composite phoneme, with a stop followed by a fricative.  

Dewey (1923) conducted an extensive analysis of the relative frequencies of individual 

phonemes in written English, and this analysis concludes that unvoiced phonemes account for 

21.0% of the total phoneme usage. For spoken English, French et al. (1930; see also Fletcher, 

1953) conducted a similar analysis on 500 telephone conversations containing a total of about 

80,000 words, concluded that unvoiced phonemes account for about 24.0%. Another extensive, 

phonetically labeled corpus is the TIMIT database, which contains 6,300 sentences read by 630 

different speakers from various dialect regions in America (Garofolo et al., 1993). Note that the 

TIMIT database is constructed to be phonetically balanced. Many of the same sentences are read 

by multiple speakers and there are a total of 2,342 different sentences. We have performed an 

analysis of relative phoneme frequencies for distinct sentences in the TIMIT corpus, and found 

that unvoiced phonemes account for 23.1% of the total phonemes.  

Table 1 shows the occurrence percentages of six phoneme categories from these studies. 

Several observations may be made from the table. First, unvoiced stops occur much more 

frequently than voiced stops, particularly in conversations where they occur more than twice as 

often as their voiced counterparts. Second, affricates are used only occasionally. It is remarkable 

that the percentages of the six consonant categories are comparable despite the fact that written, 

read, and conversational speech are different in many ways. In particular, the total percentages of 

these consonants are almost the same for the three different kinds of speech.  

What about the relative durations of unvoiced speech in spoken English? Unfortunately, the 

data reported on the telephone conversations (French et al., 1930) do not contain durational 

information. To get an estimate, we use the durations obtained from a phonetically transcribed 

subset of the Switchboard corpus (Greenberg et al., 1996) which also consists of conversations 

over the telephone. The amount of labeled data in the switchboard corpus, i.e. seventy-two 

minutes of conversation, is much smaller than that in the telephone conservations analyzed by 

French et al. (1930). Hence we do not use the labeled Switchboard corpus to obtain phoneme 
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frequencies; instead we assign the median durations from the transcription to the occurrence 

frequencies in the telephone conservations in order to estimate the relative durations of unvoiced 

sounds. Table 2 lists the resulting duration percentages of six phoneme categories. Also listed in 

the table are the corresponding data from the TIMIT corpus. The table shows that, for stops and 

fricatives, unvoiced sounds last much longer than their voiced counterparts. In addition, 

affricates have a minor contribution in terms of duration, similar to that in terms of occurrence 

frequency. Once again, the percentages from conversational speech are comparable to those from 

read speech. In terms of overall time duration, unvoiced speech accounts for 26.2% in telephone 

conversations and 25.6% in the read speech of the TIMIT corpus. These duration percentages are 

a little higher than the corresponding frequency percentages. 

The above two tables show that unvoiced sounds account for more than 20% of spoken 

English in terms of both occurrence frequency and time duration. In addition, since voiced 

obstruents are often not entirely voiced, unvoiced speech may occur more than suggested by the 

above estimates.  

 

III. EARLY PROCESSING STAGES 

Our proposed system for unvoiced speech segregation has the following stages of 

computation: Peripheral analysis, feature extraction, auditory segmentation, and grouping. In this 

section, we describe the first three stages. The stage of grouping is described in the next section. 

 

A. Auditory peripheral analysis 

This stage derives a T-F representation of an input scene by performing a frequency analysis 

using a gammatone filterbank (Patterson et al., 1988), which models human cochlear filtering. 

Specifically, we employ a bank of 128 gammatone filters, whose center frequencies range from 

50 Hz to 8000 Hz; this frequency range is adequate for speech understanding (Fletcher, 1953; 

Pavlovic, 1987). The impulse response of a gammatone filter centered at frequency f is: 

                          (1) 

where a = 4 is the order of the filter, and b is the equivalent rectangular bandwidth (Glasberg & 

Moore, 1990), which increases as the center frequency f increases.  

⎩
⎨
⎧ ≥π

=
π−−

 else0
0)2cos(
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Let x(t) be the input signal. The response from a filter channel c, x(c, t), is given by 
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where “*” denotes convolution, and fc the center frequency of this filter. In each filter channel, 

the output is further divided into 20-ms time frames with 10-ms shift between consecutive 

frames.  

 

 

B. Feature extraction 

Previous studies suggest that in a T-F region dominated by a periodic signal, T-F units in 

adjacent channels tend to have highly correlated filter responses (Wang & Brown 1999) or 

response envelopes (Hu & Wang, 2004). In this stage, we calculate such cross-channel 

correlations. These correlations will be used to determine T-F units dominated by unvoiced 

speech in the grouping stage. 

Cross-channel correlation of filter responses measures the similarity between the responses of 

two adjacent filter channels. Since these responses have channel-dependent phases, we perform 

phase alignment before measuring their correlation. Specifically, we first compute their 

autocorrelation functions (Licklider, 1951; Lyon, 1984; Slaney & Lyons, 1990) and then use 

their autocorrelation responses to calculate cross-channel correlation. 

Let ucm denote a T-F unit for frequency channel c and time frame m, the corresponding 

autocorrelation of the filter response is given by 

∑ −−−= n nnmnm TnTmTcxnTmTcxmcA ),(),(),,( ττ                      (3) 

Here, τ  is the delay and n denotes discrete time. Tm = 10 ms is the frame shift and Tn is the 

sampling time. The above summation is over 20 ms, the length of a time frame. The cross-

channel correlation between ucm and uc+1,m is given by 

 
∑∑

∑
+−+−

+−+−
=

ττ
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mcC              (4) 

where A  denotes the average value of A. 

When the input contains a periodic signal, auditory filters with high center frequencies 

respond to multiple harmonics. Such a filter response is amplitude-modulated and the response 

envelope fluctuates at the F0 of the periodic signal (Helmholtz, 1863). As a result, adjacent 

 7



 
Hu and Wang: Technical Report OSU-CISRC-8/07-TR63, 2007 

   

channels in the high-frequency range tend to have highly correlated response envelopes. To 

extract these correlations, we calculate response envelope through half-wave rectification and 

bandpass filtering, where the passband corresponds to the plausible F0 range of target speech, i.e. 

[70 Hz, 400 Hz], the typical pitch range for adults (Nooteboom, 1997). The resulting bandpassed 

envelope in channel c is denoted by xE(c, t).   

Similar to Equations (3) and (4), we compute envelope autocorrelation as 

∑ −−−= n nnmEnmEE TnTmTcxnTmTcxmcA ),(),(),,( ττ                       (5) 

and then obtain cross-channel correlation of response envelopes as 

∑∑
∑
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EEEE

EEEE
E              (6)   

 

C. Auditory segmentation 

Previous CASA systems perform auditory segmentation by analyzing common periodicity 

(Brown & Cooke, 1994; Wang & Brown, 1999; Hu & Wang, 2004), and thus cannot handle 

unvoiced speech. In this study, we apply a segmentation algorithm based on a multiscale analysis 

of event onsets and offsets (Hu & Wang, 2007). Onsets and offsets are important ASA cues 

(Bregman, 1990) because different sound sources in an acoustic environment seldom start and 

end at the same time. In the time domain, boundaries between different sound sources tend to 

produce onsets and offsets. Common onsets and offsets also provide natural cues to integrate 

sounds from the same source across frequency. Because onset and offset are cues common to all 

the sounds, this algorithm is applicable to both voiced and unvoiced speech. Figure 2 shows the 

diagram of the segmentation stage. It has three steps: Smoothing, onset/offset detection, and 

multiscale integration.  

Onsets and offsets correspond to sudden intensity increases and decreases, respectively. A 

standard way to identify such intensity changes is to find the peaks and valleys of the time 

derivative of signal intensity (Wang & Brown, 2006, Chapter 3). We calculate the intensity of a 

filter response as the square of the response envelope, which is extracted using half-wave 

rectification and low-pass filtering. Because of the intensity fluctuation within individual events, 

many peaks and valleys of the derivative do not correspond to real onsets and offsets. Therefore, 

in the first step of segmentation, we smooth the intensity over time to reduce such fluctuations. 
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Since an acoustic event tends to have synchronized onset and offset across frequency, we 

additionally perform smoothing over frequency which helps to enhance such coincidences in 

neighboring frequency channels. This procedure is similar to the standard Canny edge detector in 

image processing (Canny, 1986). The degree of smoothing over time and frequency is referred to 

as the 2-dimensional scale. The larger the scale is, the smoother the intensity is. The smoothed 

intensities at different scales form the so-called scale space (Romeny et al., 1997).  

In the second step of segmentation, our system detects onsets and offsets in each filter channel. 

Onset and offset candidates are detected by marking peaks and valleys of the time derivative of 

the smoothed intensity. The system then merges simultaneous onsets and offsets in adjacent 

channels into onset and offset fronts, which are contours connecting onset and offset candidates 

across frequency. Segments are obtained by matching individual onset and offset fronts.  

As a result of smoothing, event onsets and offsets of small T-F regions may be blurred at a 

larger (coarser) scale. Consequently, we may miss some true onsets and offsets. On the other 

hand, at a smaller (finer) scale, the detection may be sensitive to insignificant intensity 

fluctuations within individual events. Consequently, false onsets and offsets may be generated 

and some true segments may be over-segmented. We find it generally difficult to obtain 

satisfactory segmentation with a single scale. In the last step of segmentation, we deal with this 

issue by performing multiscale integration from the largest scale to the smallest scale in an 

orderly manner. More specifically, at each scale, our system first locates more accurate 

boundaries for the segments obtained at a larger scale. Then it creates new segments outside the 

existing ones.  The details of the segmentation stage are given in Hu and Wang (2007; see also 

Hu, 2006).  

As an illustration, Figure 3 shows the bounding contours of obtained segments for the mixture 

in Figure 1(d). The background is represented by gray. Compared with the ideal binary mask in 

Figure 1(e), the obtained segments capture a majority of target speech. Some segments for the 

interference are also formed. Note that the system does not, in this stage, distinguish between 

target and interference for each segment, which is the task of grouping described below. 

 

IV. GROUPING 

Our general strategy for grouping is to first segregate voiced speech and then deal with 

unvoiced speech. This strategy is motivated by the consideration that voiced speech segregation 
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has been well studied and can be applied separately, and segregated voiced speech can be useful 

in subsequent unvoiced speech segregation. 

To segregate the voiced portions of a target utterance, we apply our previous system for 

voiced speech segregation (Hu & Wang, 2006), which is slightly extended from an earlier 

version (Hu & Wang, 2004) and produces good segregation results. Target pitch contours needed 

for segregation are obtained from clean target by Praat, a standard pitch determination algorithm 

for clean speech (Boersma & Weenink, 2004). This way, we avoid pitch tracking errors which 

could adversely influence the performance of unvoiced speech segregation – the focus of this 

study. We refer to the resulting stream of voiced target as ST
1.  

The task of grouping unvoiced target amounts to labeling segments already obtained in the 

segmentation stage. A segment may be dominated by voiced target, unvoiced target, or 

interference, and we want to group segments dominated by unvoiced target while rejecting 

segments dominated by interference. Since an unvoiced phoneme is often strongly coarticulated 

with a neighboring voiced phoneme, some unvoiced target is included in segments dominated by 

voiced target (Hu, 2006; Hu & Wang, 2007). So we need to group segments dominated by 

voiced target to recover this part of unvoiced speech.  

Our system first groups segments dominated by voiced target. Then among the remaining 

segments, we label those dominated by unvoiced target in two steps: Segment removal and 

segment classification.  

 

A. Grouping segments dominated by voiced target 

A segment dominated by voiced target should have a significant overlap with the segregated 

voiced target, ST
1. Hence we label a segment as dominated by voiced target if 

• More than half of its total energy is included in the voiced time frames of target, and 

• More than half of its energy in the voiced frames is included in the T-F units belonging to 

ST
1.  

All the segments labeled as dominated by voiced target are grouped into the segregated target 

stream.  

By grouping segments dominated by voiced target, we recover more target-dominant T-F 

units than ST
1. However, some interference-dominant T-F units are also included due to the 

mismatch error in segmentation, i.e., the error of putting both target- and interference-dominant 
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units into one segment (Hu & Wang, 2007). We found that a significant amount of the mismatch 

error in segmentation stems from merging T-F areas in adjacent channels into one segment (Hu, 

2006). To minimize the amount of interference-dominant T-F units being wrongly grouped into 

the target stream, we consider estimated segments in individual channels, referred to as T-

segments, instead of whole T-F segments. Specifically, if a T-segment is dominated by a voiced 

target based on the above two criteria, all the T-F units within the T-segment are grouped into the 

voiced target. The resulting stream is referred to as ST
2. 

 

B. Acoustic-phonetic features for segment classification 

The next task is to label or classify segments dominated by unvoiced speech. Since the signal 

within a segment is mainly from one source, it is expected to have similar acoustic-phonetic 

properties to that source. Therefore, we identify segments dominated by unvoiced speech using 

acoustic-phonetic features.  

A basic speech sound is characterized by the following acoustic-phonetic properties: Short-

term spectrum, formant transition, voicing, and phoneme duration (Stevens, 1998; Ladefoged, 

2001). These features have proven to be useful in speech recognition, e.g., to distinguish 

different phonemes or words (Rabiner & Juang, 1993; Ali & Van der Spiegel, 2001b; Ali & Van 

der Spiegel, 2001a). These properties may also be useful in distinguishing speech from 

nonspeech interference. However, it is important to treat these properties appropriately 

considering that we are dealing with noisy speech. In particular, we give the following 

considerations. 

• Spectrum. The short-term spectrum of an acoustic mixture at a particular time may be 

quite different from that of the target utterance or that of the interference in the mixture. 

Therefore, features representing the overall shape of a short-term spectrum may not be 

appropriate for our task. Such features include Mel-frequency cepstral coefficients 

(MFCC) and linear predictive coding (LPC), which are commonly used in ASR (Rabiner 

& Juang, 1993). On the other hand, the short-term spectra in the T-F regions dominated 

by speech are expected to be similar to those of clean utterances, while the short-term 

spectra of other T-F regions tend to be different. Therefore, we use the short-term 

spectrum within a T-F region as a feature to decide whether this region is dominated by 
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speech or interference. More specifically, we use the energy within individual T-F units 

as the feature to represent the short-term spectrum.   

• Formant transition. It is difficult to estimate the formant frequency of a target utterance 

in the presence of strong interference. In addition, formant transition is embodied in the 

corresponding short-term spectrum. Therefore, we do not explicitly use formant transition 

in this study.  

• Voicing. Voicing information of a target utterance is not utilized since we are handling 

unvoiced speech. 

• Duration. While the duration of an interfering sound is unpredictable, for speech each 

phoneme lasts for a range of durations. However, we may not be able to detect the 

boundaries of phonemes that are strongly coarticulated. Therefore it is difficult to find the 

accurate durations of individual phonemes from an acoustic mixture, and the durations of 

individual phonemes are not utilized in this study.  

In summary, we use the signal energy within individual T-F segments to derive the acoustic-

phonetic features for distinguishing speech and nonspeech interference.  

 

C. Segment removal 

Since our task is to group segments for unvoiced speech, segments that mainly contain 

periodic or quasi-periodic signals unlikely originate from unvoiced speech and should be 

removed. A segment is removed if more than half of its total energy is included in the T-F units 

dominated by a periodic signal. We consider unit ucm dominated by a periodic signal if it is 

included in the segregated voiced stream or has a high cross-channel correlation, the latter 

indicating that two neighboring channels respond to the same harmonic or formant (Wang & 

Brown, 1999). Specifically, a cross-channel correlation is considered high if C(c, m) > 0.985 or 

CE(c, m) > 0.985.  

Among the remaining segments, a segment dominated by unvoiced target is unlikely located 

at time frames corresponding to voiced phonemes other than expanded obstruents. This property 

is, however, not shared by some interference-dominant segments that can have significant energy 

in such voiced frames. We remove these segments as follows. 

We first label the voiced frames of a target utterance that unlikely contain an expanded 

obstruent, according to the segregated voiced target. Let H0(m1, m2) be the hypothesis that a T-F 
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region between frame m1 and frame m2 is dominated by speech and H1(m1, m2) the hypothesis 

that the region is dominated by interference. In addition, let H0,a(m1, m2) be the hypothesis that 

this region is dominated by an expanded obstruent and H0,b(m1, m2) by any other phoneme. 

Let X(c, m) be the energy in ucm and X(m) = {X(c, m), ∀c} the vector of the energy in all the 

T-F units at time frame m. X(m) is referred to as the cochleagram at frame m (Wang & Brown, 

2006). Let XT(m) = {XT(c, m), ∀c} be the cochleagram of the segregated target at frame m, that 

is 

               (7) 
⎩
⎨
⎧ ∈

=
else

SuifmcXmcX Tcm
T 0

),,(),(
2

A voiced frame m is labeled as obstruent-dominant if 

                          (8) ))(|)(())(|)(( ,0,0 mXmHPmXmHP TbTa >

We assume that, given XT(m), these posterior probabilities do not depend on a particular frame 

index. In other words, for any two frames m1 and m2, 

cmcXmcXifmXmHPmXmHP TTTT ∀== ),,(),()),(|)(())(|)(( 212211                 (9) 

To simplify calculations, we further assume that the prior probabilities of H0,a(m), H0,b(m), and 

H1(m) are constant for individual frames within a given T-F region. A frame index can then be 

dropped from these frame-level hypotheses. In the following, we use a hypothesis without a 

frame index to refer to that hypothesis for a single frame of a T-F segment. Then Equation (8) 

becomes 

))(|())(|( ,0,0 mXHPmXHP TbTa >                        (10) 

Given that XT(m) corresponds to voiced target, we have P(H0,b|XT(m)) =  1−P(H0,a|XT(m)) . 

Therefore, we have 

              (11) 5.0))(|( ,0 >mXHP Ta

We construct a multilayer perceptron (MLP) to compute P(H0,a|XT(m)). The desired output of 

the MLP is 1 if the corresponding frame is dominated by an expanded obstruent and 0 otherwise. 

Note that when there are sufficient training samples, the trained MLP yields a good estimate of 

the probability (Bridle, 1989). The MLP is trained with a corpus that includes all the utterances 

from the training part of the TIMIT database and 100 intrusions. These intrusions include crowd 
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noise and environmental sounds, such as wind, bird chirp, and ambulance alarm.1 Utterances and 

intrusions are mixed at 0-dB SNR to generate training samples. We use Praat to label voiced 

frames. The cochleagram of the target at voiced frames is determined using the ideal binary mask 

of each mixture. The number of units in the hidden layer of the MLP is determined using cross-

validation. Specifically, we divide the training samples into two equal sets, one for training and 

the other for validation. The resulting MLP has 20 units in the hidden layer.  

We label every voiced frame based on Equation (11). A segment is removed if more than 

50% of its energy is included in the voiced frames that are not dominated by an expanded 

obstruent. As a result of segment removal, many segments dominated by interference are 

removed. We find that this step increases the robustness of the system and greatly reduces the 

computational burden for the following segment classification.  

 

D. Segment classification 

In this step, we classify the remaining segments as dominated by either unvoiced speech or 

interference. Let s be a remaining segment lasting from frame m1 to m2, and Xs(m) = {Xs(c, m), 

∀c} be the corresponding cochleagram at frame m. That is, 

             (12) 
⎩
⎨
⎧ ∈

=
else

suifmcX
mcX cm

s 0
),(

),(

Let Xs = [Xs(m1), Xs(m1+1), …, Xs(m2)]. s is classified as dominated by unvoiced speech if: 

                   (13) )|),(()|),(( 21121,0 ssa mmHPmmHP XX >

Because segments have varied durations, directly evaluating  and 

 for each possible duration is not computationally feasible. Therefore, we 

consider a simplifying approximation that each time frame is statistically independent. Since 

)|),(( 21,0 sa mmHP X

)|),(( 211 smmHP X

)|)(),...,1(),(()|),(( 2,01,01,021,0 saaasa mHmHmHPmmHP XX +=          (14) 

Applying the chain rule: 

⋅⋅⋅+⋅= )),(|)1(()|)(()|),(( 1,01,01,021,0 saasasa mHmHPmHPmmHP XXX  

)),1(),...,1(),(|)(( 2,01,01,02,0 saaaa mHmHmHmHP X−+⋅       (15) 

From the independence assumption, we have 

                                                           
1 Nonspeech sounds are posted at http://www.cse.ohio-state.edu/pnl/corpus/HuCorpus.html 
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 )),1(),...,1(),(|)(( 2,01,01,01,0 saaaa kmHmHmHkmHP X−+++   

))(|)(()|)(( 11,01,0 kmXkmHPkmHP sasa ++=+= X             (16) 

Therefore, 

           (17) ∏ == 2

1
))(|)(()|),(( ,021,0

m
mm sasa mXmHPmmHP X

and the same calculation can be done for . Now (13) becomes )|),(( 211 smmHP X

  ∏∏ ==
> 2

1

2

1
))(|)(())(|)(( 1,0

m

mm s
m

mm sa mXmHPmXmHP         (18) 

By applying the Bayesian rule and the assumption made in Sect. IV.C that the prior and the 

posterior probabilities do not depend on a frame index within a given segment, the above 

inequality becomes, 

1
)|)((
)|)((

)(
)( 2

1

12

1

,0
1

1

,0 >⎥
⎦

⎤
⎢
⎣
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m

mm
s

as
mm

a

HmXp
HmXp

HP
HP

         (19)  

The prior probabilities P(H0,a) and P(H1) depend on the SNR of acoustic mixtures. Figure 4 

shows the observed logarithmic ratios between P(H0,a) and P(H1) from the training data at 

different mixture SNR levels. We approximate the relationship shown in the figure by a linear 

function, 

  1.8962 SNR .11660
)(
)(

log
1

,0 −=
HP

HP a              (20) 

If we can estimate the mixture SNR, we will be able to estimate the log ratio of P(H0,a) and 

P(H1) and use it in Equation (19). This allows us to be more stringent in labeling a segment as 

speech dominant when the mixture SNR is low.  

We propose to estimate the SNR of an acoustic mixture by capitalizing on the voiced target 

that has already been segregated from the mixture. Let E1 be the total energy included in the T-F 

units labeled 1 at the voiced frames of the target. One may use E1 to approximate the target 

energy at voiced frames and estimate the total target energy as αE1 that includes unvoiced target 

speech. By analyzing the training part of the TIMIT database, we find that parameter α –the ratio 

between the total energy of a speech utterance and the total energy at the voiced frames of the 

utterance – varies substantially across individual utterances. In this study, we set α to 1.09, the 

average value of all the utterances in the training part of the TIMIT database. Let E2 be the total 

energy included in the T-F units labeled 0 at the voiced frames of the target, N1 the total number 
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of these voiced frames, and N2
 the total number of other frames. We use E2/N1 to approximate the 

interference energy per frame and estimate the total interference energy as E2(N1+N2)/N1. 

Consequently, the estimated mixture SNR is: 

 
21

1
1010

2

1
10

221

11
10 log10log10log10

)(
log10

NN
N

E
E

ENN
ENSNR

+
++=

+
= α

α         (21) 

With α = 1.09, 10log10α = 0.37 dB. We have applied this SNR estimation to the test corpus. 

Figure 5 shows the mean and the standard deviation of the estimation error at each SNR level of 

the original mixtures; the estimation error equals to the estimated SNR subtracted by the true 

SNR. As shown in the figure, the system yields a reasonable estimate when the mixture SNR is 

lower than 10 dB. When the mixture SNR is greater than or equal to 10 dB, Equation (21) tends 

to underestimate the true SNR. As discussed in Section II, some voiced frames of the target, such 

as those corresponding to expanded obstruents, may contain unvoiced target energy that fails to 

be included in E1 but ends up in E2. When the mixture SNR is low, this part of unvoiced energy 

is much lower than the interference energy. Therefore, it is negligible and Equation (21) provides 

a good estimate. When the mixture SNR is high, this unvoiced target energy can be comparable 

to interference energy and as a result the estimated SNR tends to be systematically lower than the 

true SNR. 

Alternatively, one can also estimate the mixture SNR at the unvoiced frames of the target or 

estimate the target energy at the unvoiced frames based on the average frame-level energy ratio 

of unvoiced speech to voiced speech. These alternatives have been evaluated in Hu (2006), and 

they do not yield more accurate estimates. Of course, for the TIMIT corpus we can simply 

correct the systematic bias shown in Figure 5. We choose not to do so for the sake of generality. 

To label a segment as either expanded obstruent or interference according to Equation (19), 

we need to estimate the likelihood ratio between p(Xs(m)|H0,a) and p(Xs(m)|H1). When P(H0 ,a) 

and P(H1) are equal, we have by the Bayesian rule 

  
))(|(
))(|(

)|)((
)|)((

1

,0

1

,0

mXHP
mXHP

HmXp
HmXp

s

sa

s

as =            (22) 

We train an MLP to estimate P(H0,a|Xs(m)) when P(H0 ,a) and P(H1) are equal. The MLP has the 

same structure as the one described in Sect. IV.C. The training data are the cochleagrams of 

target utterances at time frames corresponding to expanded obstruents and those of nonspeech 

intrusions from the same training set described in Sect. IV.C. Since P(H1|Xs(m)) = 1 − 

 16



 
Hu and Wang: Technical Report OSU-CISRC-8/07-TR63, 2007 

   

P(H0,a|Xs(m)) given that frame m corresponds to an expanded obstruent, we are able to calculate 

the likelihood ratio of p(Xs(m)|H0,a) and p(Xs(m)|H1) using the output from the trained MLP.  

Using the above estimate of the likelihood ratio and the estimated mixture SNR to calculate 

the prior probability ratio of P(H0,a) and P(H1), we label a segment as either expanded obstruent 

or interference according to (19). All the segments labeled as unvoiced speech are added to the 

segregated voiced stream, ST
2, yielding the final segregated stream, referred to as ST

3.  

This method for segregating unvoiced speech is very similar to a previous version (Wang & 

Hu, 2006) where we used fixed prior probabilities for all SNR levels. We find that using SNR-

dependent prior probabilities gives better performance, especially when the mixture SNR is high. 

In an earlier study (Hu & Wang, 2005), we used GMM (Gaussian Mixture Model) to model both 

speech and interference and then classify a segment using the obtained models. The performance 

in that study is not as good as the present method. The main reason, we believe, is that, although 

GMM is trained to represent the distributions of speech and interference accurately, MLP is 

trained to distinguish speech and interference and therefore has more discriminative power. We 

have also considered the dependence between consecutive frames, instead of treating individual 

frames as independent. The obtained result is comparable to that obtained with the independence 

assumption, probably due to the fact that the signal within a segment is usually quite stable 

across time so that considering the dynamics within a segment does not provide much additional 

information for classification. 

As an example, Figures 6(e) and 6(f) show the final segregated target and the corresponding 

synthesized waveform for the mixture in Figure 1(d). Compared with the ideal mask in Figure 

1(e) and the corresponding synthesized waveform in Figure 1(f), our system segregates most of 

target energy and rejects most of interfering energy. In addition, Figures 7(a) and 7(b) show the 

mask and the waveform of the segregated voiced target, i.e., ST
1. Figures 7(c) and 7(d) show the 

mask and the waveform of the resulting stream after grouping T-segments dominated by voiced 

speech, i.e., ST
2. The target utterance, “That noise problem grows more annoying each day,” 

includes 5 stops (/t/ in “that”, /p/ and /b/ in “problem”, /g/ in “grows”, and /d/ in “day”), 3 

fricatives (/ð/ in “that”, /z/ in “noise”, and /z/ in “grows”), and 1 affricate (/tʃ/ in “each”). The 

unvoiced parts of some consonants with strong coarticulation with the voiced speech, such as /ð/ 

in “that” and /d/ in “day”, are segregated by using T-segments. The unvoiced part of /z/ in 
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“noise” and /tʃ/ in “each” are segregated by grouping the corresponding segments. Except for a 

significant loss of energy for /p/ in “problem” and some energy loss for /t/ in “that”, our system 

segregates most of the energy of the above consonants. 

 

V. EVALUATION 

We now systematically evaluate the performance of our system. Here we use a test corpus 

containing 20 target utterances randomly selected from the test part of the TIMIT database mixed 

with 15 nonspeech intrusions including 5 with crowd noise. Table 3 lists the 20 target utterances. 

The intrusions are: N1 – white noise, N2 – rock music, N3 – siren, N4 – telephone ring, N5 – 

electric fan, N6 – clock alarm, N7 – traffic noise, N8 – bird chirp with water flowing, N9 – wind, 

and N10 – rain, N11 – cocktail party noise, N12 – crowd noise at a playground, N13 – crowd 

noise with music, N14 – crowd noise with clap, and N15 – babble noise (16 speakers). This set 

of intrusions is not used during training, and represents a broad range of nonspeech sounds 

encountered in typical acoustic environments. Each target utterance is mixed with individual 

intrusions at -5 dB, 0 dB, 5 dB, 10 dB, and 15 dB SNR levels. The test corpus has 300 mixtures 

at each SNR level and 1500 mixtures altogether.  

We evaluate our system by comparing the segregated target with the ideal binary mask — the 

stated computational goal. The performance of segregation is given by comparing the estimated 

mask and the ideal binary mask with two measures (Hu & Wang, 2004): 

• The percentage of energy loss, PEL, which measures the amount of energy in the target-

dominant T-F units that are labeled as interference relative to the total energy in target-

dominant T-F units.  

• The percentage of noise residue, PNR, which measures the amount of energy in the 

interference-dominant T-F units that are labeled as target relative to the total energy in T-

F units estimated as target dominant. 

PEL and PNR provide complementary error measures of a segregation system and a successful 

system needs to achieve low errors in both measures.  

The PEL and PNR values for ST
3 at different input SNR levels are shown in Figures 7(a) and 

7(b). Each value in the figure is the average over the 300 mixtures of individual targets and 

intrusions N1-N15. As shown in the figure, for the final segregation, our system captures an 

average of 85.7% of target energy at -5 dB SNR. This value increases to 96.7% when the mixture 
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SNR increases to 15 dB. On average 24.3% of the segregated target belongs to interference at -5 

dB. This value decreases to 0.6% when the mixture SNR increases to 15 dB. In summary, our 

system captures a majority of target without including much interference. 

To see the performance of our system on unvoiced speech in details, we measure PEL for 

target speech in the unvoiced frames. The average of these PEL values at different SNR levels are 

shown in Figure 7(c). Note that since some voiced frames contain unvoiced target, these are not 

exactly the PEL values of unvoiced speech. Nevertheless, they are close to the real values. As 

shown in the figure, our system captures 35.5% of the target energy at the unvoiced frames when 

the mixture SNR is -5 dB and 74.4% when the mixture SNR is 15 dB. Overall, our system is able 

to capture more than 50% of target energy at the unvoiced frames when the mixture SNR is 0 dB 

or higher.  

As discussed in Sect. II, expanded obstruents often contain voiced and unvoiced signals at the 

same time. Therefore, we measure PEL for these phonemes separately in order to gain more 

insight into system performance. Because affricates do not occur often and they are similar to 

fricatives, we measure PEL for fricatives and affricates together. The averages of these PEL values 

at different SNR levels are shown in Figures 7(d) and 7(e). As shown in the figure, our system 

performs somewhat better for fricatives and affricates when the mixture SNR is 0 dB or higher. 

On average, the system captures about 65% of these phonemes when the mixture SNR is -5 dB 

and about 90% when the mixture SNR is 15 dB.  

For comparison, Figure 7 also shows the PEL and PNR values for segregated voiced target, i.e., 

ST
1 (labeled as “Voiced”), and the resulting stream after grouping T-segments dominated by 

voiced target, ST
2 (labeled as “Voiced T-segments”). As shown in the figure, ST

1 only includes 

about 10% of target energy in unvoiced frames, while ST
2 includes about 20% more. This 

additional 20% mainly corresponds to unvoiced phonemes that have strong coarticulation with 

neighboring voiced phonemes. By comparing these PEL and PNR values with those of the final 

segregated target, we can see that grouping segments dominated by unvoiced speech helps to 

recover a large amount of unvoiced speech. It also includes a small amount of additional 

interference energy, especially when the mixture SNR is low.  

In addition, Figure 7 shows the PEL and PNR values for segregated target obtained with perfect 

segment classification. As shown in the figure, there is a performance gap that can be narrowed 

with better classification, especially when the mixture SNR is low. 
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We also measure the system performance in terms of SNR by treating the target synthesized 

from the corresponding ideal binary mask as signal (Hu & Wang, 2004; Hu & Wang, 2006). 

Figures 8(a) and 8(b) show the overall average SNR values of segregated targets at different 

levels of mixture SNR and the corresponding SNR gain. Figures 8(c) and 8(d) show the 

corresponding values at unvoiced frames. Our system improves SNR in all input conditions. To 

put our performance in perspective, we have compared with spectral subtraction, a standard 

method for speech enhancement (Huang et al., 2001), with the above SNR measures. The 

spectral subtraction method is applied as follows. For each acoustic mixture, we assume that the 

silent portions of a target utterance are known and use the short-term spectra of interference in 

these portions as the estimates of interference. Interference is attenuated by subtracting the most 

recent interference estimate from the mixture spectrum at every time frame. The resulting SNR 

measures of the spectral subtraction method are also shown in Figure 8. As clear in the figure, 

our system performs substantially better for both voiced and unvoiced speech than the spectral 

subtraction method even when it is applied with perfect speech pause detection; the only 

exception occurs for unvoiced speech at the input SNR of 15 dB. The improvement is more 

pronounced when the mixture SNR is low. 
 

VI. DISCUSSION 

Several insights have emerged from this study. The first is that the temporal properties of 

acoustic signals are crucial for speech segregation. Our system makes an extensive use of 

temporal properties. In particular, we group target sound in consecutive frames based on the 

temporal continuity of speech signal. Furthermore, our system generates segments by analyzing 

sound intensity across time, i.e., onset and offset detection. The importance of temporal 

properties of speech for human speech recognition has been convincingly demonstrated by 

Shannon et al. (1995). In addition, studies in ASR suggest that long-term temporal information 

helps to improve recognition rate (see e.g. Hermansky & Sharma, 1999). All these observations 

show that temporal information plays a critical role in sound organization and recognition. 

Second, we find it advantageous to segregate voiced speech first and then use the segregated 

voiced speech to aid the segregation of unvoiced speech. As discussed before, unvoiced speech is 

more vulnerable to interference and more difficult to segregate. Segregation of voiced speech is 

more reliable and can be used to assist in the segregation of unvoiced speech. Our study shows 
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that the unvoiced speech with strong coarticulation with voiced speech can be segregated using 

segregated voiced speech and estimated T-segments. Segregated voiced speech is also used to 

delineate the possible T-F locations of unvoiced speech. As a result, our system need not search 

the entire T-F domain for segments dominated by unvoiced speech and less likely identifies an 

interference-dominant segment as target. In addition, we have proposed an estimate of the 

mixture SNR from segregated voiced speech which helps the system to adapt the prior 

probabilities in segment classification. 

In addition, auditory segmentation is important for unvoiced speech segregation. In our 

system, the segmentation stage provides T-segments that help to segregate unvoiced speech that 

has strong coarticulation with voiced speech. As shown by Cole et al. (1996), such portions of 

speech are important for speech intelligibility. More importantly, segments are the basic units for 

classification, which enables the grouping of unvoiced speech. 

A natural speech utterance contains silent gaps and other sections masked by interference. In 

practice, one needs to group the utterance across such time intervals. This is the problem of 

sequential grouping (Bregman, 1990; Wang & Brown, 2006). In this study, we handle this 

problem in a limited way by applying feature-based classification, assuming nonspeech 

interference. Systematic evaluation shows that, although our system yields good performance, it 

can be further improved with better sequential grouping. The assumption of nonspeech 

interference is obviously not applicable to mixtures of multiple speakers. Alternatively, grouping 

T-F segments sequentially may be achieved by using speech recognition (Barker et al., 2005) or 

speaker recognition (Shao & Wang, 2006) in a top-down manner. Although these model-based 

studies on sequential grouping show promising results, the need for training with a specific 

lexicon or speaker set limits their scope of application. Substantial effort is needed to develop a 

general approach to sequential grouping.  

To conclude, we have proposed a monaural CASA system that segregates unvoiced speech by 

performing onset/offset-based segmentation and feature-based classification. To our knowledge, 

this is the first systematic study on unvoiced speech segregation. Quantitative evaluation shows 

that our system captures most of unvoiced speech without including much interference.  
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Table 1. Occurrence percentages of six consonant categories 
 

Phoneme type Conversational Written TIMIT 
Voiced Stop 6.7 6.9 7.9 
Unvoiced Stop 15.1 11.9 12.8 
Voiced Fricative 7.5 9.5 7.7 
Unvoiced Fricative 8.6 8.6 9.8 
Voiced Affricate 0.3 0.4 0.6 
Unvoiced Affricate 0.3 0.5 0.5 
Total 38.5 37.8 39.3 

 
 
 
 

Table 2. Duration percentages of six consonant categories 
 

Phoneme type Conversational TIMIT 
Voiced Stop 5.6 5.2 
Unvoiced Stop 16.2 12.9 
Voiced Fricative 5.3 5.8 
Unvoiced Fricative 9.6 12.0 
Voiced Affricate 0.3 0.6 
Unvoiced Affricate 0.4 0.7 
Total 37.4 37.2 

 

 24



 
Hu and Wang: Technical Report OSU-CISRC-8/07-TR63, 2007 

   

 
 

Table 3. Target utterances in the test corpus 
 

Target Content 
S1 Put the butcher block table in the garage 
S2 Alice's ability to work without supervision is noteworthy 
S3 Barb burned paper and leaves in a big bonfire 
S4 Swing your arm as high as you can 
S5 Shaving cream is a popular item on Halloween 

S6 He then offered his own estimate of the weather, which was 
unenthusiastic 

S7 The morning dew on the spider web glistened in the sun 
S8 Her right hand aches whenever the barometric pressure changes 
S9 Why yell or worry over silly items 
S10 Aluminum silverware can often be flimsy 
S11 Guess the question from the answer 
S12 Medieval society was based on hierarchies 
S13 That noise problem grows more annoying each day 
S14 Don't ask me to carry an oily rag like that 

S15 Each untimely income loss coincided with the breakdown of a heating 
system part 

S16 Combine all the ingredients in a large bowl 
S17 Fuss, fuss, old man 
S18 Don't ask me to carry an oily rag like that 
S19 The fish began to leap frantically on the surface of the small lake 
S20 The redcoats ran like rabbits 
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Figure 1. CASA illustration. (a) T-F decomposion of a female utterance, “That noise 
problem grows more annoying each day.” (b) Waveform of the utterance. (c) T-F 
decomposition of the utterance mixed with a crowd noise. (d) Waveform of the 
mixture. (e) Target stream composed of all the T-F units (black regions) dominated by 
the target (ideal binary mask). (f) Waveform resynthesized from the target stream. 
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Figure 2. Diagram of the segmentation stage. In each processing step, a rectangle
represents a particular scale, which increases from bottom to top. 

 27



 
Hu and Wang: Technical Report OSU-CISRC-8/07-TR63, 2007 

   

 

 

F
re

qu
en

cy
 (

H
z)

Time (s)
 0 0.5  1 1.5  2 2.5

50

363

1246

3255

8000

 

Figure 3. Bounding contours of estimated segments. The input is the mixture shown 
in Figure 1(d). The background is represented by gray. 

 28



 
Hu and Wang: Technical Report OSU-CISRC-8/07-TR63, 2007 

   

 
 

−5 0 5 10 15
−3

−2

−1

0

Mixture SNR (dB)

lo
gP

(H
0,

a)−
lo

gP
(H

1)

 
 

Figure 4. Ratio of the prior probability of target to that of interference as a function of 
mixture SNR. 
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Figure 5. Mean and standard deviation of estimated mixture SNRs in the test corpus. 
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Figure 6. Segregated target of the mixture shown in Figure 1(d). (a) Mask of 
segregated voiced target (black regions). (b) Waveform resynthesized from the mask 
in (a). (c) Mask of the resulting target stream after grouping estimated T-segments 
(black regions). (d) Waveform resynthesized from the mask in (c). (e) Mask of the 
final segregated target (black regions). (f) Waveform resynthesized from to the mask 
in (e). 
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re 7. System performance. In this figure, “Final” refers to the final segregated target, 
iced” the segregated voiced target, “Voice T-segment” the segregated target after 
ping T-segments dominated by voiced target, and “Perfect classification” segregated 

et with perfect segment classification. (a) Average percentage of energy loss. (b) Average 
entage of noise residue. (c) Average percentage of energy loss for unvoiced speech. (d) 
rage percentage of energy loss for stop consonants. (e) Average percentage of energy loss 
ricatives and affricates. 
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Figure 8. SNR performances of the proposed system and spectral subtraction. (a) 
SNR of segregated target. (b) SNR gain of segregated target. (c) SNR of segregated 
target at unvoiced frames. (d) SNR gain of segregated target at unvoiced frames.  
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